Importance of the Riparian Zone to the Conservation and Management of Freshwater Fish: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Importance of the Riparian Zone to the Conservation and Management of Freshwater Fish: a Review Importance of the riparian zone to the conservation and management of freshwater fish: a review Author Pusey, BJ, Arthington, AH Published 2003 Journal Title Marine and Freshwater Research DOI https://doi.org/10.1071/MF02041 Copyright Statement © 2003 CSIRO. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Downloaded from http://hdl.handle.net/10072/6041 Link to published version http://www.publish.csiro.au/nid/126.htm Griffith Research Online https://research-repository.griffith.edu.au CSIRO PUBLISHING www.publish.csiro.au/journals/mfr Marine and Freshwater Research, 2003, 54, 1–16 Review Importance of the riparian zone to the conservation and management of freshwater fish: a review Bradley J. PuseyA,B and Angela H. ArthingtonA ACo-operative Research Centre for Tropical Rainforest Ecology and Management, Griffith University, Nathan, Qld 4111, Australia. BCorresponding author; email: [email protected] Abstract. The relationship between freshwater fish and the integrity of the riparian zone is reviewed with special emphasis on the fauna of northern Australia. Linkages between freshwater fish and riparian zone processes are diverse and important. The riparian zone occurs at the interface between terrestrial and aquatic ecosystems and it may, therefore, regulate the transfer of energy and material between these systems, as well as regulating the transmission of solar energy into the aquatic ecosystem. Riparian influences on light quantity, quality and shade in streams are discussed and predictions are made about the likely impacts associated with changes in light quality. Increased rates of transfer of thermal energy between the atmosphere and the aquatic environment in the absence of an intact riparian zone may potentially disrupt reproduction by desynchronizing the thermal regimen from regional factors, such as the flow regimen, as well as having direct effects on mortality rates, body morphology, disease resistance and metabolic rates. Impacts associated with changes in light quality range from increased egg and larval mortality due to increased ultraviolet (UV) B irradiation and a decreased ability to discriminate between potential mates to increased conspicuousness to predators. Increased insolation and proliferation of exotic pasture grasses, an increasing threat in northern Australia, are shown to have a range of impacts, including changes in habitat structure, food-web structure and the facilitation of invasion by exotic fish species. The interception of terrestrial sediments and nutrients by the riparian zone has important consequences for stream fish, maintaining habitat structure, water clarity and food-web structure. Coarse organic matter donated to the aquatic environment by the riparian zones has a large range of influences on stream habitat, which, in turn, affect biodiversity and a range of process, such as fish reproduction and predation. Terrestrial matter is also consumed directly by fish and may be a very important source of energy in some Australian systems and under certain circumstances. Attention to the linkages between fish and riparian systems is essential in efforts to rehabilitate degraded stream environments and to prevent further deterioration in freshwater fish populations in northern Australia. Extra keywords: foodwebs, habitat diversity, habitat structure, riparian subsidy, sexual selection. Introduction The importance of riparian zones to aquatic ecosystems Naiman and Decamps (1997) define the riparian zone as is well recognized (Welcomme 1979; Bunn 1993; Naiman encompassing ‘… the stream channel between the low and and Decamps 1997). Terrestrial primary production derived high water marks and that portion of the terrestrial land- from the riparian zone and floodplains is acknowledged as a scape from the high water mark toward the uplands where vital source of energy in riverine food webs (Vannote et al. vegetation may be influenced by elevated water tables or 1980; Junk et al. 1989; Bunn 1993; Thorpe and Delong flooding and by the ability of the soils to hold water’.Whereas 1994). Terrestrial secondary production may also be a sig- the width of the riparian zone and the extent to which it nificant contributor of energy to riverine food webs (Chloe exerts an influence on the aquatic environment