Download Original 4.86 MB

Total Page:16

File Type:pdf, Size:1020Kb

Download Original 4.86 MB Ruck 1 PROPERTIES AND MECHANISMS OF TRANSPORT OF COLLUVIAL SEDIMENT IN RELICT LOBATE LANDFORMS ON HILLSLOPES SOUTH OF THE LAST GLACIAL MAXIMUM ICE MARGIN, PENNSYLVANIA, AND POSSIBLE ASSOCIATIONS WITH LATE PLEISTOCENE PERMAFROST John Gregory Ruck, ‘20 Advisor: Dr. Dorothy J. Merritts Committee: Dr. Robert Walter, Dr. Timothy Bechtel, Dr. Zeshan Ismat ENE 490 May 2020 An honors thesis submitted to the Department of Earth and Environment at Franklin and Marshall College in conformity with necessary requirements Ruck 2 Table of Contents COVID-19 Impact …………………………………………………………….…...……………. 4 Abstract ………………………………………………………………………………………….. 5 Acknowledgements ……………………………………………………………………………… 6 Introduction …………………………………………………………………………………….... 7 Background ………………..………………..…………………………………………………… 9 Study Area ……………………………………………...……………………………………… 21 Methods ………………………………………………………………………………………… 26 Topographic Analysis and Field Area Surveying …………………………………….... 28 Sample Collection …..…………..……………………………………………………… 29 Grain Size and Angularity ……………...……………………………………………… 30 Drone Photogrammetry ………………………………………………………………… 31 Cosmogenic Laboratory Sample Preparation ………………………………………….. 32 Cosmogenic Nuclide Sample Analyses ………………………………………...……… 33 GIS Grain Size Distribution Analysis: Point Counts ……………………..……………. 33 GIS for Grain Size Distribution Analysis: Grain Covers ….....……………..………….. 34 Results ……………………………………………………………………….…………………. 35 Grain Size and Angularity Analysis for Samples from ATT Road: Site 1………..……. 35 Using GIS for Grain Size Distribution Analysis-Point Counts ………………..………. 38 ATT Road: Site 1 ………………………………………………………………. 38 ATT Road: Site 3 ………………………………………………………………. 41 Using GIS for Grain Cover Distributions ……………...……………………….....…… 43 Ruck 3 ATT Road: Site 1 ………………………………………………………….…… 43 ATT Road: Site 3 ………………………………………………………………. 45 Cosmogenic Isotope Analysis ………………………………………………………….. 49 Discussion ………………………………………………………………………………...……. 51 Conclusion …………………………………………………………………………...………… 62 References …………………………………………………………………………………….... 64 Ruck 4 COVID-19 Impact As described in this thesis, the majority of time for this one-year independent study was used to acquire data from controlled experimentation and modelling of gelifluction processes occurred in a laboratory on Franklin and Marshall College’s campus in 2019-2020. As COVID-19 spread globally in late 2019 to early 2020, especially throughout the United States, the administration of Franklin and Marshall College and the government of the State of Pennsylvania issued restrictions to student access of academic buildings and laboratories on campus. Due to these stringent limitations, the scope of my thesis, originally focused on modelling gelifluction through a series of freeze-thaw cycles in a freezer, was changed approximately two months before the end of the Spring semester. I adjusted the project goals to focus on mapping grain size distributions of outcrops of periglacial sediment at two field sites, and evaluating the sedimentary fabrics and spatial relationships of clasts in these outcrops in order to evaluate the processes that formed the deposits. Ruck 5 Abstract Relict lobate landforms and benches of poorly sorted colluvium are ubiquitous throughout unglaciated central and southern Pennsylvanian, yet the timing and processes associated with their formation are not entirely understood. Similar features known as gelifluction lobes are common in modern cold regions with permafrost, and form during permafrost thaw as a result of slow downslope movement of water-saturated soil or colluvium above a seasonally or perennially frozen substrate. Relict lobes preserved south of the Last Glacial Maximum (LGM) ice margin in Pennsylvania might be indicators of past permafrost conditions. This study characterizes colluvial sediment within relict periglacial lobes in Pennsylvania, using cosmogenic nuclides for age control and both sieving and Geographic Information Systems (ArcGIS) for grain size analysis. The primary objectives are to identify sediment transport mechanisms that were active on hillslopes during the LGM and Pleistocene-Holocene transition (PHT), and to determine if they might have been associated with permafrost conditions. The sedimentary fabrics of colluvium within relict periglacial lobes at a study site 16 km south of the LGM ice margin in eastern Pennsylvania change from clast-supported to matrix-supported in a downslope direction, with increasing distance from the probable bedrock source area of boulders within the sediment. Maps of grain (i.e., clast) cover from drone photogrammetry indicate that colluvium becomes finer-grained and more stratified 10 downslope. In situ cosmogenic Be​ concentration data for multiple