Hydrology and Water Quality of a Field and Riparian Buffer Adjacent to A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The State of Biodiversity in Africa a Mid-Term Review of Progress Towards the Aichi Biodiversity Targets
THE STATE OF BIODIVERSITY IN AFRICA A MID-TERM REVIEW OF PROGRESS TOWARDS THE AICHI BIODIVERSITY TARGETS 1 3 © Neil Burgess © Neil Preparation Reproduction This study was commissioned by the Division of Environmental This publication may be reproduced for educational or Law and Conventions (DELC) of the United Nations non-profit purposes without special permission, provided Environmental Programme (UNEP) under the leadership acknowledgement to the source is made. Reuse of any figures of Ms. Elizabeth Maruma Mrema, DELC Director, and the is subject to permission from the original rights holders. No direct supervision of Ms. Kamar Yousuf, Regional Biodiversity use of this publication may be made for resale or any other Multilateral Environmental Agreement (MEA) Focal Point commercial purpose without permission in writing from UNEP. for Africa. Additional funding has been provided by the Applications for permission, with a statement of purpose and UNEP World Conservation Monitoring Centre (UNEP- extent of reproduction, should be sent to the UNEP-DELC WCMC) and the Secretariat of the Convention on Biological Director, United Nations Environment Programme, P.O. Box Diversity (SCBD). The design, printing and distribution of 30552, Nairobi 00100, Kenya. this report was enabled through the financial contribution of the European Union. Disclaimer The contents of this report do not necessarily reflect the views Citation or policies of UNEP, contributory organizations or editors. The UNEP-WCMC (2016) The State of Biodiversity in Africa: designations employed and the presentations of material in this A mid-term review of progress towards the Aichi Biodiversity report do not imply the expression of any opinion whatsoever Targets. -
2019 Data Report for Oneida Lake, Livingston County
Michigan Lakes– Ours to Protect 2019 Data Report for Oneida Lake, Livingston County Site ID: 470573 42.4676°N, 83.8488°W The CLMP is brought to you by: 1 About this report: This report is a summary of the data that have been collected through the Cooperative Lakes Monitoring Program. The contents have been customized for your lake. The first page is a summary of the Trophic Status Indicators of your lake (Secchi Disk Transparency, Chlorophyll-a, Spring Total Phosphorus, and Summer Total Phosphorus). Where data are available, they have been summarized for the most recent field season, five years prior to the most recent field season, and since the first year your lake has been enrolled in the program. If you did not take 8 or more Secchi disk measurements or 4 or more chlorophyll measurements, there will not be summary data calculated for these parameters. These numbers of measurements are required to ensure that the results are indicative of overall summer conditions. If you enrolled in Dissolved Oxygen/Temperature, the summary page will have a graph of one of the profiles taken during the late summer (typically August or September). If your lake stratifies, we will use a graph showing the earliest time of stratification, because identifying the timing of this condition and the depth at which it occurs is typically the most important use of dissolved oxygen measurements. The back of the summary page will be an explanation of the Trophic Status Index and where your lake fits on that scale. The rest of the report will be aquatic plant summaries, Score the Shore results, and larger graphs, including all Dissolved Oxygen/Temperature Profiles that you recorded. -
Current Insights Into the Effectiveness of Riparian Management, Attainment of Multiple Benefits, and Potential Technical Enhancements
