Some Properties and Reactions of Umbellulone from the Leaf Oil Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Working with Hazardous Chemicals
A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein. -
Drying Effects on Chemical Composition and Antioxidant Activity of Lippia Thymoides Essential Oil, a Natural Source of Thymol
molecules Article Drying Effects on Chemical Composition and Antioxidant Activity of Lippia thymoides Essential Oil, a Natural Source of Thymol Lidiane Diniz do Nascimento 1,2,* , Sebastião Gomes Silva 3 ,Márcia Moraes Cascaes 4, Kauê Santana da Costa 5,* , Pablo Luis Baia Figueiredo 6 , Cristiane Maria Leal Costa 7, Eloisa Helena de Aguiar Andrade 2,4 and Lênio José Guerreiro de Faria 1,7 1 Programa de Pós-Graduação em Engenharia de Recursos Naturais da Amazônia, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil; [email protected] 2 Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Pará, Brazil; [email protected] 3 Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil; [email protected] 4 Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil; [email protected] 5 Faculdade de Biotecnologia, Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Santarém 68035-110, Pará, Brazil 6 Departamento de Ciências Naturais, Universidade do Estado do Pará, Belém 66050-540, Pará, Brazil; pablo.fi[email protected] 7 Programa de Pós-Graduação em Engenharia Química, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil; [email protected] Citation: Nascimento, L.D.d.; Silva, * Correspondence: [email protected] (L.D.d.N.); [email protected] (K.S.d.C.); S.G.; Cascaes, M.M.; Costa, K.S.d.; Tel.: +55-91-3217-6086 (L.D.d.N.); +55-93-2101-6771 (K.S.d.C.) Figueiredo, P.L.B.; Costa, C.M.L.; Andrade, E.H.d.A.; de Faria, L.J.G. -
Retention Indices for Frequently Reported Compounds of Plant Essential Oils
Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5. -
Methylcyclopentanone Condensed with Methyl Vinyl Ketone to Give the Dione
In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institute shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted by the professor under whose direction it was written, or, in his absence, by the Dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential f inane ia]. gain. It is under stood that any copying from, or publication of, this dis sertation which involves potential financial gain will not be allowed without written permission. 3/17/65 PART I REACTIONS OF ENOLATES DERIVED FROM UNSYMMETRICAL CYCLIC KETONES PART n PHOTOCHEMICAL REARRANGEMENTS OF CROSS CONJUGATED CYCLOHEXADIENONES RELATED TO INDAN A THESIS Presented to The Faculty of the Graduate Division by William Joseph Powers, III In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry Georgia Institute of Technology May, 1968 PART I REACTIONS OF ENOLATES DERIVED FROM UNSYMMETRICAL CYCLIC KETONES PART II PHOTOCHEMICAL REARRANGEMENTS OF CROSS CONJUGATED CYCLOHEXADIENONES RELATED TO INDAN Approved: Chairman —T, approved by Cha&limn: "JY\ 0*^ 7y 1 ii ACKNOWLEDGMENTS The author is grateful to Professor Drury S. Caine, III for suggesting these problems and for his patience and guidance throughout the course of this research. The author also wishes to thank Professors John R. Dyer and Charles L. -
Menthol 1 Menthol
Menthol 1 Menthol Menthol Identifiers [1] CAS number 89-78-1 [2] ChemSpider 15803 [3] UNII YS08XHA860 RTECS number OT0350000, racemic SMILES InChI InChI key Properties Molecular formula C H O 10 20 Molar mass 156.27 g mol−1 Appearance White or colorless crystalline solid Density 0.890 g·cm−3, solid (racemic or (−)-isomer) Melting point 36–38 °C (311 K), racemic 42–45 °C (318 K), (−)-form (α) 35-33-31 °C, (−)-isomer Boiling point 212 °C (485 K) Solubility in water Slightly soluble, (−)-isomer Hazards R-phrases R37/38, R41 S-phrases S26, S36 Flash point 93 °C Menthol 2 Related compounds Related alcohols Cyclohexanol, Pulegol, Dihydrocarveol, Piperitol Related compounds Menthone, Menthene, Thymol, p-Cymene, Citronellal [4] (what is this?) (verify) Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) Infobox references Menthol is an organic compound made synthetically or obtained from peppermint or other mint oils. It is a waxy, crystalline substance, clear or white in color, which is solid at room temperature and melts slightly above. The main form of menthol occurring in nature is (−)-menthol, which is assigned the (1R,2S,5R) configuration. Menthol has local anesthetic and counterirritant qualities, and it is widely used to relieve minor throat irritation. Menthol also acts as a weak kappa Opioid receptor agonist. Structure Natural menthol exists as one pure stereoisomer, nearly always the (1R,2S,5R) form (bottom left corner of the diagram below). The other seven stereoisomers are: In the natural compound, the isopropyl group is in the trans orientation to both the methyl and hydroxyl groups. -