samples from depths of ~1 ​ to 5.4 m near the terminus of one relict lobe are consistent with near-surface exposure during the last glacial cycle. They are also consistent with rapid erosion and deposition, and with minimal reworking of sediment since it was deposited. It is concluded that the relict, lobate features Ruck 6 studied here are likely gelifluction lobes that were active during the LGM and possibly the PHT, and were produced by freezing and thawing associated with regional permafrost. Acknowledgements This research was performed as part of a regional, multi-year effort by Dr. Dorothy Merritts, numerous Franklin and Marshall College students, and other collaborators, to evaluate the impact of cold-climate conditions, particularly those associated with permafrost, on landscapes in the mid-Atlantic US. This work is the first of that regional effort to apply cosmogenic nuclide analysis in evaluating the age of periglacial sediment. Cosmogenic nuclide analysis constrains the near surface exposure histories of rocks and sediments based on the accumulation of cosmogenic nuclides produced by cosmic ray bombardment in the uppermost few meters of Earth’s surface (Lal, 1991). The director of the NSF-funded University of Vermont (UVM) Community Cosmogenic Facility (CCF), Dr. Paul Bierman, and facility manager Dr. Lee Corbett, collaborated on this aspect of the work and assisted first in the sampling protocol, and then by guiding me and another student from Franklin and Marshall College, Nic Hertzler, to extract silica and cosmogenic nuclide aliquots at the NSF/UVM Facility. Dr. Merritts’ unparalleled guidance and support throughout the course of this study is greatly appreciated, and I am truly privileged to have experienced her novel and innovative perspectives. Dr. Robert Walter’s expertise in radionuclide geochemistry also was helpful for this part of the research. The guidance and input provided by Dr. Douglas Jerolmack (University of Pennsylvania), Dr. Frank Pazzaglia (Lehigh University), Dr. Jill Marshall (University of Arkansas), and Joanmarie Del Vecchio (graduate student, Pennsylvania State University) on Ruck 7 periglacial landforms, gelifluction mechanics, and mass movement on hillslopes was incredibly valued and appreciated. Julia Carr’s (Pennsylvania State University) methods of using ArcGIS for grain size data collection have been integral to the success of this study. The editing expertise and guidance of Jim Gerhart (USGS, retired) have been influential in writing and editing this thesis. I am grateful to Mr. Ron Gilbert for his permission to work on land that he owns along the newly excavated road built for an ATT cell tower on Chestnut Ridge; his kindness is greatly appreciated. Craig Robertson’s and Jane Woodward’s generosity and donation to the Moss Ritter fund to support field work and cosmogenic analysis was essential, and without it this research could not have happened. I would furthermore like to thank all of those who have donated and supported the Hackman Fund at Franklin and Marshall College, as well as Dr. Robert Walter, Dr. Timothy Bechtel, and Dr. Zeshan Ismat (all Franklin and Marshall College) for agreeing to be on my thesis committee. Without their benevolence and passion for the geosciences, I would have not been provided the opportunity to perform research as a student-scholar with leading researchers in periglacial processes, for which I am incredibly grateful. Introduction Periglacial processes and gelifluction, the slow downslope movement of water-saturated soil or colluvium above a seasonally or perennially frozen substrate, are of critical importance in understanding the response of landscapes in cold regions to modern global warming. Periglacial processes occur where the ground is frozen seasonally or year-round, but not covered by glacial ice. Distinctive lobate and terrace-like landforms produced on hillslopes by gelifluction, called Ruck 8 gelifluction lobes, are common in both formerly and modern periglacial landscapes (Fig. 1; Benedict, 1976; Johnsson et al, 2012). Average modern global temperatures are increasing at an unprecedented rate, with greatest rates of increase at higher altitudes and latitudes where glacial and periglacial processes and landscapes are predominant. As frozen ground thaws, saturated soil and boulders on hillslopes can become unstable, moving downslope via different types of mass movement processes and subsequently altering the morphology of landscapes (Gooseff et al, 2009). These areas can pose significant risks to inhabitants, as land sinks, cracks, and drains, becoming a weak, loosely consolidated mush. Thawing of frozen ground in Arctic coastal villages, for example, has eroded shorelines and streambanks, undermining schools, homes, and pipelines necessary for water and waste transport.
