Sensitivity of Mangrove Range Limits to Climate Variability Kyle C

Total Page:16

File Type:pdf, Size:1020Kb

Sensitivity of Mangrove Range Limits to Climate Variability Kyle C University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- ubP lished Research US Geological Survey 4-28-2017 Sensitivity of mangrove range limits to climate variability Kyle C. Cavanaugh Department of Geography, University of California, [email protected] Michael J. Osland U.S. Geological Survey, Wetland and Aquatic Research Center Remi Bardou Department of Geography, University of California Gustavo Hinojosa-Arango Academia de Biodiversidad, Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional Unidad Oaxaca (CIIDIR-IPN) Juan M. Lopez-Vivas Programa de Investigacion en Botanica Marina, Departamento Academico de Ciencias Marinas y Costeras, Universidad See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/usgsstaffpub Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons Cavanaugh, Kyle C.; Osland, Michael J.; Bardou, Remi; Hinojosa-Arango, Gustavo; Lopez-Vivas, Juan M.; Parker, John D.; and Rovai, Andre S., "Sensitivity of mangrove range limits to climate variability" (2017). USGS Staff -- Published Research. 1041. http://digitalcommons.unl.edu/usgsstaffpub/1041 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- ubP lished Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Kyle C. Cavanaugh, Michael J. Osland, Remi Bardou, Gustavo Hinojosa-Arango, Juan M. Lopez-Vivas, John D. Parker, and Andre S. Rovai This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/usgsstaffpub/1041 Received: 28 April 2017 | Revised: 5 March 2018 | Accepted: 14 March 2018 DOI: 10.1111/geb.12751 RESEARCH PAPER Sensitivity of mangrove range limits to climate variability Kyle C. Cavanaugh1 | Michael J. Osland2 | Remi Bardou1 | Gustavo Hinojosa-Arango3 | Juan M. Lopez-Vivas 4 | John D. Parker5 | Andre S. Rovai6,7 1Department of Geography, University of California, Los Angeles, Los Angeles, Abstract California Aim: Correlative distribution models have been used to identify potential climatic controls of man- 2U.S. Geological Survey, Wetland and grove range limits, but there is still uncertainty about the relative importance of these factors Aquatic Research Center, Lafayette, Louisiana across different regions. To provide insights into the strength of climatic control of different man- 3Academia de Biodiversidad, Centro grove range limits, we tested whether temporal variability in mangrove abundance increases near Interdisciplinario de Investigacion para el range limits and whether this variability is correlated with climatic factors thought to control large- Desarrollo Integral Regional Unidad Oaxaca scale mangrove distributions. (CIIDIR-IPN), Santa Cruz Xoxocotlan, Oaxaca, Mexico Location: North and South America. 4Programa de Investigacion en Botanica Time period: 1984–2011. Marina, Departamento Academico de Ciencias Marinas y Costeras, Universidad Major taxa studied: Avicennia germinans, Avicennia schuaeriana, Rhizophora mangle, Laguncularia Autonoma de Baja California Sur, La Paz, Baja California Sur, Mexico racemosa. 5Smithsonian Environmental Research Methods: We characterized temporal variability in the enhanced vegetation index (EVI) at man- Center, Smithsonian Institution, Edgewater, grove range limits using Landsat satellite imagery collected between 1984–2011. We Maryland characterized greening trends at each range limit, examined variability in EVI along latitudinal gra- 6Department of Oceanography and Coastal Sciences, College of the Coast and dients near each range limit, and assessed correlations between changes in EVI and temperature Environment, Louisiana State University, and precipitation. Baton Rouge, Louisiana Results: Spatial variability in mean EVI was generally correlated with temperature and precipita- 7Programa de Pos-Graduaç ao~ em Oceanografia, Centro de Filosofia e Ciencias^ tion, but the relationships were region specific. Greening trends were most pronounced at range Humanas, Florianopolis, Santa Catarina, limits in eastern North America. In these regions variability in EVI increased toward the range limit Brazil and was sensitive to climatic factors. In contrast, EVI at range limits on the Pacific coast of North Correspondence America and both coasts of South America was relatively stable and less sensitive to