Functionalizable Biodegradable Polyesters For

Total Page:16

File Type:pdf, Size:1020Kb

Functionalizable Biodegradable Polyesters For FUNCTIONALIZABLE BIODEGRADABLE POLYESTERS FOR DRUG DELIVERY APPLICATIONS A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Abhishek Banerjee May, 2012 FUNCTIONALIZABLE BIODEGRADABLE POLYESTERS FOR DRUG DELIVERY APPLICATIONS Abhishek Banerjee Dissertation Approved: Accepted: ______________________________ ______________________________ Advisor Department Chair Dr. Coleen Pugh Dr. Ali Dhinojwala ______________________________ ______________________________ Committee Chair Dean of the College Dr. Li Jia Dr. Stephen Cheng ______________________________ ______________________________ Committee Member Dean of the Graduate School Dr. Abraham Joy Dr. George R. Newkome ______________________________ ______________________________ Committee Member Date Dr. William J. Landis ______________________________ Committee Member Dr. Yang H. Yun ii ABSTRACT Current biodegradable polymers, like poly(lactic acid) (PLA), poly(glycolic acid) (PGA) and their copolymers (PLGA) do not have functionalities on their backbones. Such biodegradable polymer systems are therefore not able to covalently attach drugs or other therapeutic molecules, which could be useful for making drug delivery devices. Instead, the therapeutic molecules must be physically entrapped into these polymers, either by forming micelles or by nano-encapsulation, thereby limiting their loading capacity. Our research deals with the polyesterification of 2-bromo-3-hydroxypropanoic acid which is a halogenated isomer of lactic acid, yet has a primary alcohol group like glycolic acid. It is therefore an ideal co-monomer for incorporation into PLGA. Such co- polyesters are potentially biodegradable with halogen functionalities on the main chain. We have synthesized brominated copolymers with LA and GA of number average molecular weights around 20,000 Da (PS standards), under bulk co-polymerization conditions. The number of functionalizable sites on the main chain of this polyester is controlled by varying the feed ratio of the halogen co-monomer. The biodegradability of the polymer can also be tailored by varying the lactic acid and glycolic acid feed ratios. Solution polymerization using carbodiimide chemistry at room temperature has also been explored to prepare these co-polymers, with lesser success. iii The biodegradation behavior of these brominated polyesters were studied in the form of compression molded tablets under physiological conditions, Phosphate buffer saline (pH 7.4), at 37 °C and these polymers were found to degrade to around 80% of their initial molecular weights. iv DEDICATION This dissertation is dedicated to my grandfather, Subhash Chatterjee. I wish life allowed me to spend more time with him. This dissertation is also dedicated to my parents, Kalpana and Tarun Banerjee. It is their hard work, sacrifices and exceptional parenting that is mostly responsible for my successes in past, present and in future. This dissertation is also dedicated to my elder brother, Abhijeet Banerjee. He is a friend and mentor. v ACKNOWLEDGEMENTS I would like to begin by thanking my parents for supporting me, both financially and emotionally, throughout my academic career. Any success is a manifestation of their sacrifices, foresight and excellent parenting. I am extremely grateful to my doctoral advisor, and mentor, Dr Coleen Pugh, for giving me the opportunity to perform research in her lab. I have been fortunate to learn and practice not only chemistry but also valuable life lessons. I wish that I had even half of her intelligence, energy and dedication towards everything she does. I acknowledge my doctoral dissertation committee members, Dr. Li Jia, Dr. Abraham Joy, Dr William Landis, and Dr Yang Yun who took the time to read my dissertation and give constructive feedback. I thank my colleagues, both past and present, from Dr Pugh’s research group, Dr Anirudha Singh, Dr Chau Tang, Dr James Baker, Lisa Collette, Gladys Montenegro, William Storms, Colin Wright, Mina Garcia, Stephanie Vivod, Cesar Lopez, Xiang Yan, Ajay Amrutkar, Brinda Shah and Nicole Swanson. I would like to thank Dr Andrew Ditto, and Kush Shah from the Dr Yun research group who helped me formulate micro-particles and helping me with the dynamic light scattering experiments. vi I would like to thank Rajarshi Sarkar, for helping me with hydrogenation reactions, and wish him good luck the remaining of his doctoral research. I thank Dr Sachin Gokhale for proving me insight into silicon deprotection chemistry. I would like to thank Dr Boje Wang and Dr Sarang Bhawalkar who helped me with Scanning Electron Microscopy. I would like to thank my graduate school buddies, Kurt Chiang and Andy Heidenreich, who made graduate school fun. On a personal note, I would like to thank Adam Pilz, whose friendship over the years made life in akron enjoyable, and his influence helped me broaden my horizons beyond science – into the world of economics, finance and business. I would also like to acknowledge the friendship of Dr Abhimanyu Kumar, as an ‘almost roommate’, who was always motivating and great company. I am grateful to have known and been roommates with Sushil Sivaram, whose excellent cooking skills and conversations I still miss. I would like to thank my oldest friend, Dr Sunny Sethi, whose friendship and advice has stuck with me, thick and thin. Finally, I would like to acknowledge lady luck, who has always taken care of things beyond my control. vii TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................ xii LIST OF FIGURES .......................................................................................................... xiv LIST OF SCHEMES ........................................................................................................ xix CHAPTER I. INTRODUCTION ......................................................................................................... 1 II. LITERATURE REVIEW ............................................................................................. 4 2.1 Application of Biodegradable Polymers .............................................................. 6 2.1.1 Ecological Applications ............................................................................... 7 2.1.2 Medical Application .................................................................................... 8 2.2 Motivation and Scope ......................................................................................... 13 2.3 Synthesis of Poly(hydroxy acids) ....................................................................... 21 2.3.1 Bulk ........................................................................................................... 21 2.3.2 Solution ...................................................................................................... 22 2.3.3 Sequence Controlled Copolymers ............................................................. 26 2.4 Biodegradation ................................................................................................... 27 2.4.1 Effect of Structure and Environment on Biodegradation .......................... 33 2.4.1.1 Crystallinity ........................................................................................... 33 2.4.1.2 Hydrophilicity ....................................................................................... 35 2.4.1.3 Acid autocatalysis ................................................................................. 35 viii 2.4.2 Experimental aspects of Studying biodegradation .................................... 37 2.4.2.1 Sample Preparation ............................................................................... 38 2.4.2.2 Biodegradation Markers ........................................................................ 39 2.4.2.2.1 Visual Examination ...................................................................... 39 2.4.2.2.2 Water Absorption ......................................................................... 40 2.4.2.2.3 Weight Loss ................................................................................. 41 2.4.2.2.4 Molecular Weight Loss ................................................................ 42 2.4.2.2.5 Change in pH ............................................................................... 44 III. EXPERIMNETAL METHODS .................................................................................. 45 3.1. Materials ............................................................................................................. 45 3.2. General Techniques ............................................................................................ 46 3.3. Synthesis of 2-bromo-3-hydroxypropionic acid ................................................. 49 3.4. Synthesis of poly(lactic acid-co-glycolic acid-co-2-bromo-3-hydroxypropionic acid) (PLGB801010) by bulk polycondensation ................................................ 50 3.5. Synthesis of poly(lactic acid-co-2-bromo-3-hydroxypropionic acid) (PLB8020) by solution polymerization .............................................................. 51 3.6. Synthesis of benzyl (DL)-lactate (Bn-LA) ......................................................... 52 3.7. Synthesis of benzyl glycolate (Bn-GA) .............................................................. 53 3.8. Synthesis of methyl 2-(tert-butyldiphenylsilanyloxy) acetate ..........................
Recommended publications
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • The Development of a Biodegradable Drug Delivery System for Orthopedic Infection in the Horse
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-1999 The development of a biodegradable drug delivery system for orthopedic infection in the horse : in vitro and in vivo biocompatibility and gentamicin elution characteristics Axel Friedrich Sondhof Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Sondhof, Axel Friedrich, "The development of a biodegradable drug delivery system for orthopedic infection in the horse : in vitro and in vivo biocompatibility and gentamicin elution characteristics" (1999). Retrospective Theses and Dissertations. 17799. https://lib.dr.iastate.edu/rtd/17799 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The development of a biodegradable drug delivery system for orthopedic infection in the horse: Jn vitro and in vivo biocompatibility and gentamicin elution characteristics by Axel Friedrich Sondhof A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Veterinary Clinical Sciences (Veterinary Surgery) Major Professor: Larry C. Booth Iowa State University Ames, Iowa 1999 ii Graduate College Iowa State University This is to certify that the Master's thesis of Axel Friedrich Sondhof has met the thesis requirements oflowa State University Signatures have been redacted for privacy iii TABLE OF CONTENTS CHAPTER 1. GENERAL INTRODUCTION Thesis Organization Introduction Literature Review 2 CHAPTER 2.
