2014 Professional Development Resource Guide Ground Vehicle Sae Corporate Learning Clients
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Overview of SAE International Standards Activities Related to Hybrid / Electric Vehicles
An Overview of SAE International Standards Activities Related to Hybrid / Electric Vehicles Keith Wilson Technical Program Manager, Ground Vehicle Standards 1 Copyright © SAE International. Further use or distribution is not permitted without permission from SAE International. Global Ground Vehicle Standards Structure Executive Standards Committee Specialized Materials Parts Systems Motor Vehicle Truck & Bus Fuels & Lubes Aerospace ConAG Council Vehicles & Processes Management Council Council Council Council Council Council Council Steering Steering Steering Steering Steering Steering Steering Steering Cmte Cmte Cmte Cmte Cmte Cmte Cmte Cmte Cmte Cmte Cmte Cmte Cmte Cmte Cmte Cmte TF TF TF TF TF TF TF TF • 145,000+ SAE members • 8,375 GV Standards Published • 564 GV Technical • 2,900 Companies Committees worldwide • 1,817 GV Standards Maintained • Representatives from 50 • Representatives from 100 • 8,800 GV Committee Countries • 491 GV WIP Standards Countries Members Global Ground Vehicle Standards 2 Copyright © SAE International. Further use or distribution is not permitted without permission from SAE International. SAE EV, Hybrid & Fuel Cell Vehicle Standards Development Hybrid SAE EV / Hybrid Vehicle Steering Committee Heavy Sound Vehicle Wireless Charging ➢ Started – 2005 Charging ➢ Current Committee Membership EV & Hybrid Safety Terminology ▪ > 1100 Individual Participants ▪ > 500 Companies Power Quality for SAE Electric • OEM’s Chargers EV/Hybrid Motor Vehicle Rating Steering • Suppliers Committee First & • Government Fuel Cell Second Emissions Responder • Academia ➢ 10 EV / Hybrid Vehicle Subcommittees Communication & Fuel Cell Interoperability ➢ 4 Fuel Cell Standards Subcommittees Interface ➢ 66 SAE EV, Hybrid, Fuel Cell Vehicle Standards Conductive Published to Date Fuel Cell Charge Performance Couplers Fuel Cell Safety Global Ground Vehicle Standards 3 Copyright © SAE International. -
2002 Annual Report Connectivity Creativity
2002 Annual Report connectivity creativity change Table of Contents 1 Executive Message 2 Highlights/Events 14 Corporate Directory 16 Financial Message & Statements Executive Message for the 2002 Annual Report customer needs and anticipate future SAE also signed Memoranda of Under- needs and services. As such, SAE in standing (MOU’s) with the VDI Society 2002 embraced a philosophy of for Automotive and Traffic Systems enhancing the organization’s value (VDI-FVT), the automotive branch of proposition through increased the Association of Engineers in attention to customer service. Germany; Society of Automotive Engineers of Japan; and the The Board established a Task Force to Motorsports Industry Association in address ways to enhance SAE’s value the U. K. These agreements signify a to suppliers and manufacturers. After new era of joint cooperation among many meetings with corporate leaders, our respective organizations. the Task Force issued several We take great pleasure in writing this recommendations, including calls for We were in India for the official signing Executive Message because it significant changes to the SAE World of the documents that formally grant- provides an opportunity to reflect and Congress. As a result, the 2003 SAE ed SAE India affiliate status. The put forth an honest assessment of World Congress was radically altered signing of this MOU marks only the how well SAE is measuring up to its to meet the needs of our corporate second time in SAE’s 97-year history mission and objectives. customers, while still providing the rich that an affiliate society had been content and learning opportunities that established. -
Overview and Characteristics of the Ev Fast Charging Connector Systems