climatic Kyle C. Cavanaugh, Department of variability. Geography, 1255 Bunche Hall, University of California, Los Angeles, 90095. Main conclusions: Our results suggest that range limits in eastern North America are strongly con- Email: [email protected] trolled by climate factors. Mangrove expansion in response to future warming is expected to be rapid in regions that are highly sensitive to climate variability (e.g. eastern North America), but the Funding information National Aeronautics and Space response in other range limits (e.g. South America) is likely to be more complex and modulated by Administration, Grant/Award Number: additional factors such as dispersal limitation, habitat constraints, and/or changing climatic means NNX11AO94G; New Investigator Program, rather than just extremes. Grant/Award Number: NNX16AN04G; National Science Foundation, Grant/Award Number: EF 1065821; University of KEYWORDS California Institute for Mexico and the climatic drivers, distribution, EVI, Landsat, mangrove forests, range limit United States; Louisiana Sea Grant College; USGS Ecosystems Mission Area; Land Change Science Climate R&D Program Editor: Naia Morueta-Holme Global Ecol Biogeogr. 2018;27:925–935. wileyonlinelibrary.com/journal/geb VC 2018 John Wiley & Sons Ltd | 925 926 | CAVANAUGH ET AL. 1 | INTRODUCTION Climate change, particularly global increases in temperature, have already led to poleward shifts in the distributions of many species (Par- mesan & Yohe, 2003), with especially apparent impacts at the bounda- ries of major biomes. For example, shrubs and trees have expanded northward in tundra ecosystems across the Arctic in response to recent warming (Tape, Sturm, & Racine, 2006). Similarly, in marine ecosystems around the world tropical herbivores have expanded their range into temperate waters, leading to a loss of habitat-forming species and dra- matic community phase shifts (Verges et al., 2014). These range shifts can have large impacts on the structure and functioning of ecosystems, FIGURE 1 Conceptual diagram of enhanced vegetation index (EVI) pointing to a need to better understand the processes that control spe- patterns near different types of range limits. A: Range limit is near cies’ range limits. climatic tolerance with high climatic variation and so climatic Correlative distribution modelling has become one of the most variability drives variability in plant performance, for example ‘USA common approaches for gaining insight into the processes that control – Atlantic’ in Figure 6. B: Range limit is not yet at climatic species’ distributions and for predicting changes to those distributions tolerance due to dispersal limitation and/or habitat constraints. As (Elith & Leathwick, 2009). These types of models are based on the sta- a result, plant performance is relatively insensitive to climate variability, for example ‘Peru’ in Figure 6. C: Range limit is near tistical association between species occurrences and environmental or climatic tolerance with low climatic variation. Plant performance is climate data. These models are flexible in that they utilize readily avail- sensitive to climatic variability, but climatic variability is low, for able data and are relatively simple to implement. However, correlative example ‘Mexico – Gulf of California’ in Figure 6 distribution models assume that a species is in equilibrium with its envi- ronment, which may not be the case during rapid climate change or fisheries, filtering of sediments and nutrients, elevation maintenance when a range limit is controlled by dispersal limitation or biotic interac- and erosion avoidance, and carbon sequestration and storage (Ewel, tions (Kearney & Porter, 2009). Twilley, & Ong, 1998). Mangroves are largely found between the lati- Data on the temporal fluctuations in abundance or performance of tudes of c. 308Nandc. 408S; however the latitude of the poleward a species near its range limit can provide additional insight into the range limit varies among regions, as do the climatic conditions at those processes that control its distribution, and thus be used to test predic- range limits (Osland, Feher, et al., 2017; Quisthoudt et al., 2012). tions of correlative distribution models. If a range limit is controlled by Previous work has provided valuable insight into the drivers of an abiotic environmental or climatic factor, then we would expect tem- mangrove range limitation by comparing current mangrove distribu- poral variability in that factor to correlate with variability of range limit tions to climatic variables. These studies range from descriptions of cli- populations. More generally, if a range limit is set by climatic factors, matic conditions at various poleward range limits (Duke, Ball, & Ellison, then population abundance or performance at the range edge, where 1998; Quisthoudt et al., 2012; Saenger, 2002) to models that relate the species