will vary and Garman 1996; Nakano et al. 1999). Other important greatly according stream size, landscape context and hydro- influences include thermal buffering (Lynch et al. 1984), the logic regime (Naiman and Decamps 1997), riparian zones are provision of shade and its influence on in-stream primary recognized as areas of biological, physical and chemical inter- production (Bunn et al. 1999a, 1999b), nutrient intercep- action between terrestrial and aquatic ecosystems (Gregory tion, storage and release (Omernik et al. 1981; Smith 1992; et al. 1991) and, consequently, are typified by unusually high Osborne and Kovacic 1993;Arthington et al. 1997), enhance- biodiversity and diversity of environmental processes. ment of bank stability (Beeson and Doyle 1995; Prosser et al. © CSIRO 2003 10.1071/MF02041 1323-1650/03/010001 2 Marine and Freshwater Research B. J. Pusey and A. H. Arthington RIPARIAN ZONE TRANSFER OF SOLAR EXCHANGE OF INORGANIC EXCHANGE OF ORGANIC ENERGY TO THE AQUATIC MATERIAL BETWEEN MATERIAL BETWEEN ECOSYSTEM TERRESTRIAL AND TERRESTRIAL AND AQUATIC AQUATIC ECOSYSTEMS ECOSYSTEMS Thermal energy Food Shade and in- stream habitat Interception Provision of Rootmasses of terrestrial bank contaminants stability Shade and the in-stream light Woody debris environment Community Leaf litter metabolism* HABITAT WATER TROPHIC QUALITY & QUALITY DYNAMICS DIVERSITY INDIVIDUAL SPECIES FITNESS DIVERSITY FISH ASSEMBLAGE COMPOSITION Fig. 1. Conceptual model depicting the mechanisms by which riparian regulation of energy and material transfer to the riverine ecosystem impacts on riverine fish communities. *This component will not be dealt with in detail here. 2001), the provision of coarse woody material as habitat and only when riparian integrity is re-established (Penczak 1997). substrate for fish, invertebrates and microalgae (Everett and Penczak et al. (1994) stressed that the mechanisms by which Ruiz 1993; Sheldon and Walker 1998; Crook and Robertson such relationships arise are difficult to ascertain due to the 1999), mediation of changes in channel morphology and multifactorial and highly interrelated nature of the linkages habitat diversity (Nakamura and Swanson 1993; Beechie and between freshwater fish and riparian zones. Sibley 1997) and refuge from disturbance at a variety of scales The present paper reviews the many linkages between the from that of the particle (i.e. individual pieces of wood) to aquatic ecosystem and the riparian zone and the mechanisms that of the watershed (Sedell et al. 1990). by which such linkages may affect lotic fish. We consider Given the number and importance of links between ripar- the various pathways by which changes in these linkages ian and lotic ecosystems, it is not surprising that spatial may lead to alterations in stream fish assemblages and the and temporal variation in fish assemblage composition and potential for their mitigation or reversal if riparian zones are characteristics (i.e. species richness, abundance, biomass) reforested. We develop a model (Fig. 1) in which the capac- have been linked to variation in riparian cover (Angermeier ity of the riparian zone to regulate the transfer of energy and Karr 1983; Davies 1989; Pusey et al. 1993, 1995a, (solar radiation) and material (both inorganic and organic) to 2000a; Amour et al. 1994; Penczak et al. 1994; Marsh- the aquatic ecosystem influences fish assemblage composi- Matthews and Matthews 2000) or that fish communities tion via impacts on individual fitness and species diversity are adversely affected by riparian destruction and recover mediated by changes in water quality, habitat quality and Importance of riparian zone to freshwater fish Marine and Freshwater Research 3 DISRUPTION OF THERMAL REGIMEN WATER QUALITY W A T TERRESTRIAL CONTAMINANTS E R Q DISRUPTION OF LIGHT ENVIRONMENT U TROPHIC DYNAMICS T A R L O I T REDUCED ALLOCHTHONOUS INPUTS P Y H I C DISRUPTED COMMUNITY METABOLISM HABITAT STRUCTURE H D A Y B N I A MACROPHYTE PROLIFERATION T M A T I C S WEED INVASION S T R U SEDIMENTATION C T U LOSS OF UNDERCUTS R E ? ? ? LOSS OF ROOTMASSES LOSS OF WOODY DEBRIS 1 10 100 TIME (years) Fig. 2. Temporal scale for the imposition of impacts on fish associated with riparian degradation. Broken boxes indicate that impacts are gradually imposed or gradually decrease in importance with time. diversity, and trophic dynamics. (The interception of light and to result in increased average summer water temperatures its influence on in-stream primary and secondary