    [Show full text]
  • Solvent Induced Phase Inversion-Based in Situ Forming Controlled Release Drug Delivery Implants
    Journal of Controlled Release 176 (2014) 8–23 Contents lists available at ScienceDirect Journal of Controlled Release journal homepage: www.elsevier.com/locate/jconrel Review Solvent induced phase inversion-based in situ forming controlled release drug delivery implants Raghu Raj Singh Thakur ⁎, Hannah L. McMillan, David S. Jones Drug Delivery and Biomaterials Group, School of Pharmacy, Medical Biology Centre Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK article info abstract Article history: In situ forming (ISF) drug delivery implants have gained tremendous levels of interest over the last few decades. Received 19 September 2013 This is due to their wide range of biomedical applications such as in tissue engineering, cell encapsulation, Accepted 19 December 2013 microfluidics, bioengineering and drug delivery. Drug delivery implants forming upon injection has shown a Available online 27 December 2013 range of advantages which include localized drug delivery, easy and less invasive application, sustained drug action, ability to tailor drug delivery, reduction in side effects associated with systemic delivery and also improved patient Keywords: compliance and comfort. Different factors such as temperature, pH, ions, and exchange of solvents are involved in in In situ forming implants Solvent induced phase inversion implants situ implant formation. This review especially focuses on ISF implants that are formed through solvent induced Controlled release phase inversion (SPI) technique. The article critically reviews and compares a wide range of polymers, solvents, Sustained release and co-solvents that have been used in SPI implant preparation for control release of a range of drug molecules. Drug delivery Major drawback of SPI systems has been their high burst release.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]
  • WO 2014/078014 A2 22 May 2014 (22.05.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/078014 A2 22 May 2014 (22.05.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 307/06 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US2013/065916 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 2 1 October 2013 (21 .10.201 3) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 61/726,294 14 November 2012 (14. 11.2012) US 61/772,602 5 March 2013 (05.03.2013) US (84) Designated States (unless otherwise indicated, for every 61/823,5 18 15 May 2013 (15.05.2013) us kind of regional protection available): ARIPO (BW, GH, 61/834,974 14 June 2013 (14.06.2013) us GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: METABOLIX, INC.
    [Show full text]
  • Discovery, Synthesis and Structure-Activity Relationship Study
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Fall 12-18-2020 Antiparasitic Peptide from the Ocean: Discovery, Synthesis and Structure-Activity Relationship Study Kh Tanvir Ahmed Follow this and additional works at: https://dsc.duq.edu/etd Part of the Medicinal Chemistry and Pharmaceutics Commons Recommended Citation Ahmed, K. (2020). Antiparasitic Peptide from the Ocean: Discovery, Synthesis and Structure-Activity Relationship Study (Master's thesis, Duquesne University). Retrieved from https://dsc.duq.edu/etd/1924 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. ANTIPARASITIC PEPTIDE FROM THE OCEAN: DISCOVERY, SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIP STUDY A Thesis Submitted to the Graduate School of Pharmaceutical Sciences Duquesne University In partial fulfillment of the requirements for the degree of Master of Science By Kh Tanvir Ahmed December 2020 Copyright by Kh Tanvir Ahmed 2020 ANTIPARASITIC PEPTIDE FROM THE OCEAN: DISCOVERY, SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIP STUDY By Kh Tanvir Ahmed Approved August 21, 2020 ________________________________ ________________________________ Kevin J. Tidgewell, Ph.D. Aleem Gangjee, Ph.D. Associate Professor of Medicinal Professor of Medicinal Chemistry Chemistry (Committee Member) (Committee Chair) ________________________________ ________________________________
    [Show full text]
  • Downloaded, Instead, and Converted to 3D Using Obabel (O’Boyle Et Al., 2011)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.225821; this version posted July 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 New tyrosinases with a broad spectrum of action against contaminants of emerging 2 concern: Insights from in silico analyses 3 4 Marcus V. X. Senra† & Ana Lúcia Fonseca 5 6 Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas 7 Gerais – Brazil 8 †Corresponding author – [email protected]; Orcid - 0000-0002-3866-8837 9 10 Abstract 11 Tyrosinases (EC 1.14.18.1) are type-3 copper metalloenzymes with strong oxidative capacities 12 and low allosteric selectivity to phenolic and non-phenolic aromatic compounds that have been 13 used as biosensors and biocatalysts to mitigate the impacts of environmental contaminants over 14 aquatic ecosystems. However, the widespread use of these polyphenol oxidases is limited by 15 elevated production costs and restricted knowledge on their spectrum of action. Here, six 16 tyrosinase homologs were identified and characterized from the genomes of 4 widespread 17 freshwater ciliates using bioinformatics. Binding energies between 3D models of these 18 homologs and ~1000 contaminants of emerging concern (CECs), including fine chemicals, 19 pharmaceuticals, personal care products, illicit drugs, natural toxins, and pesticides were 20 estimated through virtual screening, suggesting their spectrum of action and potential uses in 21 environmental biotechnology might be considerably broader than previously thought.