Recommended publications
  • The State of Biodiversity in Africa a Mid-Term Review of Progress Towards the Aichi Biodiversity Targets
    THE STATE OF BIODIVERSITY IN AFRICA A MID-TERM REVIEW OF PROGRESS TOWARDS THE AICHI BIODIVERSITY TARGETS 1 3 © Neil Burgess © Neil Preparation Reproduction This study was commissioned by the Division of Environmental This publication may be reproduced for educational or Law and Conventions (DELC) of the United Nations non-profit purposes without special permission, provided Environmental Programme (UNEP) under the leadership acknowledgement to the source is made. Reuse of any figures of Ms. Elizabeth Maruma Mrema, DELC Director, and the is subject to permission from the original rights holders. No direct supervision of Ms. Kamar Yousuf, Regional Biodiversity use of this publication may be made for resale or any other Multilateral Environmental Agreement (MEA) Focal Point commercial purpose without permission in writing from UNEP. for Africa. Additional funding has been provided by the Applications for permission, with a statement of purpose and UNEP World Conservation Monitoring Centre (UNEP- extent of reproduction, should be sent to the UNEP-DELC WCMC) and the Secretariat of the Convention on Biological Director, United Nations Environment Programme, P.O. Box Diversity (SCBD). The design, printing and distribution of 30552, Nairobi 00100, Kenya. this report was enabled through the financial contribution of the European Union. Disclaimer The contents of this report do not necessarily reflect the views Citation or policies of UNEP, contributory organizations or editors. The UNEP-WCMC (2016) The State of Biodiversity in Africa: designations employed and the presentations of material in this A mid-term review of progress towards the Aichi Biodiversity report do not imply the expression of any opinion whatsoever Targets.
    [Show full text]
  • Sanderson Et Al., the Human Footprint and the Last of the Wild
    Articles The Human Footprint and the Last of the Wild ERICW. SANDERSON,MALANDING JAITEH, MARC A. LEVY,KENT H. REDFORD, ANTOINETTEV. WANNEBO,AND GILLIANWOOLMER n Genesis,God blesses humanbeings and bids us to take dominion over the fish in the sea,the birdsin the air, THE HUMANFOOTPRINT IS A GLOBAL and other We are entreatedto be fruitful every living thing. MAPOF HUMANINFLUENCE ON THE and multiply,to fill the earth,and subdueit (Gen. 1:28).The bad news, and the good news, is that we have almost suc- LANDSURFACE, WHICH SUGGESTSTHAT ceeded. Thereis little debatein scientificcircles about the impor- HUMANBEINGS ARE STEWARDS OF tance of human influenceon ecosystems.According to sci- WE LIKEIT OR NOT entists'reports, we appropriateover 40%of the net primary NATURE,WHETHER productivity(the greenmaterial) produced on Eartheach year (Vitouseket al. 1986,Rojstaczer et al.2001). We consume 35% thislack of appreciationmay be dueto scientists'propensity of the productivityof the oceanicshelf (Pauly and Christensen to expressthemselves in termslike "appropriation of net pri- 1995), and we use 60% of freshwaterrun-off (Postel et al. maryproductivity" or "exponentialpopulation growth," ab- 1996). The unprecedentedescalation in both human popu- stractionsthat require some training to understand.It may lation and consumption in the 20th centuryhas resultedin be dueto historicalassumptions about and habits inherited environmentalcrises never before encountered in the history fromtimes when human beings, as a group,had dramatically of humankindand the world (McNeill2000). E. O. Wilson less influenceon the biosphere.Now the individualdeci- (2002) claims it would now take four Earthsto meet the consumptiondemands of the currenthuman population,if Eric Sanderson(e-mail: [email protected])is associatedirector, and every human consumed at the level of the averageUS in- W.