production (Lynch et al. 1984; Pearson and Penridge 1992; Quinn et al. and the influence that this may have on freshwater fish (and 1992), decreased winter water temperatures (Lynch et al. other biota), has been reviewed by Bunn et al. (1999b) and 1984; Amour et al. 1994) and an increase in the extent will not be dealt with here in detail.) The model allows a and rate of change of diel fluctuations of water temperature time sequence for impacts associated with reduced riparian (Lynch et al. 1984; Quinn et al. 1992). Seasonal patterns of integrity to be developed (Fig. 2), which may then be used temperature change may be obscured or modified and vari- to identify and compare effective
Recommended publications
  • 2019 Data Report for Oneida Lake, Livingston County
    Michigan Lakes– Ours to Protect 2019 Data Report for Oneida Lake, Livingston County Site ID: 470573 42.4676°N, 83.8488°W The CLMP is brought to you by: 1 About this report: This report is a summary of the data that have been collected through the Cooperative Lakes Monitoring Program. The contents have been customized for your lake. The first page is a summary of the Trophic Status Indicators of your lake (Secchi Disk Transparency, Chlorophyll-a, Spring Total Phosphorus, and Summer Total Phosphorus). Where data are available, they have been summarized for the most recent field season, five years prior to the most recent field season, and since the first year your lake has been enrolled in the program. If you did not take 8 or more Secchi disk measurements or 4 or more chlorophyll measurements, there will not be summary data calculated for these parameters. These numbers of measurements are required to ensure that the results are indicative of overall summer conditions. If you enrolled in Dissolved Oxygen/Temperature, the summary page will have a graph of one of the profiles taken during the late summer (typically August or September). If your lake stratifies, we will use a graph showing the earliest time of stratification, because identifying the timing of this condition and the depth at which it occurs is typically the most important use of dissolved oxygen measurements. The back of the summary page will be an explanation of the Trophic Status Index and where your lake fits on that scale. The rest of the report will be aquatic plant summaries, Score the Shore results, and larger graphs, including all Dissolved Oxygen/Temperature Profiles that you recorded.
    [Show full text]
  • Current Insights Into the Effectiveness of Riparian Management, Attainment of Multiple Benefits, and Potential Technical Enhancements
    Published March 8, 2019 Journal of Environmental Quality SPECIAL SECTION RIPARIAN BUFFER MANAGEMENT Current Insights into the Effectiveness of Riparian Management, Attainment of Multiple Benefits, and Potential Technical Enhancements Marc Stutter,* Brian Kronvang, Daire Ó hUallacháin, and Joachim Rozemeijer iparian buffers have been one of the most widely Abstract used management options worldwide when dealing Buffer strips between land and waters are widely applied with protection of surface waters from agricultural dif- measures in diffuse pollution management, with desired Rfuse pollution. Appropriately managed riparian areas offer mul- outcomes across other factors. There remains a need for tiple functions related to improving water quality, biodiversity, evidence of pollution mitigation and wider habitat and societal benefits across scales. This paper synthesizes a collection of 16 and climate adaptation. First, riparian areas offer possibilities new primary studies and review papers to provide the latest for protecting watercourses and lakes from inputs of sediments, insights into riparian management. We focus on the following nutrients, pesticides, and other contaminants by intercepting areas: (i) diffuse pollution removal efficiency of conventional surface runoff, tile drainage, and groundwater from adjoining and saturated buffer strips, (ii) enhancing biodiversity of buffers, agricultural fields. Second, riparian areas also offer unique bio- (iii) edge-of-field technologies for improving nutrient retention, and (iv) potential reuse of nutrients and biomass from buffers. diversity (in turn affecting in-field and in-stream biodiversity) Although some topics represent emerging areas, for other including structurally complex layers of vegetation, making well-studied topics (e.g., diffuse pollution), it remains that them attractive to many wildlife species (Naiman et al., 1993).