Recommended publications
  • Surficial Geology Investigations in Wellesley Basin and Nisling Range, Southwest Yukon J.D
    Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon J.D. Bond, P.S. Lipovsky and P. von Gaza Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon Jeffrey D. Bond1 and Panya S. Lipovsky2 Yukon Geological Survey Peter von Gaza3 Geomatics Yukon Bond, J.D., Lipovsky, P.S. and von Gaza, P., 2008. Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon. In: Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P. Hill and L.H. Weston (eds.), Yukon Geological Survey, p. 125-138. ABSTRACT Results of surficial geology investigations in Wellesley basin and the Nisling Range can be summarized into four main highlights, which have implications for exploration, development and infrastructure in the region: 1) in contrast to previous glacial-limit mapping for the St. Elias Mountains lobe, no evidence for the late Pliocene/early Pleistocene pre-Reid glacial limits was found in the study area; 2) placer potential was identified along the Reid glacial limit where a significant drainage diversion occurred for Grayling Creek; 3) widespread permafrost was encountered in the study area including near-continuous veneers of sheet-wash; and 4) a monitoring program was initiated at a recently active landslide which has potential to develop into a catastrophic failure that could damage the White River bridge on the Alaska Highway. RÉSUMÉ Les résultats d’études géologiques des formations superficielles dans le bassin de Wellesley et la chaîne Nisling peuvent être résumés en quatre principaux faits saillants qui ont des répercussions pour l’exploration, la mise en valeur et l’infrastructure de la région.
    [Show full text]
  • Oliva Vieira 2017.Pdf
    Catena 149 (2017) 637–647 Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena Soil temperatures in an Atlantic high mountain environment: The Forcadona buried ice patch (Picos de Europa, NW Spain) Jesús Ruiz-Fernández a,⁎,MarcOlivab, Filip Hrbáček c, Gonçalo Vieira b, Cristina García-Hernández a a Department of Geography, University of Oviedo, Oviedo, Spain b Centre for Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, Lisbon, Portugal c Department of Geography, Masaryk University, Brno, Czech Republic article info abstract Article history: The present study focuses on the analysis of the ground and near-rock surface air thermal conditions at the Received 15 February 2016 Forcadona glacial cirque (2227 m a.s.l.) located in the Western Massif of the Picos de Europa, Spain. Temperatures Received in revised form 13 June 2016 have been monitored in three distinct geomorphological and topographical sites in the Forcadona area over the Accepted 27 June 2016 period 2006–11. The Forcadona buried ice patch is the remnant of a Little Ice Age glacier located in the bottom of a Available online 1 August 2016 glacial cirque. Its location in a deep cirque determines abundant snow accumulation, with snow cover between 8 and 12 months. The presence of snow favours stable soil temperatures and geomorphic stability. Similarly to Keywords: fi Soil temperatures other Cantabrian Mountains, the annual thermal regime of the soil is de ned by two seasonal periods (continu- Cirque wall temperatures ous thaw with daily oscillations and isothermal regime), as well as two short transition periods.