    [Show full text]
  • Climate Forcing of Tree Growth in Dry Afromontane Forest Fragments of Northern Ethiopia: Evidence from Multi-Species Responses Zenebe Girmay Siyum1,2* , J
    Siyum et al. Forest Ecosystems (2019) 6:15 https://doi.org/10.1186/s40663-019-0178-y RESEARCH Open Access Climate forcing of tree growth in dry Afromontane forest fragments of Northern Ethiopia: evidence from multi-species responses Zenebe Girmay Siyum1,2* , J. O. Ayoade3, M. A. Onilude4 and Motuma Tolera Feyissa2 Abstract Background: Climate-induced challenge remains a growing concern in the dry tropics, threatening carbon sink potential of tropical dry forests. Hence, understanding their responses to the changing climate is of high priority to facilitate sustainable management of the remnant dry forests. In this study, we examined the long-term climate- growth relations of main tree species in the remnant dry Afromontane forests in northern Ethiopia. The aim of this study was to assess the dendrochronological potential of selected dry Afromontane tree species and to study the influence of climatic variables (temperature and rainfall) on radial growth. It was hypothesized that there are potential tree species with discernible annual growth rings owing to the uni-modality of rainfall in the region. Ring width measurements were based on increment core samples and stem discs collected from a total of 106 trees belonging to three tree species (Juniperus procera, Olea europaea subsp. cuspidate and Podocarpus falcatus). The collected samples were prepared, crossdated, and analyzed using standard dendrochronological methods. The formation of annual growth rings of the study species was verified based on successful crossdatability and by correlating tree-ring widths with rainfall. Results: The results showed that all the sampled tree species form distinct growth boundaries though differences in the distinctiveness were observed among the species.
    [Show full text]
  • The Vulnerability of Indo-Pacific Mangrove Forests to Sea-Level Rise
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 10-22-2015 The vulnerability of Indo-Pacific mangrove forests to sea-level rise Catherine E. Lovelock The University of Queensland Donald R. Cahoon United States Geological Survey, [email protected] Daniel A. Friess National University of Singapore Glenn R. Guntenspergen United States Geological Survey, [email protected] Ken W. Krauss United States Geological Survey See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons Lovelock, Catherine E.; Cahoon, Donald R.; Friess, Daniel A.; Guntenspergen, Glenn R.; Krauss, Ken W.; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L.; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; and Triet, Tran, "The vulnerability of Indo-Pacific mangrove forests to sea-level rise" (2015). USGS Staff -- Published Research. 988. https://digitalcommons.unl.edu/usgsstaffpub/988 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Catherine E. Lovelock, Donald R. Cahoon, Daniel A. Friess, Glenn R. Guntenspergen, Ken W. Krauss, Ruth Reef, Kerrylee Rogers, Megan L. Saunders, Frida Sidik, Andrew Swales, Neil Saintilan, Le Xuan Thuyen, and Tran Triet This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usgsstaffpub/988 LETTER doi:10.1038/nature15538 The vulnerability of Indo-Pacific mangrove forests to sea-level rise Catherine E.
    [Show full text]
  • Florida Keys National Marine Sanctuary Water Quality
    FLORIDA KEYS NATIONAL MARINE SANCTUARY WATER QUALITY PROTECTION PROGRAM STEERING COMMITTEE MEETING January 25, 2012 MARATHON GOVERNMENT CENTER, 2798 Overseas Highway, Marathon, FL 33050 MINUTES Members Present: Tracy Ziegler, Everglades and Dry Tortugas National Parks Charles Brooks, Key Largo Wastewater Treatment District Armando Rilaboy, South Florida Water Management District Susan Hammaker, Key Largo Wastewater Treatment District, Sanctuary Advisory Council Ron Sutton, Key Colony Beach Pete Worthington, City of Marathon Charles Briggs, Department of Health, Bureau of Onsite Sewage Treatment Systems George Neugent, Monroe County Commissioner Charlie Causey Florida Keys Environmental Fund Sandy Walters, SWC, Inc., representing maritime interests of the Florida Keys Judy Cheon, Florida Keys Aqueduct Authority Gil McRae, Florida Fish and Wildlife Commission, Fish and Wildlife Research Institute Chris Bergh, The Nature Conservancy Bruce Popham, Sanctuary Advisory Council and a member of the business community Billy Causey, Southeast Region of National Marine Sanctuaries Anne Morkill, Fish and Wildlife Service, Florida Keys National Wildlife Refuges I. Call Meeting to Order Welcoming George Garrett George Garrett addressed the committee and welcomed everyone, including the EPA regional administrator region IV, Ms. Gwedolyn Keyes Fleming. She is always welcome to attend the meetings. Richard Harvey thanked George and introduced Ms. Gwen Keyes Fleming and the other guests, Mr. Jim Giattina, Water Protection Division Director, and Brandi Jenkins, Special Assistant to the regional administrator and Javoyne Hicks White, Chief of Staff for the regional administrator. He explained that the regional director will be making a few remarks. She has participated in a few meetings since she has been here. Jon Iglehart will make a statement on behalf of Secretary Vinyard, who could not be here today.