    [Show full text]
  • Assessment of Land Use Change and Riparian Zone Status in the Barnegat Bay and Little Egg Harbor Watershed: 1995-2002-2006
    Assessment of Land Use Change and Riparian Zone Status in the Barnegat Bay and Little Egg Harbor Watershed: 1995-2002-2006 Intact forested riparian zone along the upper reaches of the Forked River. Richard G. Lathrop¹ Scott M. Haag² October 2007 ¹Grant F. Walton Center for Remote Sensing and Spatial Analysis ²Institute of Marine and Coastal Science School of Environmental & Biological Sciences-Rutgers University New Brunswick, NJ 08901 1 Assessment of Land Use Change and Riparian Zone Status in the Barnegat Bay and Little Egg Harbor Watershed: 1995-2002-2006 Executive Summary The Barnegat Bay/Little Egg Harbor (BB/LEH) estuary is suffering from eutrophication issues due to nutrient, most importantly nitrogen, loading from both atmospheric as well as watershed sources (Kennish et al, 2007). Urban and agricultural land uses can be an important source of nitrogen loading. As part of our ongoing monitoring efforts, the Grant F. Walton Center for Remote Sensing & Spatial Analysis, with funding provided by the Barnegat Bay National Estuary Program, undertook to map and assess recent land use change in the Barnegat Bay-Little Egg Harbor watershed. Our updated mapping reveals that urban land use increased from approximately 25% in 1995 to approximately 30% of the BB/LEH watershed in 2006. Including all altered land uses (i.e., agriculture and barren lands) puts the percentage of altered land in the BB-LEH watershed at over 33% in 2006. The BB/LEH estuary system is continuing to experience a significant conversion of forested and wetland habitats to urban land cover and thereby exacerbating nutrient loading to the BB-LEH estuary.
    [Show full text]
  • The Buffer Capacity of Riparian Vegetation to Control Water Quality
    water Article The Buffer Capacity of Riparian Vegetation to Control Water Quality in Anthropogenic Catchments from a Legally Protected Area: A Critical View over the Brazilian New Forest Code Carlos Alberto Valera 1,2,3, Teresa Cristina Tarlé Pissarra 2,3 , Marcílio Vieira Martins Filho 2,3 , Renato Farias do Valle Júnior 3,4, Caroline Fávaro Oliveira 3,4, João Paulo Moura 5 , Luís Filipe Sanches Fernandes 3,5 and Fernando António Leal Pacheco 3,6,* 1 Coordenadoria Regional das Promotorias de Justiça do Meio Ambiente das Bacias dos Rios Paranaíba e Baixo Rio Grande, Rua Coronel Antônio Rios, 951, Uberaba MG 38061-150, Brazil; [email protected] 2 Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal SP 14884-900, Brazil; [email protected] (T.C.T.P.); marcilio.martins-fi[email protected] (M.V.M.F.) 3 POLUS—Grupo de Política de Uso do Solo, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal SP 14884-900, Brazil; [email protected] (R.F.d.V.J.); [email protected] (C.F.O.); lfi[email protected] (L.F.S.F.) 4 Instituto Federal do Triângulo Mineiro, Campus Uberaba, Laboratório de Geoprocessamento, Uberaba MG 38064-790, Brazil 5 Centro de Investigação e Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal; [email protected] 6 Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal * Correspondence: [email protected]; Tel.: +55-351-917519833 Received: 10 February 2019; Accepted: 12 March 2019; Published: 16 March 2019 Abstract: The riparian buffer width on watersheds has been modified over the last decades.
