Dizziness and Syncope

Total Page:16

File Type:pdf, Size:1020Kb

Dizziness and Syncope 17 Dizziness and Syncope Rainier P. Soriano Learning Objectives Upon completion of the chapter, the student will be able to: 1. Describe the mechanisms that give rise to symptoms of dizziness and syncope among older adults. 2. Create a differential diagnosis for etiologies of dizziness and syncope in older adults utilizing key historical and physical examination data to create a differential diagnosis. 3. Identify and describe the prognosis and treatment of the common causes of dizziness and syncope in the elderly. Case A (Part 1) Mrs. Adams is a 69-year-old retired executive secretary. She is currently a hospital volunteer escorting newly admitted patients to their rooms and helping with patient transport around the hospital. She comes to your offi ce with the following complaint: “Dr. Smith, I feel dizzy most of the time. What is causing this problem?” Dizziness: General Considerations Dizziness is a subjective sensation of postural instability or of illusory motion. It is one of the most common presenting complaints in primary care practice for persons aged 65 years and older. The prevalence of Material in this chapter is based on the following chapters in Cassel CK, Leipzig RM, Cohen HJ, Larson EB, Meier DE, eds. Geriatric Medicine: An Evidence- Based Approach, 4th ed. New York: Springer, 2003: Kapoor WN. Syncope in the Elderly, pp. 957–966. Nanda A, Tinetti ME. Chronic Dizziness and Vertigo, pp. 995–1008. Selections edited by Rainier P. Soriano. 304 17. Dizziness and Syncope 305 dizziness ranges from 4% to 30% in this age group. Dizziness is a word used by different people to describe many different phenomena. It is a nonspecifi c term that includes vertigo, dysequilibrium, lightheadedness, spinning, giddiness, faintness, fl oating, feeling woozy, and many other sensations. Age-Associated Changes Related to Dizziness Evidence suggests that age-related changes occur in each of the vestibular, visual, auditory, and proprioceptive systems. Although these age-related changes do not likely cause clinical disease, they may predispose older persons to the occurrence of dizziness by making them more vulnerable to the effects of superimposed impairments and diseases. Degenerative changes and reductions in the number of sensory cells (hair cells) in the semicircular canals, saccule, and utricle have been reported with aging. Age-related visual changes include a decrease in visual acuity, dark adapta- tion, contrast sensitivity, and accommodation. Age-related decline in pro- prioception has not been extensively studied. Diagnostic Evaluation Symptoms and Signs An evaluation of dizziness begins with the clinical history. The patient should be asked to be as precise as possible about the sensations of dizzi- ness, an often diffi cult task because patients may experience more than one manifestation or a vague sensation. The frequency and duration of dizziness, as well as any associated symptoms such as hearing loss, ear fullness, tinnitus, diplopia, dysarthria, and syncopal episodes, are all important. The physician should also ask about comorbid conditions, for example, cardiac diseases, diabetes, renal disorders, anxiety, or depression, which can predispose or exacerbate dizziness. A careful review of all medi- cations, including over-the-counter drugs, is also important. The physical examination should include measurements of orthostatic changes in blood pressure. One should look for cerebellar signs, for example, gait ataxia, truncal ataxia, or dysmetria, which suggest etiologies such as a cerebellar stroke or cerebellopontine angle tumors. A detailed history and physical examination should help the physician in identifying one or more causes responsible for dizziness. Although 50% of dizziness in older adults cannot be clearly assigned to one type, the most common specifi c symptoms that are vaguely labeled dizziness can be classifi ed as shown in Table 17.1. 306 Rainier P. Soriano Table 17.1 Symptomatic categories of persons complaining of dizziness (26) Vertigo: A defi nite rotational sensation or a sense of environmental motion. Vertigo is considered to result from a disturbance within the vestibular system or its connections. The patient may complain, “My head is spinning” or “The room is whirling.” (Pre) syncope: Actual loss of consciousness or the sensation that loss of consciousness is about to happen. Presyncope is usually considered to result from a hypoperfusion of the brain. Common complaints include “I might pass out” or “I feel faint.” Dysequilibrium: Sensation that balance (especially during ambulation) is impaired, but usually without the sensation of vertigo or near fainting. Dysequilibrium usually results from abnormalities in the proprioceptive system. Common complaints: “My balance is off” or “I might fall.” Lightheadedness: A vague term that refers to a head sensation that is nonvertiginous and nonsyncopal. The