TRP Channel Transient Receptor Potential Channels
TRP Channel Transient receptor potential channels TRP Channel (Transient receptor potential channel) is a group of ion channels located mostly on the plasma membrane of numerous human and animal cell types. There are about 28 TRP channels that share some structural similarity to each other. These are grouped into two broad groups: Group 1 includes TRPC ("C" for canonical), TRPV ("V" for vanilloid), TRPM ("M" for melastatin), TRPN, and TRPA. In group 2, there are TRPP ("P" for polycystic) and TRPML ("ML" for mucolipin). Many of these channels mediate a variety of sensations like the sensations of pain, hotness, warmth or coldness, different kinds of tastes, pressure, and vision. TRP channels are relatively non-selectively permeable to cations, including sodium, calcium and magnesium. TRP channels are initially discovered in trp-mutant strain of the fruit fly Drosophila. Later, TRP channels are found in vertebrates where they are ubiquitously expressed in many cell types and tissues. TRP channels are important for human health as mutations in at least four TRP channels underlie disease. www.MedChemExpress.com 1 TRP Channel Antagonists, Inhibitors, Agonists, Activators & Modulators (-)-Menthol (E)-Cardamonin Cat. No.: HY-75161 ((E)-Cardamomin; (E)-Alpinetin chalcone) Cat. No.: HY-N1378 (-)-Menthol is a key component of peppermint oil (E)-Cardamonin ((E)-Cardamomin) is a novel that binds and activates transient receptor antagonist of hTRPA1 cation channel with an IC50 potential melastatin 8 (TRPM8), a of 454 nM. Ca2+-permeable nonselective cation channel, to 2+ increase [Ca ]i. Antitumor activity. Purity: ≥98.0% Purity: 99.81% Clinical Data: Launched Clinical Data: No Development Reported Size: 10 mM × 1 mL, 500 mg, 1 g Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg (Z)-Capsaicin 1,4-Cineole (Zucapsaicin; Civamide; cis-Capsaicin) Cat. -
Essential Oils of Lamiaceae Family Plants As Antifungals
biomolecules Review Essential Oils of Lamiaceae Family Plants as Antifungals Tomasz M. Karpi ´nski Department of Medical Microbiology, Pozna´nUniversity of Medical Sciences, Wieniawskiego 3, 61-712 Pozna´n,Poland; [email protected] or [email protected]; Tel.: +48-61-854-61-38 Received: 3 December 2019; Accepted: 6 January 2020; Published: 7 January 2020 Abstract: The incidence of fungal infections has been steadily increasing in recent years. Systemic mycoses are characterized by the highest mortality. At the same time, the frequency of infections caused by drug-resistant strains and new pathogens e.g., Candida auris increases. An alternative to medicines may be essential oils, which can have a broad antimicrobial spectrum. Rich in the essential oils are plants from the Lamiaceae family. In this review are presented antifungal activities of essential oils from 72 Lamiaceae plants. More than half of these have good activity (minimum inhibitory concentrations (MICs) < 1000 µg/mL) against fungi. The best activity (MICs < 100) have essential oils from some species of the genera Clinopodium, Lavandula, Mentha, Thymbra, and Thymus. In some cases were observed significant discrepancies between different studies. In the review are also shown the most important compounds of described essential oils. To the chemical components most commonly found as the main ingredients include β-caryophyllene (41 plants), linalool (27 plants), limonene (26), β-pinene (25), 1,8-cineole (22), carvacrol (21), α-pinene (21), p-cymene (20), γ-terpinene (20), and thymol (20). Keywords: Labiatae; fungi; Aspergillus; Cryptococcus; Penicillium; dermatophytes; β-caryophyllene; sesquiterpene; monoterpenes; minimal inhibitory concentration (MIC) 1. Introduction Fungal infections belong to the most often diseases of humans. -