Maszyny Elektryczne - Zeszyty Problemowe Nr 3/2017 (115) 91 Damian Dobrzański Politechnika Lubelska OVERVIEW AND CHARACTERISTICS OF THE EV FAST CHARGING CONNECTOR SYSTEMS PRZEGLĄD I CHARAKTERYSTYKA STANDARDÓW ZŁĄCZY SZYBKIEGO ŁADOWANIA POJAZDÓW EV Abstract: The paper presents the existing connector systems designed for fast charging EV battery. The work has paid particular attention for differences between charging systems like nominal voltage, speed of charging, plug type and place of occurrences. Streszczenie: Artykuł przedstawia przegląd istniejących systemów złączy do ładowania akumulatorów pojazdów elektrycznych. Zwrócono w nim szczególną uwagę na różnice pomiędzy poszczególnymi standardami takimi jak typ złącza, napięcie ładowania, dokonano również analizy ich popularności oraz możliwości rozwoju. Keywords: Fast charging connectors, Tesla Supercharger, CHAdeMO, SAE CCS, SAE J1772, AC charging, DC fast charging, EV Słowa kluczowe: złącza szybkie ładowanie, Tesla Supercharger, CHAdeMO, SAE CCS, SAE J1772 , ładowanie AC, szybkie ładowanie DC, pojazdy elektryczne 1. Introduction Converters [1] as well as Control Strategies and In the last few years, the automotive world has topologies of DC/DC converters [2]. witnessed a real revolution. Decade ago On this moment we have a few fast charging nobody even thought that diesel engines which systems, in this paper was presented a first- are dominated a market in first years of XXI dominating 3 systems Japanese CHAdeMO, century will be gradually withdrawn from the American SAE J1772 Combo (IEC type 1) and automotive solutions. European IEC 62196-2 type 2 Combo Charging Universal striving to reduce climate changes System ( IEC CCS type 2) all types of charging forces car producers to use hybrid powertrains systems are divided to 4 mode: or to completely abandon their conventional -Mode 1- directly passive connection between internal combustion engines for electrical or grid and EV, only AC charging in EU 250V for hydrogen solutions. -
Nuvve Powerport High-Power AC Charging Station
[email protected] We Make Electric Vehicles Greener NUVVE.com Nuvve PowerPort High-Power AC Charging Station UL-certified to 80A; enables 19.2kW charge rate Three-phase version for SAE J3068/Type 2 vehicles ENERGY STAR® certified V2G-capable for bidirectional vehicles^ The Nuvve PowerPort AC electric vehicle charging station provides fast, reliable, and intelligent charging with up to 80 amps of power (single phase) or 120 amps (three phase). It’s the ideal solution for everyone from consumers at home and fleets at the workplace to heavy-duty vehicles such as buses and trucks. The PowerPort is fully controllable through Nuvve’s software platform for unidirectional application or full bidirectional Grid Integrated Vehicle (GIVeTM) application, including vehicle-to-grid (V2G) for vehicles that are modified to have onboard, bidirectional inverters and adequate grid protections. Reliable, High-Powered Charging For Your Electric Vehicles (EVs) Nuvve’s patented V2G GIVeTM technology was developed in 1996 and has been successfully deployed on five continents. The latest generation of the Nuvve PowerPort is now available for the U.S. and European markets. Save Money Nuvve’s aggregation platform allows you to offset your electricity bills by optimizing charging times. And with compatible V2G vehicles linked to Nuvve’s GIVeTM platform electricity from your EV battery may be sold to earn revenue in energy markets. Manage Your Charging Anytime Anywhere Use the Nuvve on-the-go management app to set charge levels for the next day, set minimal charge levels, and trigger emergency charging, all in the convenience of a mobile or desktop app. -
Vehicle Cybersecurity Threats and Mitigation Approaches Cabell Hodge, Konrad Hauck, Shivam Gupta, and Jesse Bennett
Vehicle Cybersecurity Threats and Mitigation Approaches Cabell Hodge, Konrad Hauck, Shivam Gupta, and Jesse Bennett National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5400-74247 Operated by the Alliance for Sustainable Energy, LLC August 2019 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Vehicle Cybersecurity Threats and Mitigation Approaches Cabell Hodge, Konrad Hauck, Shivam Gupta, and Jesse Bennett National Renewable Energy Laboratory Suggested Citation Hodge, Cabell, Konrad Hauck, Shivam Gupta, and Jesse Bennett. 2019. Vehicle Cybersecurity Threats and Mitigation Approaches. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5400-74247. https://www.nrel.gov/docs/fy19osti/74247.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5400-74247 Operated by the Alliance for Sustainable Energy, LLC August 2019 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program. The views expressed herein do not necessarily represent the views of the DOE or the U.S. -