Published March 8, 2019 Journal of Environmental Quality SPECIAL SECTION RIPARIAN BUFFER MANAGEMENT Current Insights into the Effectiveness of Riparian Management, Attainment of Multiple Benefits, and Potential Technical Enhancements Marc Stutter,* Brian Kronvang, Daire Ó hUallacháin, and Joachim Rozemeijer iparian buffers have been one of the most widely Abstract used management options worldwide when dealing Buffer strips between land and waters are widely applied with protection of surface waters from agricultural dif- measures in diffuse pollution management, with desired Rfuse pollution. Appropriately managed riparian areas offer mul- outcomes across other factors. There remains a need for tiple functions related to improving water quality, biodiversity, evidence of pollution mitigation and wider habitat and societal benefits across scales. This paper synthesizes a collection of 16 and climate adaptation. First, riparian areas offer possibilities new primary studies and review papers to provide the latest for protecting watercourses and lakes from inputs of sediments, insights into riparian management. We focus on the following nutrients, pesticides, and other contaminants by intercepting areas: (i) diffuse pollution removal efficiency of conventional surface runoff, tile drainage, and groundwater from adjoining and saturated buffer strips, (ii) enhancing biodiversity of buffers, agricultural fields. Second, riparian areas also offer unique bio- (iii) edge-of-field technologies for improving nutrient retention, and (iv) potential reuse of nutrients and biomass from buffers. diversity (in turn affecting in-field and in-stream biodiversity) Although some topics represent emerging areas, for other including structurally complex layers of vegetation, making well-studied topics (e.g., diffuse pollution), it remains that them attractive to many wildlife species (Naiman et al., 1993). -
Assessment of Land Use Change and Riparian Zone Status in the Barnegat Bay and Little Egg Harbor Watershed: 1995-2002-2006
Assessment of Land Use Change and Riparian Zone Status in the Barnegat Bay and Little Egg Harbor Watershed: 1995-2002-2006 Intact forested riparian zone along the upper reaches of the Forked River. Richard G. Lathrop¹ Scott M. Haag² October 2007 ¹Grant F. Walton Center for Remote Sensing and Spatial Analysis ²Institute of Marine and Coastal Science School of Environmental & Biological Sciences-Rutgers University New Brunswick, NJ 08901 1 Assessment of Land Use Change and Riparian Zone Status in the Barnegat Bay and Little Egg Harbor Watershed: 1995-2002-2006 Executive Summary The Barnegat Bay/Little Egg Harbor (BB/LEH) estuary is suffering from eutrophication issues due to nutrient, most importantly nitrogen, loading from both atmospheric as well as watershed sources (Kennish et al, 2007). Urban and agricultural land uses can be an important source of nitrogen loading. As part of our ongoing monitoring efforts, the Grant F. Walton Center for Remote Sensing & Spatial Analysis, with funding provided by the Barnegat Bay National Estuary Program, undertook to map and assess recent land use change in the Barnegat Bay-Little Egg Harbor watershed. Our updated mapping reveals that urban land use increased from approximately 25% in 1995 to approximately 30% of the BB/LEH watershed in 2006. Including all altered land uses (i.e., agriculture and barren lands) puts the percentage of altered land in the BB-LEH watershed at over 33% in 2006. The BB/LEH estuary system is continuing to experience a significant conversion of forested and wetland habitats to urban land cover and thereby exacerbating nutrient loading to the BB-LEH estuary. -
Climate Forcing of Tree Growth in Dry Afromontane Forest Fragments of Northern Ethiopia: Evidence from Multi-Species Responses Zenebe Girmay Siyum1,2* , J
Siyum et al. Forest Ecosystems (2019) 6:15 https://doi.org/10.1186/s40663-019-0178-y RESEARCH Open Access Climate forcing of tree growth in dry Afromontane forest fragments of Northern Ethiopia: evidence from multi-species responses Zenebe Girmay Siyum1,2* , J. O. Ayoade3, M. A. Onilude4 and Motuma Tolera Feyissa2 Abstract Background: Climate-induced challenge remains a growing concern in the dry tropics, threatening carbon sink potential of tropical dry forests. Hence, understanding their responses to the changing climate is of high priority to facilitate sustainable management of the remnant dry forests. In this study, we examined the long-term climate- growth relations of main tree species in the remnant dry Afromontane forests in northern Ethiopia. The aim of this study was to assess the dendrochronological potential of selected dry Afromontane tree species and to study the influence of climatic variables (temperature