The Binary Search Tree
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Application of TRIE Data Structure and Corresponding Associative Algorithms for Process Optimization in GRID Environment
Application of TRIE data structure and corresponding associative algorithms for process optimization in GRID environment V. V. Kashanskya, I. L. Kaftannikovb South Ural State University (National Research University), 76, Lenin prospekt, Chelyabinsk, 454080, Russia E-mail: a [email protected], b [email protected] Growing interest around different BOINC powered projects made volunteer GRID model widely used last years, arranging lots of computational resources in different environments. There are many revealed problems of Big Data and horizontally scalable multiuser systems. This paper provides an analysis of TRIE data structure and possibilities of its application in contemporary volunteer GRID networks, including routing (L3 OSI) and spe- cialized key-value storage engine (L7 OSI). The main goal is to show how TRIE mechanisms can influence de- livery process of the corresponding GRID environment resources and services at different layers of networking abstraction. The relevance of the optimization topic is ensured by the fact that with increasing data flow intensi- ty, the latency of the various linear algorithm based subsystems as well increases. This leads to the general ef- fects, such as unacceptably high transmission time and processing instability. Logically paper can be divided into three parts with summary. The first part provides definition of TRIE and asymptotic estimates of corresponding algorithms (searching, deletion, insertion). The second part is devoted to the problem of routing time reduction by applying TRIE data structure. In particular, we analyze Cisco IOS switching services based on Bitwise TRIE and 256 way TRIE data structures. The third part contains general BOINC architecture review and recommenda- tions for highly-loaded projects. -
CS 106X, Lecture 21 Tries; Graphs
CS 106X, Lecture 21 Tries; Graphs reading: Programming Abstractions in C++, Chapter 18 This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved. Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, Marty Stepp, Ashley Taylor and others. Plan For Today • Tries • Announcements • Graphs • Implementing a Graph • Representing Data with Graphs 2 Plan For Today • Tries • Announcements • Graphs • Implementing a Graph • Representing Data with Graphs 3 The Lexicon • Lexicons are good for storing words – contains – containsPrefix – add 4 The Lexicon root the art we all arts you artsy 5 The Lexicon root the contains? art we containsPrefix? add? all arts you artsy 6 The Lexicon S T A R T L I N G S T A R T 7 The Lexicon • We want to model a set of words as a tree of some kind • The tree should be sorted in some way for efficient lookup • The tree should take advantage of words containing each other to save space and time 8 Tries trie ("try"): A tree structure optimized for "prefix" searches struct TrieNode { bool isWord; TrieNode* children[26]; // depends on the alphabet }; 9 Tries isWord: false a b c d e … “” isWord: true a b c d e … “a” isWord: false a b c d e … “ac” isWord: true a b c d e … “ace” 10 Reading Words Yellow = word in the trie A E H S / A E H S A E H S A E H S / / / / / / / / A E H S A E H S A E H S A E H S / / / / / / / / / / / / A E H S A E H S A E H S / / / / / / / -
CSE 326: Data Structures Binary Search Trees
Announcements (1/23/09) CSE 326: Data Structures • HW #2 due now • HW #3 out today, due at beginning of class next Binary Search Trees Friday. • Project 2A due next Wed. night. Steve Seitz Winter 2009 • Read Chapter 4 1 2 ADTs Seen So Far The Dictionary ADT • seitz •Data: Steve • Stack •Priority Queue Seitz –a set of insert(seitz, ….) CSE 592 –Push –Insert (key, value) pairs –Pop – DeleteMin •ericm6 Eric • Operations: McCambridge – Insert (key, value) CSE 218 •Queue find(ericm6) – Find (key) • ericm6 • soyoung – Enqueue Then there is decreaseKey… Eric, McCambridge,… – Remove (key) Soyoung Shin – Dequeue CSE 002 •… The Dictionary ADT is also 3 called the “Map ADT” 4 A Modest Few Uses Implementations insert find delete •Sets • Unsorted Linked-list • Dictionaries • Networks : Router tables • Operating systems : Page tables • Unsorted array • Compilers : Symbol tables • Sorted array Probably the most widely used ADT! 5 6 Binary Trees Binary Tree: Representation • Binary tree is A – a root left right – left subtree (maybe empty) A pointerpointer A – right subtree (maybe empty) B C B C B C • Representation: left right left right pointerpointer pointerpointer D E F D E F Data left right G H D E F pointer pointer left right left right left right pointerpointer pointerpointer pointerpointer I J 7 8 Tree Traversals Inorder Traversal void traverse(BNode t){ A traversal is an order for if (t != NULL) visiting all the nodes of a tree + traverse (t.left); process t.element; Three types: * 5 traverse (t.right); • Pre-order: Root, left subtree, right subtree 2 4 } • In-order: Left subtree, root, right subtree } (an expression tree) • Post-order: Left subtree, right subtree, root 9 10 Binary Tree: Special Cases Binary Tree: Some Numbers… Recall: height of a tree = longest path from root to leaf. -