    [Show full text]
  • The Ecology of Large Herbivores Native to the Coastal Lowlands of the Fynbos Biome in the Western Cape, South Africa
    The ecology of large herbivores native to the coastal lowlands of the Fynbos Biome in the Western Cape, South Africa by Frans Gustav Theodor Radloff Dissertation presented for the degree of Doctor of Science (Botany) at Stellenbosh University Promoter: Prof. L. Mucina Co-Promoter: Prof. W. J. Bond December 2008 DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 24 November 2008 Copyright © 2008 Stellenbosch University All rights reserved ii ABSTRACT The south-western Cape is a unique region of southern Africa with regards to generally low soil nutrient status, winter rainfall and unusually species-rich temperate vegetation. This region supported a diverse large herbivore (> 20 kg) assemblage at the time of permanent European settlement (1652). The lowlands to the west and east of the Kogelberg supported populations of African elephant, black rhino, hippopotamus, eland, Cape mountain and plain zebra, ostrich, red hartebeest, and grey rhebuck. The eastern lowlands also supported three additional ruminant grazer species - the African buffalo, bontebok, and blue antelope. The fate of these herbivores changed rapidly after European settlement. Today the few remaining species are restricted to a few reserves scattered across the lowlands. This is, however, changing with a rapid growth in the wildlife industry that is accompanied by the reintroduction of wild animals into endangered and fragmented lowland areas.
    [Show full text]
  • Ushaka Sea World Education Mangrove Ecosystem Study
    uShaka Sea World Education Grade 10 Life Sciences Mangrove Ecosystem Study 1 Mangrove Ecosystem Study In this study you will be looking at the mangroves as an ecosystem. Your study will deal with all the following: • abiotic and biotic factors and the interactions between them. • trophic relationships in that ecosystem. • the changes between high and low tide. • biodiversity within the ecosystem using information keys and food webs. • positive and/or negative human impact/influence on the ecosystem. Curriculum link GRADE 10 STRAND 3: ENVIRONMENTAL STUDIES - Biosphere to Ecosystems Aquatic biomes of Southern Africa: How climate, soils and vegetation influence the organisms found in each biome. Ecosystem structure and functioning and the abiotic and biotic factors and how they affect the community: Abiotic factors: •physiographic factors (aspect, slope, altitude) • light (day length, seasonal changes) • temperature (effect of day/night, seasons) • water (water cycle, importance of wetlands) Biotic factors: (Links to Grade 8) • producers • consumers • decomposers Energy flow through ecosystems and relationship to trophic structure (food pyramids): Producers, consumers (herbivores, carnivores and omnivores, decomposers). Human activities in and interactions with the natural environment. 2 READING South African Mangrove Forests Together with coral reefs and seagrass beds, mangroves rank as one of the most productive ecosystems in the world. Physical Environment Mangrove forests are found in the littoral zone, the band between the sea and the land that is flooded and exposed during the rise and fall of the tide. They occur in estuaries which are either predominantly or permanently open to the sea and tidal in nature. Mangroves are usually only found in tropical climates, as they need consistent warm conditions for development and survival.