and rainfall) on radial growth. It was hypothesized that there are potential tree species with discernible annual growth rings owing to the uni-modality of rainfall in the region. Ring width measurements were based on increment core samples and stem discs collected from a total of 106 trees belonging to three tree species (Juniperus procera, Olea europaea subsp. cuspidate and Podocarpus falcatus). The collected samples were prepared, crossdated, and analyzed using standard dendrochronological methods. The formation of annual growth rings of the study species was verified based on successful crossdatability and by correlating tree-ring widths with rainfall. Results: The results showed that all the sampled tree species form distinct growth boundaries though differences in the distinctiveness were observed among the species. -
The Vulnerability of Indo-Pacific Mangrove Forests to Sea-Level Rise
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 10-22-2015 The vulnerability of Indo-Pacific mangrove forests to sea-level rise Catherine E. Lovelock The University of Queensland Donald R. Cahoon United States Geological Survey, [email protected] Daniel A. Friess National University of Singapore Glenn R. Guntenspergen United States Geological Survey, [email protected] Ken W. Krauss United States Geological Survey See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons Lovelock, Catherine E.; Cahoon, Donald R.; Friess, Daniel A.; Guntenspergen, Glenn R.; Krauss, Ken W.; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L.; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; and Triet, Tran, "The vulnerability of Indo-Pacific mangrove forests to sea-level rise" (2015). USGS Staff -- Published Research. 988. https://digitalcommons.unl.edu/usgsstaffpub/988 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Catherine E. Lovelock, Donald R. Cahoon, Daniel A. Friess, Glenn R. Guntenspergen, Ken W. Krauss, Ruth Reef, Kerrylee Rogers, Megan L. Saunders, Frida Sidik, Andrew Swales, Neil Saintilan, Le Xuan Thuyen, and Tran Triet This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usgsstaffpub/988 LETTER doi:10.1038/nature15538 The vulnerability of Indo-Pacific mangrove forests to sea-level rise Catherine E. -
Florida Keys National Marine Sanctuary Water Quality
FLORIDA KEYS NATIONAL MARINE SANCTUARY WATER QUALITY PROTECTION PROGRAM STEERING COMMITTEE MEETING January 25, 2012 MARATHON GOVERNMENT CENTER, 2798 Overseas Highway, Marathon, FL 33050 MINUTES Members Present: Tracy Ziegler, Everglades and Dry Tortugas National Parks Charles Brooks, Key Largo Wastewater Treatment District Armando Rilaboy, South Florida Water Management District Susan Hammaker, Key Largo Wastewater Treatment District, Sanctuary Advisory Council Ron Sutton, Key Colony Beach Pete Worthington, City of Marathon Charles Briggs, Department of Health, Bureau of Onsite Sewage Treatment Systems George Neugent, Monroe County Commissioner Charlie Causey Florida Keys Environmental Fund Sandy Walters, SWC, Inc., representing maritime interests of the Florida Keys Judy Cheon, Florida Keys Aqueduct Authority Gil McRae, Florida Fish and Wildlife Commission, Fish and Wildlife Research Institute Chris Bergh, The Nature Conservancy Bruce Popham, Sanctuary Advisory Council and a member of the business community Billy Causey, Southeast Region of National Marine Sanctuaries Anne Morkill, Fish and Wildlife Service, Florida Keys National Wildlife Refuges I. Call Meeting to Order Welcoming George Garrett George Garrett addressed the committee and welcomed everyone, including the EPA regional administrator region IV, Ms. Gwedolyn Keyes Fleming. She is always welcome to attend the meetings. Richard Harvey thanked George and introduced Ms. Gwen Keyes Fleming and the other guests, Mr. Jim Giattina, Water Protection Division Director, and Brandi Jenkins, Special Assistant to the regional administrator and Javoyne Hicks White, Chief of Staff for the regional administrator. He explained that the regional director will be making a few remarks. She has participated in a few meetings since she has been here. Jon Iglehart will make a statement on behalf of Secretary Vinyard, who could not be here today. -
Ushaka Sea World Education Mangrove Ecosystem Study