patient may describe, “fl oating,” “wooziness,” “spaciness,” “whirling,” and other nonspecifi c sensations. Commonly: “I’m just dizzy.” Source: Adapted from Reilly BM. Dizziness. In: Reilly BM, ed. Practical Strategies in Out- patient Medicine, 2nd ed. Philadelphia: WB Saunders, 1991; and Nanda A, Tinetti ME. Chronic Dizziness and Vertigo. In: Cassel CK, Leipzig RM, Cohen HJ, et al., eds. Geriatric Medicine, 4th ed. New York: Springer, 2003:995–1008. Provocative Tests Apart from the history and physical examination, certain provocative tests can be done at the bedside to evaluate the vestibular system. The most common causes of dizziness can be quickly diagnosed by reproducing a patient’s symptoms. However, some of these maneuvers should be per- formed (if at all) cautiously. To see if the vestibulo-ocular refl ex (VOR), which helps to maintain visual stability during head movement, is intact, the following three tests can be done. The sensitivities, specifi cities, and predictive values of these tests for vestibular lesions in older persons have not been established. Head-Thrust Test In the head-thrust test, the patient is asked to fi xate on the examiner’s nose, and the head is moved rapidly by the examiner about 10 degrees to the left or right. In a normally functioning VOR, the eyes will be fi xed on the target, whereas in patients with a vestibular defi cit, the eyes are carried away from the target along with the head, followed by a corrective saccade back to the target. For example, in a patient with a right-sided vestibular lesion, head thrusts to the right produce a slipping away of the pupils from the target followed by a corrective movement back to the target, whereas head thrusts to the left produce a normal response of the eyes. Post–Head-Shake Test In the post–head-shake test, the head is rotated either passively by the ex- aminer or actively by the subject at a frequency of about 2 Hz in the horizon- tal plane for about 10 seconds, and then the examiner looks for nystagmus when the head is stopped. In unilateral peripheral vestibular lesions, there will be a horizontal nystagmus with the fast phase usually beating toward the stronger ear, whereas in central lesions the nystagmus may be vertical. 17. Dizziness and Syncope 307 Dynamic Visual Acuity Testing This test is done by asking the patient to read a fi xed eye chart while the examiner moves the head horizontally at a frequency of 1 to 2 Hz. A drop in acuity of two rows or more from the baseline is suggestive of an abnor- mal VOR. This test is sometimes diffi cult to perform, because patients may be able to read at times when the head is not in motion (i.e., at turnaround points or by resisting movements). These tests are more helpful in detect- ing unilateral than bilateral vestibular dysfunction. It is important to remember that compensatory mechanisms may mask a vestibular defi cit when these maneuvers are used in patients with longstanding vestibular loss. If the fi ndings of these tests are abnormal, then the patient can be referred for more sophisticated vestibular testing such as electronystag- mography and rotational testing. Stepping Test This test is positive when there is a lesion in the vestibulospinal system. The patient is asked to stand at the center of a circle drawn on the fl oor. The circle is divided into sections by lines passing at 30-degree angles. The patient is blindfolded and is asked to outstretch both arms at 90 degrees to the body. The patient is then asked to fl ex and raise high fi rst one knee and then the other, and to continue stepping forward at a normal walking speed for a total of 50 or 100 steps. The examiner notes body sway while the patient marches in place with the eyes closed. In a unilateral vestibular lesion or in acoustic neuroma, there will be a gradual rotation of the body (more than 30 degrees) toward the affected side. Dix-Hallpike Maneuver (Nylan-Barany Test) This test can defi nitively establish a diagnosis of benign paroxysmal posi- tional vertigo (BPPV). In this maneuver, the patient is seated on an exami- nation table with the head rotated 30 to 45 degrees to one side. The patient is asked to fi x his/her vision upon the examiner’s forehead. The examiner holds the patient’s head fi rmly in the same position and moves the patient from a seated to a supine position with the head hanging below the edge of the table and the chin pointing slightly upward. The examiner should note the direction, latency, and duration of the nystagmus and the latency and duration of vertigo, if present. Laboratory Findings A small battery of laboratory tests should be performed on all patients with dizziness because the prevalence of undetected abnormalities is high and because results often lead to effective treatment. Hematocrit, glucose, blood urea nitrogen, electrolytes, thyroid function tests, and vitamin B12 308 Rainier P. Soriano levels should be ordered in all patients complaining of dizziness.