    [Show full text]
  • The Indo Pacific Forest C Study Handout
    The Indo-Pacific Forest Carbon Study A collaborative study with the US Forest Service, Institute of Pacific Islands Forestry, International Programs, and the Center for International Forest Research Recent work by IPIF scientists have found that the C pools of mangroves exceed that of upland tropical forests because they exist on C-rich peat soils and have relative high levels of aboveground biomass (Fig. 1). Mangrove forests are widely distributed in the western Pacific and have been subject to high rates of land cover change related to aquaculture and Yap Crew coastal development. Southeast Indo-Pacific Forest Carbon Study Asia supports the world’s largest October 25, 2008 areas of mangrove originally extending over 6.8 million ha representing 34-42% if the world’s total. These forests are vulnerable to land cover change and global change especially sea level rise. Because of the many ecosystem services they provide and the high quantity of C they store, they Ecosystem C pools of Selected Tropical Forests would be ideal candidates for REDD 800 strategies. 700 600 500 Scientists at the center for International Aboveground 400 Forestry Research (CIFOR) have reported Belowground 300 that tropical forests over peat soils in the 200 C Mass (Mg/ha) Mass C Asian Pacific also contain immense C pools 100 that when subjected to land cover change 0 TDF Mex TMF TWF Mont rain Mangrove Mangrove are significant sources of anthropogenic Brasil Mex CR Palau Yap emissions of CO 2 and CH 4. Yet little Soils only to a 1m depth- Palau mangrove mass to 160 cm was ~963 quantitative work exists in accurately Mg/ha and at Yap mass to 231 cm was 1,232Mg/ha.From Jaramillo ascertaining the C pools of undisturbed et al.
    [Show full text]
  • Asia-Pacific's Ecological Footprint
    ASIA-PACIFIC 2005 The Ecological Footprint and Natural Wealth ountries in Asia and the Pacific have made a firm nor extended worldwide without causing additional consumed like an average American or European?” We commitment to sustainable development. We want life-threatening damage to the global environment have only one planet, yet all people want, and have the Ca better quality of life for all, while safeguarding the and increasing social inequity. right to, fulfilling lives. The challenge for high income Earth’s capacity to support life in all its diversity and This report is a call for action, not just for the policy countries is to radically reduce footprint while maintaining respecting the limits of the planet’s natural resources. How community, but for the scientific and business com- quality of life. For lasting improvements in their quality of can we achieve this in the face of growing populations and munities as well. It echoes what the Millennium Ecosystem life, lower income countries are facing the complementary changing consumption patterns, both within the region Assessment found: that the health of natural systems has challenge of finding new paths to development that can and the world? a profound impact on our quality of life, but 60 percent of provide best living conditions without liquidating their As a first step to answering this question, we need to the ecosystem services that support life on Earth are being ecological wealth. know where we are today. How does the Asia-Pacific degraded or used unsustainably. This report provides a The Asia-Pacific region is in a unique position to shape region’s current demand for ecological resources compare frank assessment of what is at stake for Asia and the the development model for the whole world in the coming to the region’s (and the planet’s) supply? How does it Pacific and for the rest of the world.
    [Show full text]
  • A Global Overview of Wetland and Marine Protected Areas on the World Heritage List
    A GLOBAL OVERVIEW OF WETLAND AND MARINE PROTECTED AREAS ON THE WORLD HERITAGE LIST A Contribution to the Global Theme Study of World Heritage Natural Sites Prepared by Jim Thorsell, Renee Ferster Levy and Todd Sigaty Natural Heritage Programme lUCN Gland, Switzerland September 1997 WORLD CONSERVATION MONITORING CENTRE lUCN The World Conservation Union 530S2__ A GLOBAL OVERVIEW OF WETLAND AND MARINE PROTECTED AREAS ON THE WORLD HERITAGE LIST A Contribution to the Global Theme Study of Wodd Heritage Natural Sites Prepared by Jim Thorsell. Renee Ferster Levy and Todd Sigaty Natural Heritage Program lUCN Gland. Switzerland September 1997 Working Paper 1: Earth's Geological History - A Contextual Framework Assessment of World Heritage Fossil Site Nominations Working Paper 2: A Global Overview of Wetland and Marine Protected Areas on the World Heritage List Working Paper 3; A Global Overview of Forest Protected Areas on the World Heritage List Further volumes (in preparation) on biodiversity, mountains, deserts and grasslands, and geological features. Digitized by tine Internet Arciiive in 2010 witii funding from UNEP-WCIVIC, Cambridge littp://www.arcliive.org/details/globaloverviewof97glob . 31 TABLE OF CONTE>rrS PAGE I. Executive Summary (e/f) II. Introduction 1 III. Tables & Figures Table 1 . Natural World Heritage sites with primary wetland and marine values 1 Table 2. Natural World Heritage sites with secondary wetland and marine values 12 Table 3. Natural World Heritage sites inscribed primarily for their freshwater wetland values 1 Table 4. Additional natural World Heritage sites with significant freshwater wetland values 14 Tables. Natural World Heritage sites with a coastal/marine component 15 Table 6.