uShaka Sea World Education Grade 10 Life Sciences Mangrove Ecosystem Study 1 Mangrove Ecosystem Study In this study you will be looking at the mangroves as an ecosystem. Your study will deal with all the following: • abiotic and biotic factors and the interactions between them. • trophic relationships in that ecosystem. • the changes between high and low tide. • biodiversity within the ecosystem using information keys and food webs. • positive and/or negative human impact/influence on the ecosystem. Curriculum link GRADE 10 STRAND 3: ENVIRONMENTAL STUDIES - Biosphere to Ecosystems Aquatic biomes of Southern Africa: How climate, soils and vegetation influence the organisms found in each biome. Ecosystem structure and functioning and the abiotic and biotic factors and how they affect the community: Abiotic factors: •physiographic factors (aspect, slope, altitude) • light (day length, seasonal changes) • temperature (effect of day/night, seasons) • water (water cycle, importance of wetlands) Biotic factors: (Links to Grade 8) • producers • consumers • decomposers Energy flow through ecosystems and relationship to trophic structure (food pyramids): Producers, consumers (herbivores, carnivores and omnivores, decomposers). Human activities in and interactions with the natural environment. 2 READING South African Mangrove Forests Together with coral reefs and seagrass beds, mangroves rank as one of the most productive ecosystems in the world. Physical Environment Mangrove forests are found in the littoral zone, the band between the sea and the land that is flooded and exposed during the rise and fall of the tide. They occur in estuaries which are either predominantly or permanently open to the sea and tidal in nature. Mangroves are usually only found in tropical climates, as they need consistent warm conditions for development and survival. -
CV Available Upon Request
Douglas R. Bernthal | Forensic Electrical Engineer, PE, CFEI 11602 Lake Underhill Road, Suite 140, Orlando, Florida 32825 (321) 251-9091 [email protected] Professional Summary: Mr. Bernthal has over 30 years’ experience in the areas of electrical fires and failures, Origin and Cause investigations, electrical design and troubleshooting, and project management. He also has over 10 years’ experience as a licensed Master and Journeyman Electrician in the electrical construction industry. His forensic experience involves onsite and joint examinations, expert forensic reports, litigation and electrical accident investigation. His engineering experience includes the design and installation of distributed generation projects, power distribution equipment, automated control systems, indoor and outdoor lighting systems and power quality systems. His project management experience includes creating job specifications, management of multiple subcontractors and interaction with owners, developers, architects and equipment manufacturers. Mr. Bernthal’s electrician experience includes industrial and commercial renovation projects, troubleshooting electrical outages at local businesses, and managing apprentice electricians on new industrial and commercial construction projects. Knowledge consists of: power distribution systems, motors and controls, electric services, transformers, bus duct systems, lighting systems and the National Electric Code. Areas of Expertise: • Electrical Fire and Explosions • Electrical Accidents/Fatalities • Lightning/Power -
The Buffer Capacity of Riparian Vegetation to Control Water Quality
water Article The Buffer Capacity of Riparian Vegetation to Control Water Quality in Anthropogenic Catchments from a Legally Protected Area: A Critical View over the Brazilian New Forest Code Carlos Alberto Valera 1,2,3, Teresa Cristina Tarlé Pissarra 2,3 , Marcílio Vieira Martins Filho 2,3 , Renato Farias do Valle Júnior 3,4, Caroline Fávaro Oliveira 3,4, João Paulo Moura 5 , Luís Filipe Sanches Fernandes 3,5 and Fernando António Leal Pacheco 3,6,* 1 Coordenadoria Regional das Promotorias de Justiça do Meio Ambiente das Bacias dos Rios Paranaíba e Baixo Rio Grande, Rua Coronel Antônio Rios, 951, Uberaba MG 38061-150, Brazil; [email protected] 2 Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal SP 14884-900, Brazil; [email protected] (T.C.T.P.); marcilio.martins-fi[email protected] (M.V.M.F.) 3 POLUS—Grupo de Política