    [Show full text]
  • Quaternary Deposits and Landscape Evolution of the Central Blue Ridge of Virginia
    Geomorphology 56 (2003) 139–154 www.elsevier.com/locate/geomorph Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia L. Scott Eatona,*, Benjamin A. Morganb, R. Craig Kochelc, Alan D. Howardd a Department of Geology and Environmental Science, James Madison University, Harrisonburg, VA 22807, USA b U.S. Geological Survey, Reston, VA 20192, USA c Department of Geology, Bucknell University, Lewisburg, PA 17837, USA d Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA Received 30 August 2002; received in revised form 15 December 2002; accepted 15 January 2003 Abstract A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometrically dated surficial deposits in the Rapidan basin gives new insights into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains. The oldest depositional landforms in the study area are fluvial terraces. Their deposits have weathering characteristics similar to both early Pleistocene and late Tertiary terrace surfaces located near the Fall Zone of Virginia. Terraces of similar ages are also present in nearby basins and suggest regional incision of streams in the area since early Pleistocene–late Tertiary time. The oldest debris-flow deposits in the study area are much older than Wisconsinan glaciation as indicated by 2.5YR colors, thick argillic horizons, and fully disintegrated granitic cobbles.
    [Show full text]
  • Periglacial Processes, Features & Landscape Development 3.1.4.3/4
    Periglacial processes, features & landscape development 3.1.4.3/4 Glacial Systems and landscapes What you need to know Where periglacial landscapes are found and what their key characteristics are The range of processes operating in a periglacial landscape How a range of periglacial landforms develop and what their characteristics are The relationship between process, time, landforms and landscapes in periglacial settings Introduction A periglacial environment used to refer to places which were near to or at the edge of ice sheets and glaciers. However, this has now been changed and refers to areas with permafrost that also experience a seasonal change in temperature, occasionally rising above 0 degrees Celsius. But they are characterised by permanently low temperatures. Location of periglacial areas Due to periglacial environments now referring to places with permafrost as well as edges of glaciers, this can account for one third of the Earth’s surface. Far northern and southern hemisphere regions are classed as containing periglacial areas, particularly in the countries of Canada, USA (Alaska) and Russia. Permafrost is where the soil, rock and moisture content below the surface remains permanently frozen throughout the entire year. It can be subdivided into the following: • Continuous (unbroken stretches of permafrost) • extensive discontinuous (predominantly permafrost with localised melts) • sporadic discontinuous (largely thawed ground with permafrost zones) • isolated (discrete pockets of permafrost) • subsea (permafrost occupying sea bed) Whilst permafrost is not needed in the development of all periglacial landforms, most periglacial regions have permafrost beneath them and it can influence the processes that create the landforms. Many locations within SAMPLEextensive discontinuous and sporadic discontinuous permafrost will thaw in the summer months.
    [Show full text]
  • Structures Caused by Repeated Freezing and Thawing in Various Loamy Sediments: a Comparison of Active, Fossil and Experimental Data
    EARTH SURFACE PROCESSES AND LANDFORMS, VOL. 9,553-565 (1984) STRUCTURES CAUSED BY REPEATED FREEZING AND THAWING IN VARIOUS LOAMY SEDIMENTS: A COMPARISON OF ACTIVE, FOSSIL AND EXPERIMENTAL DATA BRIGITTE VAN VLIET-LANOE AND JEAN-PIERRE COWARD Centre de Giomorphologie du C.N.R.S., Rue des Tilieuis, 14000 Caen, France AND ALBERT PISSART Laboratoire de Giographie Physique et Giofogie du Quarernaire. Universiti de Li2ge, 7 place du XX Aolit. 4000 Liege, Belgique ABSTRACT In this paper, the authors present the results of both macroscopic and microscopic investigations on structure development created by repeated ice lensing in various loamy experiments. Experimental data are compared with observations performed on active forms in High Arctic and Alpine Mountain environments. Those observations are also compared with phenomena observed in fossil periglacial formations of Western Europe. Platy and short prismatic structure formation is bonded to the hydraulic and thermal conditions during ice segr%ation. When a long series of alternating freezing and thawing affects platy structures, the fabric evolves, also being influenced by slope and drainage conditions: cryoturbations, frostcreep, and gelifluction can appear. They are characterized by specific microfabrics which are better developed with an increasing number of cycles: this is clear in experiments where hydraulic and thermal parameters are better controlled. Vesicles are also a prominent characteristic of the surface horizon in experiments and arctic soils. The genesis of vesicles is discussed on the basis of new observations and is related to the mechanical collapse of frost-created aggregates under the mechanical work of soil air escape during soil saturation by water at thaw.