    [Show full text]
  • Salt Marsh and Mangrove Swamp
    May is Wetlands Month Salt Marsh Characteristics About the Park May is Wetlands Month Upper Tampa Bay Park opened in 1982. The park HYDROLOGY consists of 596 acres within the 2,144 acres of Salt marshes are estuarine wetlands often found Hillsborough County Preserve which was originally on low energy shorelines and in bays and a part of the 3,000acre Bower Tract. In the late estuaries. The hydrology is driven by daily tidal 1960’s and early 1970’s, the Bower Tract was fluctuations and wind events. Tides are water slated to become a large waterfront development level fluctuations that are driven by lunar cycles. called Bay Port Colony. However, it never came to Sediment accumulation ensures that marsh be, partly due to a burgeoning grassroots depths do not get too deep. environmental movement in the Tampa Bay area. The park and preserve properties were acquired by SOILS Hillsborough County through the 1970’s. Today, Soil types within salt marshes vary depending on the Park hosts both wetland and upland community tidal energy, proximity to channels, and external types as diverse as tidal marsh, high marsh, Salt Marsh and inputs. Soils can include muck, sand or limestone. mangrove swamp, freshwater marsh, pine The rotten egg smell of hydrogen sulfide is very flatwoods and coastal upland hammock. The park common here. contains an Environmental Study Center and Mangrove Swamp provides other activities such as picnicking, VEGETATION canoeing, and hiking on numerous trails or Upper Tampa Bay Park Salt marshes are treeless with a dense boardwalks. herbaceous layer. Vegetation is dominated by salt-tolerant grasses, rushes and succulent Week 4 Episode species which are sorted based on hydrology and salinity.
    [Show full text]
  • Major Biomes of the World Have You Visited Any Biomes Lately? a Biome Is a Large Ecosystem Where Plants, Animals, Insects, and P
    Major Biomes of the World Have you visited any biomes lately? A biome is a large ecosystem where plants, animals, insects, and people live in a certain type of climate. If you were in northern Alaska, you would be in a frosty biome called the Arctic tundra. If you jumped on a plane and flew to Brazil, you could be in a hot and humid biome called the tropical rainforest. The world contains many other biomes: grasslands, deserts, and mountains, to name a few. The plants and animals living in each are as different as their climates. Which is your favorite? Arctic Tundra The Arctic tundra is a cold, vast, treeless area of low, swampy plains in the far north around the Arctic Ocean. It includes the northern lands of Europe (Lapland and Scandinavia), Asia (Siberia), and North America (Alaska and Canada), as well as most of Greenland. Another type of tundra is the alpine tundra, which is a biome that exists at the tops of high mountains. Special features: This is the earth's coldest biome. Since the sun does not rise for nearly six months of the year, it is not unusual for the temperature to be below -30°F in winter. The earth of the Arctic tundra has a permanently frozen subsoil, called permafrost, which makes it impossible for trees to grow. Frozen prehistoric animal remains have been found preserved in the permafrost. In summer, a thin layer of topsoil thaws and creates many pools, lakes, and marshes, a haven for mosquitoes, midges, and blackflies. More than 100 species of migrant birds are attracted by the insect food and the safe feeding ground of the tundra.
    [Show full text]