de Uso do Solo, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal SP 14884-900, Brazil; [email protected] (R.F.d.V.J.); [email protected] (C.F.O.); lfi[email protected] (L.F.S.F.) 4 Instituto Federal do Triângulo Mineiro, Campus Uberaba, Laboratório de Geoprocessamento, Uberaba MG 38064-790, Brazil 5 Centro de Investigação e Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal; [email protected] 6 Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal * Correspondence: [email protected]; Tel.: +55-351-917519833 Received: 10 February 2019; Accepted: 12 March 2019; Published: 16 March 2019 Abstract: The riparian buffer width on watersheds has been modified over the last decades. -
The Indo Pacific Forest C Study Handout
The Indo-Pacific Forest Carbon Study A collaborative study with the US Forest Service, Institute of Pacific Islands Forestry, International Programs, and the Center for International Forest Research Recent work by IPIF scientists have found that the C pools of mangroves exceed that of upland tropical forests because they exist on C-rich peat soils and have relative high levels of aboveground biomass (Fig. 1). Mangrove forests are widely distributed in the western Pacific and have been subject to high rates of land cover change related to aquaculture and Yap Crew coastal development. Southeast Indo-Pacific Forest Carbon Study Asia supports the world’s largest October 25, 2008 areas of mangrove originally extending over 6.8 million ha representing 34-42% if the world’s total. These forests are vulnerable to land cover change and global change especially sea level rise. Because of the many ecosystem services they provide and the high quantity of C they store, they Ecosystem C pools of Selected Tropical Forests would be ideal candidates for REDD 800 strategies. 700 600 500 Scientists at the center for International Aboveground 400 Forestry Research (CIFOR) have reported Belowground 300 that tropical forests over peat soils in the 200 C Mass (Mg/ha) Mass C Asian Pacific also contain immense C pools 100 that when subjected to land cover change 0 TDF Mex TMF TWF Mont rain Mangrove Mangrove are significant sources of anthropogenic Brasil Mex CR Palau Yap emissions of CO 2 and CH 4. Yet little Soils only to a 1m depth- Palau mangrove mass to 160 cm was ~963 quantitative work exists in accurately Mg/ha and at Yap mass to 231 cm was 1,232Mg/ha.From Jaramillo ascertaining the C pools of undisturbed et al. -
National Weather Service Southeast River Forecast Center
National Weather Service Southeast River Forecast Center Critical Issue: Tropical Season Review 2008 Impact on Southeast U.S. Water Resources Issued: December 18, 2008 Summary: • A normal number of inland-moving tropical systems impacted the region. • T.S. Fay brought record rain and floods to parts of Florida. • Tropical rainfall resulted in significant hydrologic recharge over much of Florida, Alabama, southern Georgia, and central sections of North and South Carolina. • Some severely drought-impacted areas, including North Georgia, western North and South Carolina, and west central Florida, near Tampa, saw limited or no significant hydrologic recharge this season. 1 Southeast River Forecast Center There are several distinct times of the year when “typical” rainfall patterns provide an opportunity for the recharge of key water resources. The primary climatologically-based recharge period (with the exception of the Florida peninsula) is the winter and early spring months. Secondary periods include the tropical season and a small secondary window of severe weather in the fall. Tropical season, from June 1st through November 30th, is potentially a time for soil and reservoir recharge. Most tropical systems arrive in the late summer and early fall, which otherwise tends to be a relatively dry time of the year. Recharge from tropical systems can be “hit or miss.” While some areas may receive extensive rainfall, other nearby areas can remain completely dry. Rainfall will also vary between tropical seasons. Some seasons have been extremely wet (2004 and 2005), while other seasons had little if any tropical activity moving across the Southeast U.S. (2006 and 2007). This reduction of inland-moving tropical activity in 2006 and 2007 aggravated overall drought conditions.