Introduction to Linked List: Review
Introduction to Linked List: Review Source: http://www.geeksforgeeks.org/data-structures/linked-list/ Linked List • Fundamental data structures in C • Like arrays, linked list is a linear data structure • Unlike arrays, linked list elements are not stored at contiguous location, the elements are linked using pointers Array vs Linked List Why Linked List-1 • Advantages over arrays • Dynamic size • Ease of insertion or deletion • Inserting a new element in an array of elements is expensive, because room has to be created for the new elements and to create room existing elements have to be shifted For example, in a system if we maintain a sorted list of IDs in an array id[]. id[] = [1000, 1010, 1050, 2000, 2040] If we want to insert a new ID 1005, then to maintain the sorted order, we have to move all the elements after 1000 • Deletion is also expensive with arrays until unless some special techniques are used. For example, to delete 1010 in id[], everything after 1010 has to be moved Why Linked List-2 • Drawbacks of Linked List • Random access is not allowed. • Need to access elements sequentially starting from the first node. So we cannot do binary search with linked lists • Extra memory space for a pointer is required with each element of the list Representation in C • A linked list is represented by a pointer to the first node of the linked list • The first node is called head • If the linked list is empty, then the value of head is null • Each node in a list consists of at least two parts 1. -
Assignment 3: Kdtree ______Due June 4, 11:59 PM
CS106L Handout #04 Spring 2014 May 15, 2014 Assignment 3: KDTree _________________________________________________________________________________________________________ Due June 4, 11:59 PM Over the past seven weeks, we've explored a wide array of STL container classes. You've seen the linear vector and deque, along with the associative map and set. One property common to all these containers is that they are exact. An element is either in a set or it isn't. A value either ap- pears at a particular position in a vector or it does not. For most applications, this is exactly what we want. However, in some cases we may be interested not in the question “is X in this container,” but rather “what value in the container is X most similar to?” Queries of this sort often arise in data mining, machine learning, and computational geometry. In this assignment, you will implement a special data structure called a kd-tree (short for “k-dimensional tree”) that efficiently supports this operation. At a high level, a kd-tree is a generalization of a binary search tree that stores points in k-dimen- sional space. That is, you could use a kd-tree to store a collection of points in the Cartesian plane, in three-dimensional space, etc. You could also use a kd-tree to store biometric data, for example, by representing the data as an ordered tuple, perhaps (height, weight, blood pressure, cholesterol). However, a kd-tree cannot be used to store collections of other data types, such as strings. Also note that while it's possible to build a kd-tree to hold data of any dimension, all of the data stored in a kd-tree must have the same dimension. -
University of Cape Town Declaration
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Automated Gateware Discovery Using Open Firmware Shanly Rajan Supervisor: Prof. M.R. Inggs Co-supervisor: Dr M. Welz University of Cape Town Declaration I understand the meaning of plagiarism and declare that all work in the dissertation, save for that which is properly acknowledged, is my own. It is being submitted for the degree of Master of Science in Engineering in the University of Cape Town. It has not been submitted before for any degree or examination in any other university. Signature of Author . Cape Town South Africa May 12, 2013 University of Cape Town i Abstract This dissertation describes the design and implementation of a mechanism that automates gateware1 device detection for reconfigurable hardware. The research facilitates the pro- cess of identifying and operating on gateware images by extending the existing infrastruc- ture of probing devices in traditional software by using the chosen technology. An automated gateware detection mechanism was devised in an effort to build a software system with the goal to improve performance and reduce software development time spent on operating gateware pieces by reusing existing device drivers in the framework of the chosen technology. This dissertation first investigates the system design to see how each of the user specifica- tions set for the KAT (Karoo Array Telescope) project in [28] could be achieved in terms of design decisions, toolchain selection and software modifications. -