    [Show full text]
  • Riparian Systems
    Riparian Systems January 2007 Fish and Wildlife Habitat Management Leaflet Number 45 Introduction Riparian areas are transitional zones between terres- trial and aquatic systems exhibiting characteristics of both systems. They perform vital ecological functions linking terrestrial and aquatic systems within water- sheds. These functions include protecting aquatic eco- systems by removing sediments from surface runoff, decreasing flooding, maintaining appropriate water conditions for aquatic life, and providing organic ma- terial vital for productivity and structure of aquatic ecosystems. They also provide excellent wildlife hab- itat, offering not only a water source, but food and shelter, as well. NRCS Soils in riparian areas differ from soils in upland areas because they are formed from sediments with differ- ent textures and subjected to fluctuating water levels and degrees of wetness. These sediments are rich in nutrients and organic matter which allow the soils to retain large amounts of moisture, affecting the growth and diversity of the plant communities. Riparian areas typically are vegetated with lush growths of grasses, forbs, shrubs, and trees that are tolerant of periodic flooding. In some regions (Great Plains), however, trees may not be part of the his- toric riparian community. Areas with saline soils or U.S. Fish & Wildlife Service heavy, nearly-anaerobic soils (wet meadow environ- ments and high elevations) also are dominated by her- baceous vegetation. In intermittent waterways, the ri- parian area may be confined to the stream channel. Threats to riparian areas have come from many sourc- es. Riparian forests and bottomlands are fertile and valued farmland and rangeland, as well as prime wa- ter-front property desired by developers.
    [Show full text]
  • Maine and the National Lakes Assessment: Where Does Maine Stand ??
    Maine and the National Lakes Assessment: Where Does Maine Stand ?? With Appgologies to Neil Kamman Basic Components of Surveys *Randomized design to report on – Biological and habitat condition – Recreational condition – Trophic state *1,028 lakes sampled + 124 reference lakes *Standard protocols *Nati onall y consiitsten t and reggyionally relevant analyses Lake Conditions Assessed by Region The NLA represents: • 49,560 “lakes” • 59% natural origin • 41% constructed • 80% < 125 acres in size • 32 of 1028 Lakes were in Maine Maine Lake Sizes 3000 87% <= 125 acres 2500 58% <= 10 acres 12 2000 ber 1500 Num 1000 500 0 <1 1-10 10-100 100-500 500-1000 >1000 Acres 4 National Lakes Assessment: • Biology • Habitat Quality • Ecological integrity • Disturbance and integrity • Trophic State • Chemical stressors • Enrichment • NtiNutrien ts, AidAcid an d DO • Recreational Use • Cyanotoxins • Change over time • Sediments and nutrients National Lakes Assessment: Sampling Approach Condition of the Nation’s Lakes: Habitat • 55 individual habitat attributes captured at each site (550/lake). • MtiMetrics reddduced to four idiindices of hbitthabitat quality: – Human Disturbance on Lakeshores – Ripar ian Zone IiIntegrity – Littoral Zone Integrity – Complexity of Riparian/l/Littoral Interface • Disturbance index scores assessed against nationally consitisten t thres ho lds • Riparian/littoral indices assessed against regionally‐explicit reference conditions (corrects for expected regional differences) Extent of Stressors and Resulting Risk: What Impacts Biological
    [Show full text]
  • The Effects of Riparian Management Zone Delineation on Timber Value and Ecosystem Services in Diverse Forest Biomes Across the United States
    SUNY College of Environmental Science and Forestry Digital Commons @ ESF Dissertations and Theses Summer 8-12-2020 The Effects of Riparian Management Zone Delineation on Timber Value and Ecosystem Services in Diverse Forest Biomes Across the United States. Maneesha Jayasuriya SUNY College of Environmental Science and Forestry, [email protected] Follow this and additional works at: https://digitalcommons.esf.edu/etds Part of the Forest Management Commons Recommended Citation Jayasuriya, Maneesha, "The Effects of Riparian Management Zone Delineation on Timber Value and Ecosystem Services in Diverse Forest Biomes Across the United States." (2020). Dissertations and Theses. 190. https://digitalcommons.esf.edu/etds/190 This Open Access Dissertation is brought to you for free and open access by Digital Commons @ ESF. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Digital Commons @ ESF. For more information, please contact [email protected], [email protected]. THE EFFECTS OF RIPRIAN MANAGEMENT ZONE DELINEATION ON TIMBER VALUE AND ECOSYSTEM SERVICES IN DIVERSE FOREST BIOMES ACROSS THE UNITED STATES by Maneesha Thirasara Jayasuriya A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree State University of New York College of Environmental Science and Forestry Syracuse, New York August 2020 Department of Sustainable Resources Management Approved by: René Germain, Major Professor Neil Ringler, Chair, Examining Committee Christopher Nowak, Department Chair S. Scott Shannon, Dean, The Graduate School Acknowledgements I wish to express my sincere gratitude to Dr. René Germain for being a great mentor and good friend. I truly value his expert knowledge, support, encouragement, and guidance given to me throughout the past years.