    [Show full text]
  • The Periglaciation of Great Britain Colin K
    Cambridge University Press 978-0-521-31016-1 - The Periglaciation of Great Britain Colin K. Ballantyne and Charles Harris Index More information Index Abbot's Salford, Worcestershire, 53 aufeis, see also icings, 70 bimodal flows, see ground-ice slumps Aberayron, Dyfed, Wales, 104 Australia, 179, 261 Binbrook, Lincolnshire, 157 Aberystwyth, Dyfed, Wales, 128, 206, 207 Austrian Alps, 225 Bingham flow, 231 Acheulian hand axes, see hand axes avalanche activity, 219-22; 226-30, 236, 244, Birling Gap, Sussex, 102, 108 Achnasheen, NW Scotland, 233 295, 297 Black Mountain, Dyfed, 231, 234 active layer, see also seasonal thawing, 5, 27, avalanche boulder tongues, 220, 226, 295 Black Rock, Brighton, Sussex, 125, 126 35,41,42,114-18, 140,175 avalanche cones, 220, 226 Black Top Creek, EUesmere Island, Canada, 144 detachment slides, 115, 118, 276 avalanche impact pits, 226 Black Tors, Dartmoor, 178 glides, 118 avalanche landforms, 7, 8 blockfields, 8, 164-9, 171, 173-6, 180, 183, processes, 85-102 avalanche tongues, 227, 228 185,187,188,193,194 thickness, 107-9,281-2 avalanche-modified talus, 226-30 allochthonous, 173 Adwick-Le-Street, Yorkshire, 45, 53 Avon, 132, 134, 138, 139 autochthonous, 174, 182 aeolian, processes, see also wind action, 141, Avon Valley, 138 blockslopes, 173-6, 187, 190 155-60,161,255-67,296 Axe Valley, Devon, 103, 147 blockstreams, 173 aeolian sediments, see also loess and Bodmin Moor, Cornwall, 124, 168 coversands, 55, 96, 146-7, 150, 168, Badwell Ash, Essex, 101 Bohemian Highlands, 181 169, 257-60 Baffin Island, 103, 143,219
    [Show full text]
  • Permafrost Soils and Carbon Cycling
    SOIL, 1, 147–171, 2015 www.soil-journal.net/1/147/2015/ doi:10.5194/soil-1-147-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Permafrost soils and carbon cycling C. L. Ping1, J. D. Jastrow2, M. T. Jorgenson3, G. J. Michaelson1, and Y. L. Shur4 1Agricultural and Forestry Experiment Station, Palmer Research Center, University of Alaska Fairbanks, 1509 South Georgeson Road, Palmer, AK 99645, USA 2Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA 3Alaska Ecoscience, Fairbanks, AK 99775, USA 4Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA Correspondence to: C. L. Ping ([email protected]) Received: 4 October 2014 – Published in SOIL Discuss.: 30 October 2014 Revised: – – Accepted: 24 December 2014 – Published: 5 February 2015 Abstract. Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environ- ment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enor- mous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region’s soil or- ganic carbon (SOC) stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile.