Binary Search Tree
ADT Binary Search Tree! Ellen Walker! CPSC 201 Data Structures! Hiram College! Binary Search Tree! •" Value-based storage of information! –" Data is stored in order! –" Data can be retrieved by value efficiently! •" Is a binary tree! –" Everything in left subtree is < root! –" Everything in right subtree is >root! –" Both left and right subtrees are also BST#s! Operations on BST! •" Some can be inherited from binary tree! –" Constructor (for empty tree)! –" Inorder, Preorder, and Postorder traversal! •" Some must be defined ! –" Insert item! –" Delete item! –" Retrieve item! The Node<E> Class! •" Just as for a linked list, a node consists of a data part and links to successor nodes! •" The data part is a reference to type E! •" A binary tree node must have links to both its left and right subtrees! The BinaryTree<E> Class! The BinaryTree<E> Class (continued)! Overview of a Binary Search Tree! •" Binary search tree definition! –" A set of nodes T is a binary search tree if either of the following is true! •" T is empty! •" Its root has two subtrees such that each is a binary search tree and the value in the root is greater than all values of the left subtree but less than all values in the right subtree! Overview of a Binary Search Tree (continued)! Searching a Binary Tree! Class TreeSet and Interface Search Tree! BinarySearchTree Class! BST Algorithms! •" Search! •" Insert! •" Delete! •" Print values in order! –" We already know this, it#s inorder traversal! –" That#s why it#s called “in order”! Searching the Binary Tree! •" If the tree is -
Linux Kernel and Driver Development Training Slides
Linux Kernel and Driver Development Training Linux Kernel and Driver Development Training © Copyright 2004-2021, Bootlin. Creative Commons BY-SA 3.0 license. Latest update: October 9, 2021. Document updates and sources: https://bootlin.com/doc/training/linux-kernel Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering Send them to [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/470 Rights to copy © Copyright 2004-2021, Bootlin License: Creative Commons Attribution - Share Alike 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode You are free: I to copy, distribute, display, and perform the work I to make derivative works I to make commercial use of the work Under the following conditions: I Attribution. You must give the original author credit. I Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. I For any reuse or distribution, you must make clear to others the license terms of this work. I Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. Document sources: https://github.com/bootlin/training-materials/ - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/470 Hyperlinks in the document There are many hyperlinks in the document I Regular hyperlinks: https://kernel.org/ I Kernel documentation links: dev-tools/kasan I Links to kernel source files and directories: drivers/input/ include/linux/fb.h I Links to the declarations, definitions and instances of kernel symbols (functions, types, data, structures): platform_get_irq() GFP_KERNEL struct file_operations - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/470 Company at a glance I Engineering company created in 2004, named ”Free Electrons” until Feb. -
Search Trees for Strings a Balanced Binary Search Tree Is a Powerful Data Structure That Stores a Set of Objects and Supports Many Operations Including
Search Trees for Strings A balanced binary search tree is a powerful data structure that stores a set of objects and supports many operations including: Insert and Delete. Lookup: Find if a given object is in the set, and if it is, possibly return some data associated with the object. Range query: Find all objects in a given range. The time complexity of the operations for a set of size n is O(log n) (plus the size of the result) assuming constant time comparisons. There are also alternative data structures, particularly if we do not need to support all operations: • A hash table supports operations in constant time but does not support range queries. • An ordered array is simpler, faster and more space efficient in practice, but does not support insertions and deletions. A data structure is called dynamic if it supports insertions and deletions and static if not. 107 When the objects are strings, operations slow down: • Comparison are slower. For example, the average case time complexity is O(log n logσ n) for operations in a binary search tree storing a random set of strings. • Computing a hash function is slower too. For a string set R, there are also new types of queries: Lcp query: What is the length of the longest prefix of the query string S that is also a prefix of some string in R. Prefix query: Find all strings in R that have S as a prefix. The prefix query is a special type of range query. 108 Trie A trie is a rooted tree with the following properties: • Edges are labelled with symbols from an alphabet Σ. -