Recommended publications
  • Evaluation of Chronic Autonomic Symptoms in Gulf War Veterans with Unexplained Fatigue
    Evaluation of Chronic Autonomic Symptoms in Gulf War Veterans with Unexplained Fatigue • Principal Investigator: Dr. Mian Li, WRIISC-DC and Neurology Service at VAMC-DC; Associate Clinical Professor of Neurology • Co-Investigators: Drs Han Kang, Pamela Karasik, Clara Mahan, Friedhelm Sandbrink, Ping Zhai • Post-doctoral fellow: Changqing Xu • Study Coordinator (Volunteer Status): Wenguo Yao • Funded by VA Merit Review Clinical Science R & D • Research approved by local IRB/R & D and conducted in VAMC- DC with compliance of stipulated human research regulations and VA policies regarding report or dissemination of research and non- research information. 1 Rationale • GW veterans (7.7%) reported dizziness/imbalance. blurred vision, excessive fatigue, or tremor (Kang HK, et al. Illnesses among United States veterans of the Gulf War: a population- based survey of 30,000 veterans. J Occup Environ Med 2000; 42(5): 491-501 • Reported neurological symptoms are similar or identical to those from patients with diseases of autonomic nervous system • Ill group (deployed) with post-exertion fatigue • Control (deployed) without fatigue • Objective of this study • Autonomic parameters useful in treatment 2 Peripheral Autonomic Nervous System • Afferent Pathways • Efferent Components parasympathetic and sympathetic • Neurotoxin may preferentially affect small nerve fiber • Small fiber neuropathy vs Autonomic neuropathy • Long delay in diagnosing autonomic system disorder: a) unclear nature course of acquired autonomic disorders b) lack of appropriate
    [Show full text]
  • A Compendium of Research
    NASA TECHNICAL NASA TM X-3308 MEMORANDUM CO CO I X c PHYSIOLOGIC RESPONSES TO WATER IMMERSION IN MAN: A COMPENDIUM OF RESEARCH James Kollias, Dena Van Derveer, Karen J. Dorchak, and John E. Greenleaf Ames Research Center Moffett Field, Calif. 94035 ^ *" /V NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • FEBRUARY 1976 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TM X-3308 4. Title and Subtitle 5. Report Date February 1976 PHYSIOLOGIC RESPONSES TO WATER IMMERSION IN MAN: 6. Performing Organization Code A COMPENDIUM OF RESEARCH 7. Author(s) 8. Performing Organization Report No. A-6038 James Kollias, Dena Van Derveer, Karen J. Dorchak, and John E. Greenleaf 10. Work Unit No. 9. Performing Organization Name and Address 970-21-14-05 NASA Ames Research Center 11. Contract or Grant No. Moffett Field, Calif. 94035 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D. C. 20546 15. Supplementary Notes 16. Abstract Since the advent of space flight programs, scientists have been searching for ways to reproduce the zero-gravity effects of weightlessness. Brief periods of weightlessness up to 1 minute were feasible using Keplerian trajectory, but comprehen- sive study of the prolonged effects of the weightless state necessitated the development of other methods. Thus far the two approaches most widely used have been complete bedrest and fluid immersion. Surprisingly, these simulated environments have produced essentially all of the symptoms found in astronauts. This compendium contains reports appearing in the literature through December 1973.
    [Show full text]
  • Aging of the Autonomic Nervous System
    Autonomic Nervous System in Old Age Interdisciplinary Topics in Gerontology Vol. 33 Series Editors Patrick R. Hof, New York, N.Y. Charles V. Mobbs, New York, N.Y. Editorial Board Constantin Bouras, Geneva Christine K. Cassel, New York, N.Y. Anthony Cerami, Manhasset, N.Y. H. Walter Ettinger, Winston-Salem, N.C. Caleb E. Finch, Los Angeles, Calif. Kevin Flurkey, Bar Harbor, Me. Laura Fratiglioni, Stockholm Terry Fulmer, New York, N.Y. Jack Guralnik, Bethesda, Md. Jeffrey H. Kordower, Chicago, Ill. Bruce S. McEwen, New York, N.Y. Diane Meier, New York, N.Y. Jean-Pierre Michel, Geneva John H. Morrison, New York, N.Y. Mark Moss, Boston, Mass. Nancy Nichols, Melbourne S. Jay Olshansky, Chicago, Ill. James L. Roberts, San Antonio, Tex. Jesse Roth, Baltimore, Md. Albert Siu, New York, N.Y. John Q. Trojanowski, Philadelphia, Pa. Bengt Winblad, Huddinge Autonomic Nervous System in Old Age Volume Editors George A. Kuchel, Farmington, Conn. Patrick R. Hof, New York, N.Y. 11 figures and 9 tables, 2004 Basel · Freiburg · Paris · London · New York · Bangalore · Bangkok · Singapore · Tokyo · Sydney George A. Kuchel, MD FRCP UConn Center on Aging University of Connecticut Health Center Farmington, Conn., USA Patrick R. Hof, MD Associate Professor, Kastor Neurobiology of Aging Laboratories Dr. Arthur Fishberg Research Centre for Neurobiology Mount Sinai School of Medicine New York, N.Y., USA Library of Congress Cataloging-in-Publication Data Autonomic nervous system in old age / volume editors, George A. Kuchel, Patrick R. Hof. p. ; cm. – (Interdisciplinary topics in gerontology, ISSN 0074–1132 ; v. 33) Includes bibliographical references and index.