    [Show full text]
  • A Changing Arctic: Ecological Consequences for Tundra, Streams and Lakes
    A CHANGING ARCTIC: ECOLOGICAL CONSEQUENCES FOR TUNDRA, STREAMS AND LAKES Edited by John E. Hobbie George W. Kling Chapter 1. Introduction Chapter 2. Climate and Hydrometeorology of the Toolik Lake Region and the Kuparuk River Basin: Past, Present, and Future Chapter 3. Glacial History and Long-Term Ecology of the Toolik Lake Region Chapter 4. Late-Quaternary Environmental and Ecological History of the Arctic Foothills, Northern Alaska Chapter 5. Terrestrial Ecosystems Chapter 6. Land-Water Interactions Research Chapter 7. Ecology of Streams of the Toolik Region Chapter 8. The Response of Arctic-LTER Lakes to Environmental Change Chapter 9. Mercury in the Alaskan Arctic Chapter 10. Ecological consequences of present and future change 1 <1>Chapter 1. Introduction John E. Hobbie <1>Description of the Arctic LTER site and project Toolik, the field site of the Arctic Long Term Ecological Research (LTER) project, lies 170 km south of Prudhoe Bay in the foothills of Alaska’s North Slope near the Toolik Field Station (TFS) of the University of Alaska Fairbanks (Fig. 1.1).[INSERT FIGURE 1.1 HERE] The project goal is to describe the communities of organisms and their ecology, to measure changes that are occurring, and to predict the ecology of this region in the next century. Research at the Toolik Lake site began in the summer of 1975 when the completion of the gravel road alongside the Trans-Alaska Pipeline, now called the Dalton Highway, opened the road-less North Slope for research. This book synthesizes the research results from this site since 1975, as supported by various government agencies but mainly by the U.S.
    [Show full text]
  • The International Structure of a Pala and a Peat Plateau in The
    Document generated on 10/03/2021 5:54 p.m. Géographie physique et Quaternaire The international structure of a pala and a peat plateau in the Rivière Boniface region, Québec: Interferences on the formation of ice segregation mounds La structure interne d’une palse et d’un plateau palsique dans la région de la rivière Boniface (Québec) : implications générales pour la formation des buttes à glace de ségrégation. Die innere Struktur von einer Palse und einem Torfplateau in der Rivière Boniface-Region, Québec: Schlussfolgerungen über die Bildung von Eisabsonderungshügeln. Michel Allard and Luc Rousseau Volume 53, Number 3, 1999 Article abstract The internal structure of a 5.7 m high palsa was studied through a pattern of URI: https://id.erudit.org/iderudit/004760ar closely spaced drill holes in permafrost along two orthogonal section lines. DOI: https://doi.org/10.7202/004760ar Holes were also drilled on a 1.3 m high peat plateau along a topographic transect for comparison purposes. The morphology of the palsa closely reflects See table of contents the shape of the ice-rich core heaved by the growth of thick ice lenses in thick marine clay silts of the Tyrrell Sea. During and since palsa growth, the sand and peat covering was deformed by gelifluction and sliding and was also partly Publisher(s) eroded by overland flow and wind. Palsa growth was accompanied by the formation of numerous ice-filled fault planes in the frozen sediments. The peat Les Presses de l'Université de Montréal plateau was heaved to a lower height through the formation of thin ice lenses in an underlying layer of sandy silt only 1.4 m thick; this sediment is believed ISSN to be of intertidal origin.
    [Show full text]
  • The Nature of Last Glacial Periglaciation in the Channel Islands
    Note of a paper read at the Annual Conference of the Ussher Society, January 1998 THE NATURE OF LAST GLACIAL PERIGLACIATION IN THE CHANNEL ISLANDS S. D. GURNEY, H. C. L. JAMES AND P. WORSLEY Gurney, S. D., James, H. C. L. and Worsley, P. The nature of last glacial periglaciation in the Channel Islands. Geoscience in south-west England, 9, 241-249. S.D. Gurney, Department of Geography, H.C.L. James, Department of Science and Technology Education, P. Worsley, Postgraduate Research Institute for Sedimentology, The University of Reading, P.O. Box 227, Reading, RG6 6AB. INTRODUCTION If permafrost extent is a good indicator of the intensity of cold climates, then the ice wedge casts and sand and gravel wedges found in Following the recognition of periglacially induced macro-scale northern France, particularly in Brittany, demonstrate former sedimentary structures and fabrics of deposits of Last Glacial age on Pleistocene cold environmental conditions having extended into that Alderney, a search for analogous features on Guernsey and Jersey has region (van Vliet-Lanë, 1996; van Vliet-Lanoë et al ., 1997). The been undertaken. It has long been known that cold climate related chronology for such periglacial conditions in Brittany, however, mass wasting deposits (head) and aeolian deposits (loess) are common suggests a rather earlier date than for southwest England and the throughout the Channel Islands. Structures specifically related to Channel Islands. For example, Loyer et al . (1995) indicate that during frozen ground, however, either seasonal or perennial, have not Marine Oxygen Isotope Stage (OIS) 6, permafrost extension was rather previously been documented outside Alderney.