Transient Receptor Potential Channels As Drug Targets: from the Science of Basic Research to the Art of Medicine
1521-0081/66/3/676–814$25.00 http://dx.doi.org/10.1124/pr.113.008268 PHARMACOLOGICAL REVIEWS Pharmacol Rev 66:676–814, July 2014 Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: DAVID R. SIBLEY Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine Bernd Nilius and Arpad Szallasi KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.) Abstract. ....................................................................................679 I. Transient Receptor Potential Channels: A Brief Introduction . ...............................679 A. Canonical Transient Receptor Potential Subfamily . .....................................682 B. Vanilloid Transient Receptor Potential Subfamily . .....................................686 C. Melastatin Transient Receptor Potential Subfamily . .....................................696 Downloaded from D. Ankyrin Transient Receptor Potential Subfamily .........................................700 E. Mucolipin Transient Receptor Potential Subfamily . .....................................702 F. Polycystic Transient Receptor Potential Subfamily . .....................................703 II. Transient Receptor Potential Channels: Hereditary Diseases (Transient Receptor Potential Channelopathies). ......................................................704 -
TRP Channels and Migraine: Recent Developments and New Therapeutic Opportunities
pharmaceuticals Review TRP Channels and Migraine: Recent Developments and New Therapeutic Opportunities Silvia Benemei 1 and Greg Dussor 2,* 1 Headache Centre, Careggi University Hospital, Viale Pieraccini 18, 50139 Florence, Italy; silvia.benemei@unifi.it 2 School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080, USA * Correspondence: [email protected]; Tel.: +1-972-883-2385 Received: 1 March 2019; Accepted: 4 April 2019; Published: 9 April 2019 Abstract: Migraine is the second-most disabling disease worldwide, and the second most common neurological disorder. Attacks can last many hours or days, and consist of multiple symptoms including headache, nausea, vomiting, hypersensitivity to stimuli such as light and sound, and in some cases, an aura is present. Mechanisms contributing to migraine are still poorly understood. However, transient receptor potential (TRP) channels have been repeatedly linked to the disorder, including TRPV1, TRPV4, TRPM8, and TRPA1, based on their activation by pathological stimuli related to attacks, or their modulation by drugs/natural products known to be efficacious for migraine. This review will provide a brief overview of migraine, including current therapeutics and the link to calcitonin gene-related peptide (CGRP), a neuropeptide strongly implicated in migraine pathophysiology. Discussion will then focus on recent developments in preclinical and clinical studies that implicate TRP channels in migraine pathophysiology or in the efficacy of therapeutics. Given the use of onabotulinum toxin A (BoNTA) to treat chronic migraine, and its poorly understood mechanism, this review will also cover possible contributions of TRP channels to BoNTA efficacy. -
Photoactivation of Olfactory Sensory Neurons Does Not Affect Action Potential Conduction in Individual Trigeminal Sensory Axons Innervating the Rodent Nasal Cavity
bioRxiv preprint doi: https://doi.org/10.1101/517391; this version posted January 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Photoactivation of olfactory sensory neurons does not affect action potential conduction in individual trigeminal sensory axons innervating the rodent nasal cavity Margot Maurer1, Nunzia Papotto2, Julika Sertel-Nakajima3, Markus Schueler3, Frank Möhrlen2, Karl Messlinger3, Roberto De Col3, Stephan Frings2, Richard W Carr1 1 Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University 2 Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany 3 Institute for Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany Short title: Olfactory-trigeminal interactions in the nose Keywords nose; respiratory epithelium; olfactory epithelium; ethmoid nerve; chemesthesis; unmyelinated