    [Show full text]
  • Towards Ecologically Functional Riparian Zones a Meta
    http://www.diva-portal.org This is the published version of a paper published in Journal of Environmental Management. Citation for the original published paper (version of record): Lind, L., Hasselquist, E M., Laudon, H. (2019) Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes Journal of Environmental Management, 249: 1-8 https://doi.org/10.1016/j.jenvman.2019.109391 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-75700 Journal of Environmental Management 249 (2019) 109391 Contents lists available at ScienceDirect Journal of Environmental Management journal homepage: www.elsevier.com/locate/jenvman Review Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in T agricultural landscapes ⁎ Lovisa Linda,b, , Eliza Maher Hasselquista, Hjalmar Laudona a Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden b Department of Environmental and Life Sciences, Karlstad University, 656 37, Karlstad, Sweden ARTICLE INFO ABSTRACT Keywords: Riparian zones contribute with biodiversity and ecosystem functions of fundamental importance for regulating Agricultural flow and nutrient transport in waterways. However, agricultural land-use and physical changes made to improve Buffer zone crop productivity and yield have resulted in modified hydrology and displaced natural vegetation. The mod- Ecological functional riparian zones ification to the hydrology and natural vegetation have affected the biodiversity and many ecosystem functions Riparian zone provided by riparian zones.
    [Show full text]
  • Malaysia's Policies and Plans Contain Emphasis and Provisions for Holistic
    Malaysia’s policies and plans contain emphasis and provisions for holistic and integrated planning and management of natural resource and biodiversity assets as a precursor for environmentally sustainable development. For planners, decision-makers and practitioners to meet these aspirations, resources must be viewed in a broader context. Not only must it go beyond sectors to include all stakeholders in the decision process, but it must also use the best science available to define suitable management actions. The overall purpose of this Guideline is to support this important endeavour. MANAGING BIODIVERSITY IN THE RIPARIAN ZONE i Table of Contents Tables, Figures and Text Boxes .....................................................................ii Abbreviations..................................................................................................iii 1 Introduction .................................................................................................1 1.1 Who is this Guide for?.......................................................................1 1.2 Purpose of this Guide.........................................................................1 1.3 Using this Guide ................................................................................1 2 The Riparian Zone ......................................................................................2 2.1 What is a riparian zone?.....................................................................3 2.2 Why is the riparian zone important?..................................................3
    [Show full text]
  • Hydrology and Water Quality of a Field and Riparian Buffer Adjacent to A
    G Model ECOENG-2313; No. of Pages 9 ARTICLE IN PRESS Ecological Engineering xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Ecological Engineering j ournal homepage: www.elsevier.com/locate/ecoleng Hydrology and water quality of a field and riparian buffer adjacent to a mangrove wetland in Jobos Bay watershed, Puerto Rico c a,∗ a b c d a C.O. Williams , R. Lowrance , D.D. Bosch , J.R. Williams , E. Benham , A. Dieppa , R. Hubbard , e a f b a a E. Mas , T. Potter , D. Sotomayor , E.M. Steglich , T. Strickland , R.G. Williams a Southeast Watershed Research Laboratory, 2379 Rainwater Road, Tifton, GA 31794, United States b Blackland Research Center, Texas A&M University, Temple, TX 76502, United States c Charles E. Kellogg National Soil Survey Laboratory & Research, 100 Centennial Mall North, Lincoln, NE 68508, United States d National Estuarine Research Reserve, Call Box B, Aguirre, PR 00704, United States e Natural Resource Conservation Service-Caribbean, 2200 Pedro Albizu Campos Ave 23, Mayaguez, PR 00680, United States f University of Puerto Rico-Mayagüez, P.O. Box 9000, Mayagüez, PR 00681, United States a r t i c l e i n f o a b s t r a c t Article history: Agriculture in coastal areas of Puerto Rico is often adjacent to or near mangrove wetlands. Riparian buffers, Received 24 January 2012 while they may also be wetlands, can be used to protect mangrove wetlands from agricultural inputs of Received in revised form sediment, nutrients, and pesticides. We used simulation models and field data to estimate the water, 25 September 2012 nitrogen, and phosphorus inputs from an agricultural field and riparian buffer to a mangrove wetland Accepted 28 September 2012 in Jobos Bay watershed, Puerto Rico.