    [Show full text]
  • The Potential Significance of Permafrost to the Behaviour of a Deep Radioactive Waste Repository
    SKI Technical Report 91:8 The Potential Significance of Permafrost to the Behaviour of a Deep Radioactive Waste Repository Tim McEwen Ghislain de Marsily SKI TR 91:8 Intera, Melton Mowbray, UK and Université de Paris VI February 1991 SKi STATENS KÄRNKRAFTINSPEKTION SWEDISH NUCLEAR POWER INSPECTORATE THE POTENTIAL SIGNIFICANCE OF PERMAFROST TO THE BEHAVIOUR OF A DEEP RADIOACTIVE WASTE REPOSITORY Tim McEwen Ghislain de Marsily SKI TR 91:8 , Intera, Melton Mowbray, UK and Université de Paris VI February 1991 This report concerns a study which has been conducted for the Swedish Nuclear Power Inspectorate (SKI). The conclusions and viewpoints presented in the report are those of the authors, and do not necessarily coincide with those of the SKI. The results will subsequently be used in the formulation of the Inspectorate's Policy, but the views in this report will not necessarily represent this policy. Contents 1 Introduction 1 2 Distribution of permafrost 3 2.1 Introduction 3 2.2 Properties of frozen ground 5 3 The hydrogeology of permafrost areas 6 3.1 Introduction 6 3.2 Position of uaquifersr relative to permafrost 6 3.2.1 Introduction 6 3.2.2 Suprapermafrost Aquifers 9 3.2.3 Intrapermafrost Aquifers 10 3.2.4 Subpermafrost Aquifers 11 4 Groundwater movement 12 .1 Infiltration and recharge 12 i- I Lateral movement 13 ^.3 Discharge 14 4.3.1 Introduction 14 4.3.2 Springs 15 4.3.3 Baseflow 15 4.3.4 Icings (Naledi or Aufeis) 15 i> Geochemistry 16 5.1 Effects of low temperatures 16 5.2 Groundwater geochemistry 16 5.3 Chemistry of Icings 18 5-4
    [Show full text]
  • Modelling Gelifluction Processes: the Significance of Frost Heave and Slope Gradient
    Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Modelling gelifluction processes: the significance of frost heave and slope gradient C. Harris & J.S. Smith Department of Earth Sciences, Cardiff University, Cardiff, United Kingdom ABSTRACT: In this paper we describe laboratory modelling of gelifluction processes using the geotechnical centrifuge technique. Frozen 1/10 scale planar slope models were frozen from the surface downwards on the lab- oratory floor and thawed, also from the surface downwards, under gravitational acceleration of 10 gravities. A natural sandy silt soil formed the base test material and slope models at gradients 4°, 8°, 12° and 16° were. Each slope model was subjected to four cycles of freezing and thawing except for the 16° model, which failed during the first thaw cycle. During thaw, soil temperatures and pore water pressures were recorded continuously, together with soil thaw settlement and surface displacement. Following each experiment, models were sectioned to observe displacement columns embedded within the soil mass, which showed the profiles of soil movement and allowed volumetric displacements to be calculated. It is shown that both frost heave and slope gradient strongly affect rates of surface movement. 1 INTRODUCTION Table 1. Soil properties, Prawle test soil. Clay (%) Silt (%) Sand (%) LL (%) PI (%) ␾Ј° cЈ(kPa) This paper describes scaled centrifuge modelling of gelifluction processes. Gelifluction and frost creep are 5 16 79 18 4 35 2 dominant in a wide range of arctic and alpine environ- ments (e.g. Mackay 1981, Washburn 1967, 1999, Gorbunov & Seversky 1999, Matsuoka & Hirakawa 2000), and rates depend on many environmental fac- movement deposits at Prawle Point, Devon, England tors, including slope gradient, soil moisture con- (Table 1).
    [Show full text]