    [Show full text]
  • The Organic Chemistry of Drug Synthesis
    The Organic Chemistry of Drug Synthesis VOLUME 2 DANIEL LEDNICER Mead Johnson and Company Evansville, Indiana LESTER A. MITSCHER The University of Kansas School of Pharmacy Department of Medicinal Chemistry Lawrence, Kansas A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY AND SONS, New York • Chichester • Brisbane • Toronto Copyright © 1980 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. Library of Congress Cataloging in Publication Data: Lednicer, Daniel, 1929- The organic chemistry of drug synthesis. "A Wiley-lnterscience publication." 1. Chemistry, Medical and pharmaceutical. 2. Drugs. 3. Chemistry, Organic. I. Mitscher, Lester A., joint author. II. Title. RS421 .L423 615M 91 76-28387 ISBN 0-471-04392-3 Printed in the United States of America 10 987654321 It is our pleasure again to dedicate a book to our helpmeets: Beryle and Betty. "Has it ever occurred to you that medicinal chemists are just like compulsive gamblers: the next compound will be the real winner." R. L. Clark at the 16th National Medicinal Chemistry Symposium, June, 1978. vii Preface The reception accorded "Organic Chemistry of Drug Synthesis11 seems to us to indicate widespread interest in the organic chemistry involved in the search for new pharmaceutical agents. We are only too aware of the fact that the book deals with a limited segment of the field; the earlier volume cannot be considered either comprehensive or completely up to date.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,795,310 B2 Lee Et Al
    US00779531 OB2 (12) United States Patent (10) Patent No.: US 7,795,310 B2 Lee et al. (45) Date of Patent: Sep. 14, 2010 (54) METHODS AND REAGENTS FOR THE WO WO 2005/025673 3, 2005 TREATMENT OF METABOLIC DISORDERS OTHER PUBLICATIONS (75) Inventors: Margaret S. Lee, Middleton, MA (US); Tenenbaum et al., “Peroxisome Proliferator-Activated Receptor Grant R. Zimmermann, Somerville, Ligand Bezafibrate for Prevention of Type 2 Diabetes Mellitus in MA (US); Alyce L. Finelli, Patients With Coronary Artery Disease'. Circulation, 2004, pp. 2197 Framingham, MA (US); Daniel Grau, 22O2.* Shen et al., “Effect of gemfibrozil treatment in sulfonylurea-treated Cambridge, MA (US); Curtis Keith, patients with noninsulin-dependent diabetes mellitus'. The Journal Boston, MA (US); M. James Nichols, of Clinical Endocrinology & Metabolism, vol. 73, pp. 503-510, Boston, MA (US) 1991 (see enclosed abstract).* International Search Report from PCT/US2005/023030, mailed Dec. (73) Assignee: CombinatoRx, Inc., Cambridge, MA 1, 2005. (US) Lin et al., “Effect of Experimental Diabetes on Elimination Kinetics of Diflunisal in Rats.” Drug Metab. Dispos. 17:147-152 (1989). (*) Notice: Subject to any disclaimer, the term of this Abstract only. patent is extended or adjusted under 35 Neogi et al., “Synthesis and Structure-Activity Relationship Studies U.S.C. 154(b) by 0 days. of Cinnamic Acid-Based Novel Thiazolidinedione Antihyperglycemic Agents.” Bioorg. Med. Chem. 11:4059-4067 (21) Appl. No.: 11/171,566 (2003). Vessby et al., “Effects of Bezafibrate on the Serum Lipoprotein Lipid and Apollipoprotein Composition, Lipoprotein Triglyceride Removal (22) Filed: Jun. 30, 2005 Capacity and the Fatty Acid Composition of the Plasma Lipid Esters.” Atherosclerosis 37:257-269 (1980).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2002/0102215 A1 100 Ol
    US 2002O102215A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0102215 A1 Klaveness et al. (43) Pub. Date: Aug. 1, 2002 (54) DIAGNOSTIC/THERAPEUTICAGENTS (60) Provisional application No. 60/049.264, filed on Jun. 6, 1997. Provisional application No. 60/049,265, filed (75) Inventors: Jo Klaveness, Oslo (NO); Pal on Jun. 6, 1997. Provisional application No. 60/049, Rongved, Oslo (NO); Anders Hogset, 268, filed on Jun. 7, 1997. Oslo (NO); Helge Tolleshaug, Oslo (NO); Anne Naevestad, Oslo (NO); (30) Foreign Application Priority Data Halldis Hellebust, Oslo (NO); Lars Hoff, Oslo (NO); Alan Cuthbertson, Oct. 28, 1996 (GB)......................................... 