Interoperability and Interconnection to the Grid
Interoperability and Interconnection to the Grid How will the grid handle an influx of EVs? Where will the new electricity come from? What has to happen to ensure that the technology does not become obsolete? WPUI EV Roadmap Conference, Madison WI; Sept. 10th, 2019 Theodore Bohn ([email protected]; 630-816-7382) Argonne National Laboratory Disclaimer: Images used in this presentation in no way imply product endorsement Relevant DOE funded EV Charging Interoperability and Interconnection to the Grid Activities . DOE Grid Modernization Lab Consortium (GMLC); https://gmlc.doe.gov/projects - Task Group 1.2.2 Interoperability - Task Group 1.4.1 Standards & Test Procedures for Interconnection & Interoperability - Task Group 1.4.2 Definitions Standards and Test Procedures for Grid Services . DOE Vehicle Technology Office(VTO) Grid Integration Tech Team (GITT) - Comprised of members from utilities, vehicle OEMs, national labs, equip. mfgs. - Current projects include categorizing charging assumptions and grid impact modeling for ‘Grid Capacity of EVs at Scale’ with Integrated Systems Analysis Tech Team (ISATT) based on EPRI studies 2 Project Summary of DOE Funded Lab Call Topic Other activities in MW+ Multiport Charging Research . (Excerpt from NREL presentation): Summary of research topics. ANL leads industry engagement vehicle charging requirements task for FY2019 3 HB44-3.40 ‘Point of Sale’ Commercial Dispensing of Electricity as a Fuel (non-utility owned assets) SAE J2836/1 Use Case Figures: - Red line is liquid fueling point of sale. - Green line is utility/premise ‘point of sale’ at the premise meter; edge of premises - Blue line is at the tip of the conductive charging for vehicle electricity dispensing Infrastructure Vehicle Seller Buyer Seller Buyer 4 What is Argonne National Lab and the EV-Smart Grid Interoperability Center? ANL was designated as the first National Laboratory in 1946, initially formed to support Enrico Fermi’s work (Univ. -
Spec Sheet Parkplus Ppevc
PARKPLUS PPEVC SPEC SHEET EV CHARGING SYSTEM Version 07.2020 Patents Pending Page 1 of 6 PARKPLUS Electric Vehicle Charging (PPEVC) is an integrated solution to provide project-specific EVC capacity to PARKPLUS Automated (APS) and Semi-Automated Parking Systems (SAPS). The PPEVC solution is designed for pallet-based parking systems and parking platforms that include power for manual connection when parking. Charging power is connected upon manual connection (SAPS), or when platform arrives at designated parking space in the garage (APS). Parking spaces allowing for EV charging are dedicated for individual owners. EVC spaces can be metered, billing and reimbursement is direct from building to tenant based on a monthly subscription. Coordination with project and base building engineers must consider the number of EV charging stations. Suitable for • PARKPLUS Lift-Slide Semi-Automated Parking System • PARKPLUS AGV Automated Parking System • PARKPLUS Rack & Rail Automated Parking System PPEVC works with all SAE J1772-compliant vehicles and Tesla vehicles via adapter provided by Tesla. System Components B A 1 Charging Station 2 Electrical Conduit 1 3 Power Dock 2 4 4 Parking Platform* * See system-specific pages for product application. 5 Charging Port BA 6 Charging Cable Power Requirements EVC Power is separate from Parking System power. EVC power is provided by the base building and designed around quantity of EV Charging Stations required. Typically, electrical requirement is a multiple of power requirements of each charging station (i.e. X times 7.2KW plus electrical reticulation). Multi-channel 5 6 3 control units can decrease power requirements, see page 3. Pages 1-3 DETAIL A Typical Platform Overview Connection Operation EVC Station User parks vehicle on Parking Platform/Tray and connects vehicle Multi-Channel to platform using Charging Cable. -
Electric Vehicle Charging Stations