Implementing the Map ADT Outline
Implementing the Map ADT Outline ´ The Map ADT ´ Implementation with Java Generics ´ A Hash Function ´ translation of a string key into an integer ´ Consider a few strategies for implementing a hash table ´ linear probing ´ quadratic probing ´ separate chaining hashing ´ OrderedMap using a binary search tree The Map ADT ´A Map models a searchable collection of key-value mappings ´A key is said to be “mapped” to a value ´Also known as: dictionary, associative array ´Main operations: insert, find, and delete Applications ´ Store large collections with fast operations ´ For a long time, Java only had Vector (think ArrayList), Stack, and Hashmap (now there are about 67) ´ Support certain algorithms ´ for example, probabilistic text generation in 127B ´ Store certain associations in meaningful ways ´ For example, to store connected rooms in Hunt the Wumpus in 335 The Map ADT ´A value is "mapped" to a unique key ´Need a key and a value to insert new mappings ´Only need the key to find mappings ´Only need the key to remove mappings 5 Key and Value ´With Java generics, you need to specify ´ the type of key ´ the type of value ´Here the key type is String and the value type is BankAccount Map<String, BankAccount> accounts = new HashMap<String, BankAccount>(); 6 put(key, value) get(key) ´Add new mappings (a key mapped to a value): Map<String, BankAccount> accounts = new TreeMap<String, BankAccount>(); accounts.put("M",); accounts.put("G", new BankAcnew BankAccount("Michel", 111.11)count("Georgie", 222.22)); accounts.put("R", new BankAccount("Daniel", -
Algorithms & Data Structures: Questions and Answers: May 2006
Algorithms & Data Structures: Questions and Answers: May 2006 1. (a) Explain how to merge two sorted arrays a1 and a2 into a third array a3, using diagrams to illustrate your answer. What is the time complexity of the array merge algorithm? (Note that you are not asked to write down the array merge algorithm itself.) [Notes] First compare the leftmost elements in a1 and a2, and copy the lesser element into a3. Repeat, ignoring already-copied elements, until all elements in either a1 or a2 have been copied. Finally, copy all remaining elements from either a1 or a2 into a3. Loop invariant: left1 … i–1 i … right1 a1 already copied still to be copied left2 … j–1 j … right2 a2 left left+1 … k–1 k … right–1 right a3 already copied unoccupied Time complexity is O(n), in terms of copies or comparisons, where n is the total length of a1 and a2. (6) (b) Write down the array merge-sort algorithm. Use diagrams to show how this algorithm works. What is its time complexity? [Notes] To sort a[left…right]: 1. If left < right: 1.1. Let mid be an integer about midway between left and right. 1.2. Sort a[left…mid]. 1.3. Sort a[mid+1…right]. 1.4. Merge a[left…mid] and a[mid+1…right] into an auxiliary array b. 1.5. Copy b into a[left…right]. 2. Terminate. Invariants: left mid right After step 1.1: a unsorted After step 1.2: a sorted unsorted After step 1.3: a sorted sorted After step 1.5: a sorted Time complexity is O(n log n), in terms of comparisons. -
Trees, Binary Search Trees, Heaps & Applications Dr. Chris Bourke
Trees Trees, Binary Search Trees, Heaps & Applications Dr. Chris Bourke Department of Computer Science & Engineering University of Nebraska|Lincoln Lincoln, NE 68588, USA [email protected] http://cse.unl.edu/~cbourke 2015/01/31 21:05:31 Abstract These are lecture notes used in CSCE 156 (Computer Science II), CSCE 235 (Dis- crete Structures) and CSCE 310 (Data Structures & Algorithms) at the University of Nebraska|Lincoln. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License 1 Contents I Trees4 1 Introduction4 2 Definitions & Terminology5 3 Tree Traversal7 3.1 Preorder Traversal................................7 3.2 Inorder Traversal.................................7 3.3 Postorder Traversal................................7 3.4 Breadth-First Search Traversal..........................8 3.5 Implementations & Data Structures.......................8 3.5.1 Preorder Implementations........................8 3.5.2 Inorder Implementation.........................9 3.5.3 Postorder Implementation........................ 10 3.5.4 BFS Implementation........................... 12 3.5.5 Tree Walk Implementations....................... 12 3.6 Operations..................................... 12 4 Binary Search Trees 14 4.1 Basic Operations................................. 15 5 Balanced Binary Search Trees 17 5.1 2-3 Trees...................................... 17 5.2 AVL Trees..................................... 17 5.3 Red-Black Trees.................................. 19 6 Optimal Binary Search Trees 19 7 Heaps 19