9622.366.4 Oslo (NO); Dagfinn Lovhaug, Oslo Oct. 28, 1996 (GB). ... 96223672 (NO); Magne Solbakken, Oslo (NO) Oct. 28, 1996 (GB). 9622368.0 Jan. 15, 1997 (GB). ... 97OO699.3 Correspondence Address: Apr. 24, 1997 (GB). ... 9708265.5 BACON & THOMAS, PLLC Jun. 6, 1997 (GB). ... 9711842.6 4th Floor Jun. 6, 1997 (GB)......................................... 97.11846.7 625 Slaters Lane Alexandria, VA 22314-1176 (US) Publication Classification (73) Assignee: NYCOMED IMAGING AS (51) Int. Cl." .......................... A61K 49/00; A61K 48/00 (52) U.S. Cl. ............................................. 424/9.52; 514/44 (21) Appl. No.: 09/765,614 (22) Filed: Jan. 22, 2001 (57) ABSTRACT Related U.S. Application Data Targetable diagnostic and/or therapeutically active agents, (63) Continuation of application No. 08/960,054, filed on e.g. ultrasound contrast agents, having reporters comprising Oct. 29, 1997, now patented, which is a continuation gas-filled microbubbles stabilized by monolayers of film in-part of application No. 08/958,993, filed on Oct.
    [Show full text]
  • Biodegradable Materials for Bone Defect Repair Shuai Wei1, Jian-Xiong Ma1, Lai Xu2, Xiao-Song Gu2* and Xin-Long Ma1*
    Wei et al. Military Medical Research (2020) 7:54 https://doi.org/10.1186/s40779-020-00280-6 REVIEW Open Access Biodegradable materials for bone defect repair Shuai Wei1, Jian-Xiong Ma1, Lai Xu2, Xiao-Song Gu2* and Xin-Long Ma1* Abstract Compared with non-degradable materials, biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects, and have attracted extensive attention from researchers. In the treatment of bone defects, scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role, which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue. Traditional biodegradable materials include polymers, ceramics and metals, which have been used in bone defect repairing for many years. Although these materials have more or fewer shortcomings, they are still the cornerstone of our development of a new generation of degradable materials. With the rapid development of modern science and technology, in the twenty-first century, more and more kinds of new biodegradable materials emerge in endlessly, such as new intelligent micro- nano materials and cell-based products. At the same time, there are many new fabrication technologies of improving biodegradable materials, such as modular fabrication, 3D and 4D printing, interface reinforcement and nanotechnology. This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing, especially the newly emerging materials and their fabrication technology in recent years, and look forward to the future research direction, hoping to provide researchers in the field with some inspiration and reference.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,133,968 B2 Alkatout Et Al
    USOO8133968B2 (12) United States Patent (10) Patent No.: US 8,133,968 B2 Alkatout et al. (45) Date of Patent: Mar. 13, 2012 (54) POLY(ORTHOESTER) POLYMERS, AND 5,030,457 A 7/1991 Ng et al. METHODS OF MAKING AND USING SAME 5,108,755 A 4, 1992 Daniels et al. 5,211,951 A 5/1993 Sparer et al. 5,254,345 A 10/1993 Pogany et al. (75) Inventors: Julie A. Alkatout, Minneapolis, MN 5,336,505 A 8/1994 Ng et al. (US); Michael Eric Benz, Ramsey, MN 5,374,681 A 12/1994 Kroner et al. (US); Randall V. Sparer, Andover, MN 5,461,140 A 10, 1995 Heller et al. 5,587,507 A 12/1996 Kohnet al. (US) 5,618,563 A 4/1997 Berde et al. 5,700,485 A 12/1997 Berde et al. (73) Assignee: Medtronic, Inc., Minneapolis, MN (US) 5,747,058 A 5/1998 Tipton et al. 5,747,060 A 5/1998 Sackler et al. (*) Notice: Subject to any disclaimer, the term of this 5,824,343 A 10/1998 Ng et al. patent is extended or adjusted under 35 5,837,228 A 11/1998 Shih et al. U.S.C. 154(b) by 0 days. 5,919,473 A 7/1999 Elkhoury 5,939,453 A 8, 1999 Heller et al. 5,942,241 A 8, 1999 Chasin et al. (21) Appl. No.: 12/968,004 5,968,542 A 10/1999 Tipton 5,968,543 A 10, 1999 Heller et al. (22) Filed: Dec.
    [Show full text]