September 21, 2017; 1145 EDT INFRASTRUCTURE SYSTEM OVERVIEW: ELECTRIC VEHICLE CHARGING STATIONS Prepared By: Strategic Infrastructure Analysis Division OVERVIEW Electric vehicle (EV) usage continues to increase in the United States, along with its supporting infrastructure. As EVs increase in market share, issues like charging speed and battery capacity will drive future development of EV charging technology. As EV demand increases, manufacturers will continue to develop, build, and deploy additional Internet-connected charging stations and new connected technologies to satisfy demand. These Internet connected technologies include enhanced EV supply equipment (EVSE)-to-EV digital communications (advanced control of the charging process), as well as increasingly networked automobiles and charging systems (expanded communications and control for EVs). This research provides a baseline understanding of EV charging technology, as well as what new technology is on the horizon. Analysts should consider the cyber and physical aspects of this technology as it becomes more prevalent. SCOPE NOTE: This product provides an overview of EV charging stations and associated equipment, which are important components supporting EVs. It summarizes EV historical background, current standards and regulatory environment, current charging methods, technology and equipment, and future and emerging EV technology. This product does not describe threats, vulnerabilities, or consequences of any aspect of the infrastructure system. This product provides analysts, policy makers, and homeland security professionals a baseline understanding of how EV charging systems work. The U.S. Department of Homeland Security (DHS)/Office of Cyber and Infrastructure Analysis (OCIA) coordinated this product with the DHS/National Protection and Programs Directorate (NPPD)/Office of Infrastructure Protection/Sector Outreach and Programs Division, DHS/NPPD/Office of Cybersecurity & Communications/Industrial Control Systems Cyber Emergency Response Team, DHS/Transportation Security Administration, and U.S. -
Electric Vehicle Communication Standards Testing and Validation – Phase I: SAE J2847/1
PNNL-20913 Prepared for the U. S. Department of Energy under Contract DE-AC05-76RL01830 Electric Vehicle Communication Standards Testing and Validation – Phase I: SAE J2847/1 R Pratt F Tuffner K Gowri September 2011 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm This document was printed on recycled paper. -
November 2004
SAE UPDATE PAGE 1 NOVEMBER 2004 NOVEMBER 2004 VOL. 21, NO. 11 Professional development seminars in China Forty-four Chinese engineers, technicians, development seminars and provides a library and engineering managers participated of SAE publications and technical materials in the fi rst SAE professional development for China’s engineering community. seminars offered in China. Four seminars, Seminar attendees represented 18 different taught by two experienced SAE instructors, multinational and domestic Chinese were offered from August 30 through corporations and came from 17 different September 3 using classroom and laboratory cities in China, some traveling 800 km to facilities at Beijing’s Tsinghua University. attend the five-day training experience. The DTI-SAE Global Knowledge Center is Multinational companies represented a joint venture involving SAE International, included Delphi China Corp.; Nissan Delphi China, and Tsinghua University. It Motor Co. Ltd.; Cummins, Corp. Beijing serves as a host facility for SAE professional Branch; GM Shanghai; John Deere; Julian Harvester; Eagle-Picher Automotive; Asimco Technologies; Nanjing Autoliv; and Beijing Monroe Shock Absorber Co. Domestic Chinese companies represented included DongFeng Motor Corp.; Shanghai Automotive Industry Corp.; Jiangling Motor Co. Ltd.; Dandong Huanghai Automotive Co. Ltd.; Beijing Foton Environmental Engine Co.; Shenyang Brilliance Jinbei Automobile Co.; and China Jialing Industrial William Mark McVea taught two of the seminars in China: Gear System Design, Analysis, and Co. Group, Ltd. Application; and Technical Survey of Modern Vehicle Transmission Systems. In addition, faculty members and instructors from Tsinghua University’s automotive engineering department, the Pan The long-term goal of the initiative calls U.S./International inquiries regarding Asia Technical Automotive Center (PATAC), for the implementation of a full range of SAE engineering education in China may and the Shanghai Automotive Industry SAE training and engineering education be addressed to Thomas C. -
