Int. J. Appl. Math. Comput. Sci., 2020, Vol. 30, No. 3, 475–491 DOI: 10.34768/amcs-2020-0035 APPROXIMATE STATE–SPACE AND TRANSFER FUNCTION MODELS FOR 2×2 LINEAR HYPERBOLIC SYSTEMS WITH COLLOCATED BOUNDARY INPUTS a KRZYSZTOF BARTECKI aInstitute of Control Engineering Opole University of Technology ul. Prószkowska 76, 45-758 Opole, Poland e-mail:
[email protected] Two approximate representations are proposed for distributed parameter systems described by two linear hyperbolic PDEs with two time- and space-dependent state variables and two collocated boundary inputs. Using the method of lines with the backward difference scheme, the original PDEs are transformed into a set of ODEs and expressed in the form of a finite number of dynamical subsystems (sections). Each section of the approximation model is described by state-space equations with matrix-valued state, input and output operators, or, equivalently, by a rational transfer function matrix. The cascade interconnection of a number of sections results in the overall approximation model expressed in finite-dimensional state-space or rational transfer function domains, respectively. The discussion is illustrated with a practical example of a parallel-flow double-pipe heat exchanger. Its steady-state, frequency and impulse responses obtained from the original infinite-dimensional representation are compared with those resulting from its approximate models of different orders. The results show better approximation quality for the “crossover” input–output channels where the in-domain effects prevail as compared with the “straightforward” channels, where the time-delay phenomena are dominating. Keywords: distributed parameter system, hyperbolic equations, approximation model, state space, transfer function.