    [Show full text]
  • Characterization of Riparian Tree Communities Along a River Basin in the Pacific Slope of Guatemala
    Article Characterization of Riparian Tree Communities along a River Basin in the Pacific Slope of Guatemala Alejandra Alfaro Pinto 1,2,* , Juan J. Castillo Mont 2, David E. Mendieta Jiménez 2, Alex Guerra Noriega 3, Jorge Jiménez Barrios 4 and Andrea Clavijo McCormick 1,* 1 School of Agriculture & Environment, Massey University, Palmerston North 4474, New Zealand 2 Herbarium AGUAT ‘Professor José Ernesto Carrillo’, Agronomy Faculty, University of San Carlos of Guatemala, Guatemala City 1012, Guatemala; [email protected] (J.J.C.M.); [email protected] (D.E.M.J.) 3 Private Institute for Climate Change Research (ICC), Santa Lucía Cotzumalguapa, Escuintla 5002, Guatemala; [email protected] 4 School of Biology, University of San Carlos of Guatemala, Guatemala City 1012, Guatemala; [email protected] * Correspondence: [email protected] (A.A.P.); [email protected] (A.C.M.) Abstract: Ecosystem conservation in Mesoamerica, one of the world’s biodiversity hotspots, is a top priority because of the rapid loss of native vegetation due to anthropogenic activities. Riparian forests are often the only remaining preserved areas among expansive agricultural matrices. These forest remnants are essential to maintaining water quality, providing habitats for a variety of wildlife Citation: Alfaro Pinto, A.; Castillo and acting as biological corridors that enable the movement and dispersal of local species. The Mont, J.J.; Mendieta Jiménez, D.E.; Acomé river is located on the Pacific slope of Guatemala. This region is heavily impacted by intensive Guerra Noriega, A.; Jiménez Barrios, agriculture (mostly sugarcane plantations), fires and grazing. Most of this region’s original forest J.; Clavijo McCormick, A.
    [Show full text]
  • Guidelines for Riparian and Wetland Buffers
    Guidelines for Riparian and Wetland Buffers Prepared for: City of Carlsbad Planning Department 1635 Faraday Avenue Carlsbad, CA 92008 Prepared by: Technology Associates (TAIC) 9089 Clairemont Mesa Blvd. Suite 200 San Diego, CA 92123 April 9, 2010 This page intentionally left blank Table of Contents Contents Page 1.0 INTRODUCTION ....................................................................................................................... 1 1.1 BENEFITS OF RIPARIAN AND WETLAND BUFFERS....................................................................... 2 1.2 GOALS & OBJECTIVES.............................................................................................................. 3 1.3 DEFINITIONS............................................................................................................................ 3 2.0 BUFFER DESIGN GUIDELINES .............................................................................................. 6 2.1 HMP AREA-WIDE .................................................................................................................... 6 2.2 COASTAL ZONE ....................................................................................................................... 7 2.3 STANDARDS AREAS ................................................................................................................. 8 2.4 THREE-ZONE BUFFER DESIGN ................................................................................................. 9 2.5 ALTERNATIVE BUFFER CONFIGURATIONS ...............................................................................
    [Show full text]