SAE COLLEGIATE DESIGN SERIES 2015 Season Recap
MOMENTUM TM THE MAGAZINE FOR STUDENT MEMBERS OF SAE INTERNATIONAL SAE COLLEGIATE DESIGN SERIES 2015 season recap BEST BOOTH University of Puerto Rico–Mayaguez team wins Student Exhibit Competition Stemming the STEM crisis Getting through to kids early CONTENTS 2 EDITORIAL STEM REPORT FEATURE 3 BRIEFS 14 Taking action early to conquer the Vol 6 STEM crisis Issue 4 STUDENT GENERATION Interest in STEM subjects falls precipitously as students progress through elementary and middle school. FEATURE 4 UMich-Ann Arbor team takes home Baja season’s Iron Team Award TODAY’S ENGINEERING Cornell University also had a strong 2014 season, but not 16 Energid actively working on strong enough to fend off Michigan Baja Racing. simulation technologies for lunar and planetary rovers FEATURE 6 Georgia Tech and Warsaw University were double-winners at SAE Aero 17 Blizzard conditions test FCA’s 4WD Design competitions and AWD vehicles University of Akron and University of Cincinnati were the other winners at the twin 3-class competitions, the SAE NETWORKING former setting a record in the process. 18 Unstoppable Formula SAE team leader earns Rumbaugh Award FEATURE 8 West Coast teams win 2 of 3 Formula 19 Give a presentation at the SAE 2016 SAE events World Congress Oregon State captures its fifth crown while San Jose State enjoys its first overall victory and UPenn tops the electric 19 Doug Gore remembered for SAE field. volunteerism 10 UW-Madison tops IC engine field at SAE Clean Snowmobile Challenge 20 GEAR 11 Université Laval repeats as SAE 11 Supermileage champ 12 Team from the University of Waterloo ON THE COVER CARS ARE LINED UP AND READY TO ROAR AT THE BAJA SAE sets record in winning Formula Hybrid AUBURN EVENT. -
ELEKTRİKLİ ARAÇ ŞARJ SİSTEMLERİ Electrical Vehicle Charging Systems
ELEKTRİKLİ ARAÇ ŞARJ SİSTEMLERİ Electrical Vehicle Charging Systems 2021 ISO 9001 / ISO 14001 OHSAS 18001 / AS 9100 Şirket Profili Elektrik sektörünün öncü kuruluşlarından olan GERSAN A.Ş. enerji santrallerinden evdeki prize kadar uzanan hat üzerindeki iletkenleri taşıyan, birleştiren, koruyan sistemleri ve malzemeleri üretmektedir. Bu sektördeki üretimlerine 1980 yılında Gersan Ticaret olarak başlamıştır. 1985 yılından itibaren GERSAN A.Ş. olarak devam ederek 41 yıllık bir deneyime sahip olmuştur. S OTOMA -BU SY G O N Ana faaliyet alanlarımız; Binalar, Sanayi Tesisleri, Fabrikalar, Havaalanları, Petrol-Gaz Rafinerileri, Alışveriş Merkezleri, Oteller... G -B ion gibi üretim-tüketim sistemlerinin ihtiyacı olan US Automat Busbar İletim ve Dağıtım Sistemleri, AR S‹STE Kablo Taşıyıcı Sistemleri, S B ML U ER B ‹ Taşıma-Askı Elemanları, Topraklama ve Yıldırımdan Korunma Sistemleri, Ana-Ara Dağıtım Panoları ve Rack Kabinleri, Elektrikli Araç Şarj Sistemleri, Otomasyon Sistemleri, Döşeme Altı Kanal taşıyıcıları ve Buatları, Çeşitli Kablo Birleştirme ve Ayırma Elemanları, s m Kablo ve Boru Etiketleme Sistemleri, Bu e s st Özel taşıyıcı, Çelik Konstrüksiyon Birleştirme ve Sabitleştirme Sistemleri, bar Sy Trunking Platform Izgaraları Sistemleridir. GERSAN A.Ş. üretime başladığı günden bu yana işinde uzman teknik ve akademik AL VE ME AN RD personeliyle ürünlerin üretimlerinden kullanımına kadar olan aşamasında her türlü K ‹V O E teknik hizmet ve çözümleri müşterisine sunmaktadır. Bu anlamda GERSAN A.Ş. L N B L A E tam anlamıyla bir “AR-GE” dolayısıyla “Teknoloji” firması olup müşterilerine R K ‹ geleceğin ürünlerini sunar. Firmamız bünyesinde bulunan modern test laboratuarında, IEC/TS EN 61439/1 ve 2 standartlarında adı geçen; Sıcaklık artısının, Elektriksel karakteristiklerinin, Yapısal C a b s dayanımın, Ezilmeye karşı dayanımın, Olağandışı ısılara karşı izolasyon dayanımının, Company Profile le m M te Alev yayılımına karşı dayanıklılığın doğrulanması, Yangın bariyeri ve EMC testleri a ys nagem ent S hassas cihazlar ile yapılmaktadır.