polymodal afferent Corresponding author: Richard Carr Experimental Pain Research Medical Faculty Mannheim Heidelberg University Ludolf-Krehl-Str. 13-17 68167 Mannheim Germany bioRxiv preprint doi: https://doi.org/10.1101/517391; this version posted January 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Olfactory and trigeminal chemosensory systems reside in parallel within the mammalian nose. Psychophysical studies in people indicate that these two systems interact at a perceptual level. Trigeminal sensations of pungency mask odour perception, while olfactory stimuli can influence trigeminal signal processing tasks such as odour localization. -
Chemical Composition, Antimicrobial and Antifungal Activity of Lippia
Original Article Volume 20 2021 e210219 Chemical composition, antimicrobial and antifungal activity of Lippia Thymoide essential oil in oral pathogens Tabata Resque Beckmann Carvalho1 , Erich Brito Tanaka1, Amujacy Tavares Vilhena1, Paula Cristina 2 1 Department of periodontology, Rodrigues Frade , Ricardo Roberto de Souza School of Dentistry, University Center Fonseca3 , Tânia Maria de Souza Rodrigues1, of State of Pará, Belém, Pará, Brazil. Mileide da Paz Brito4 , Sebastião Gomes Silva5, 6 2 Tropical Medicine Nucleus, Federal Raul Nunes de Carvalho Junior , Mozaniel Santana University of Pará, Belém, Pará, Brazil. de Oliveira6 , Eloisa Helena de Aguiar Andrade7 , 8 3 Laboratory of Virology, Institute of Aldemir Branco Oliveira-Filho , Silvio Augusto Biological Sciences, Federal Fernandes de Menezes1,* University of Pará, Belém, Pará, Brazil. 4 Department of pharmaceutics, School of Pharmacy, University Center Aim: This study evaluated the chemical composition of Lippia of State of Pará, Belém, Pará, Brazil. thymoides (Lt) essential oil and its antimicrobial activity against 5 Program of Post-Graduation in fungal strains of Candida albicans (Ca) and Gram-negative Chemistry, Federal University of bacteria Prevotella intermedia (Pi) and Fusobacterium nucleatum Pará, Belém, Pará, Brazil. (Fn). Methods: Lt essential oil was obtained by hydrodistillation 6 Program of Post-Graduation in apparatus with a modified Clevenger extension. The chemical Food Science and Technology, Faculty of Food Engineering analysis was analyzed by gas phase chromatography and mass (LABEX/FEA), Federal University of spectrometry on Shimadzu QP 2010 plus. Sample sensitivity Pará, Belém, Pará, Brazil. evaluation was performed by ABHb-inoculum and culture plates 7 Adolpho Ducke Laboratory, Botany were developed with triphenyltetrazolium chloride, also Fn and Pi Coordination, Museu Paraense samples analysis were in anaerobic environment and Ca sample Emílio Goeldi, Belém, Pará, Brazil. -
Separation of Menthol from Peppermint Oil by Fractional Distillation
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-1948 Separation of menthol from peppermint oil by fractional distillation ... Hson Mou Chang Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Chang, Hson Mou, "Separation of menthol from peppermint oil by fractional distillation ..." (1948). Retrospective Theses and Dissertations. 18036. https://lib.dr.iastate.edu/rtd/18036 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. SEPARATION OF MENTHOL F'HOM PEPPERMINT OIL BY FRACTIONAL. DISTrL~~TION by HSON NOU CHANG A Thesis Bubm1 t·t~d to the Graduate Faeull';y in p'lrt1.nl Fulfillment ot The Requ~: rem~nt e ~ol" tne Degree of MASTf~ OF SCI}~CE MRjor Subject: ChemicRl Engineering Signatures have been redacted for privacy Iowa State College 1948 11 TABLE OF CONTENTS Page I. SUMMARy........................................ 1 II. INTRO:1UCTION ••••••••••••••••••••••••••••••••••• 2 A. Occurrence of Peppermint 011............. 2 B. Properties and Const1tuents of Pepperm1nt Oil...................................... 4 C. Trad1t1onal Method of Producing Menthol.. 6 D. Purpose of Study••••••••••••••••••••••••• 8 III. HEVI£W OF LITERATURE........................... 9 A. Physical Constants of Menthol and Menthane................................. 9 B. Chemical properties of Menthol and Menthane ••••••••••••••••••••••••••••••••• 10 1. Menthol ••••••••••••••••••••••••••••• 10 n. Ester formation •••••••••••••••• 11 b. Ox1dat1on •••••••••••••••••••••• 11 c. Reduction •••••••••••••••••••••• 11 2.