    [Show full text]
  • Metabolic and Other Causes of Dysautonomia, Orthostatic
    AUTONOMIC DISORDERS AND AUTONOMIC TESTING Kamal R. Chémali, MD Associate Professor of Clinical Neurology Eastern Virginia Medical School Director, Sentara Neuromuscular and Autonomic Center Director, Sentara Music and Medicine Center Kevin McNeeley Sentara Autonomic Laboratory Coordinator The Upright Posture • Significant stress on the body to maintain adequate cerebral flow • Pooling of 500ml to 1000ml of blood • Decreased venous return to the heart • Reduced cardiac output and blood pressure • Compensatory baroreflex activation (CNS, afferent and efferent PNS pathways) • When this system fails, OH, cerebral hypoperfusion, syncope occur The 3 Orthostatic Syndromes Orthostatic Postural Reflex Hypotension Tachycardia Syncope Definition Gradual, Sustained ↑HR>30 1st 10’ Sudden ↓sBP>20 or ↓dBP>10 up; no ↓ BP ↓BP & HR BP Pattern Physiology Arterial denervation – Venous return Brainstem main impact diastole impact systole threshold CV reflexes Usually abnormal Usually normal Usually nl Associated Disease-based Syndromic Syndromic Dysauton. Poor prognosis Good Prognosis SFN Type Severe, Diffuse Mild, Focal None Somatic Small Fiber System Small fiber anterolateral system Large fiber dorsal column – medial lemniscal system CCF 2001 Purves: Neuroscience. 2004 Case 1 (Somatic Small Fiber Neuropathy) • A 48 year-old man presents to your clinic because of a burning sensation in his toes that started 3 months ago and has progressed to involve the entire foot up to the ankle bilaterally. He denies any past medical history but has gained 25 lbs in the past year, due to overeating and inactivity. • On examination, he has a mild sensory gradient to pinprick and temperature in stockings distribution up to the ankles. Vibration is mildly reduced at the toes and joint position sense is intact.
    [Show full text]
  • Autonomic Symptom Burden Is an Independent Contributor to Multiple Sclerosis Related Fatigue
    Clinical Autonomic Research (2019) 29:321–328 https://doi.org/10.1007/s10286-018-0563-6 RESEARCH ARTICLE Autonomic symptom burden is an independent contributor to multiple sclerosis related fatigue Magdalena Krbot Skorić1,2 · Luka Crnošija1 · Ivan Adamec1 · Barbara Barun1,3 · Tereza Gabelić1,3 · Tomislav Smoljo3 · Ivan Stanić3 · Tin Pavičić3 · Ivan Pavlović3 · Jelena Drulović4 · Tatjana Pekmezović5 · Mario Habek1,3 Received: 13 June 2018 / Accepted: 30 August 2018 / Published online: 12 September 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Objectives To investigate a possible association between autonomic dysfunction and fatigue in people with multiple sclerosis. Methods In 70 people with multiple sclerosis early in the disease course (51 females, mean age 33.8 ± 9.1), quantitative sudomotor axon refex tests, cardiovascular refex tests (heart rate and blood pressure responses to the Valsalva maneuver and heart rate response to deep breathing), and the tilt table test were performed. Participants completed the Composite Autonomic Symptom Score 31, the Modifed Fatigue Impact Scale, and the Epworth Sleepiness Scale, as well as the Beck Depression Inventory. Cutof scores of ≥ 38 or ≥ 45 on the Modifed Fatigue Impact Scale were used to stratify patients into a fatigued subgroup (N = 17 or N = 9, respectively). Results We found clear associations between fatigue and scores in subjective tests of the autonomic nervous system: fatigued patients scored signifcantly worse on Composite Autonomic Symptom Score 31, and there was a strong correlation between the Modifed Fatigue Impact Scale and the Composite Autonomic Symptom Score 31 (rs = 0.607, p < 0.001). On the other hand, we found only modest associations between fatigue and scores in objective tests of the autonomic nervous system: there was a clear trend for lower sweating outputs at all measured sites, which reached statistical signifcance for the distal leg and foot.
    [Show full text]
  • The Tilt Table Test in Autonomic Medicine
    Clinical Autonomic Research (2019) 29:215–230 https://doi.org/10.1007/s10286-019-00598-9 REVIEW ARTICLE Autonomic uprising: the tilt table test in autonomic medicine William P. Cheshire Jr.1 · David S. Goldstein2 Received: 25 January 2019 / Accepted: 21 February 2019 / Published online: 5 March 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract This perspective piece on head-up tilt table testing is part of a series on autonomic function testing. The tilt table can be a useful diagnostic test, but methodologies vary, and the results are sometimes misinterpreted. The intent here is not to review comprehensively the utility of various tilt table testing protocols but to convey a number of general points that may give perspective and have practical clinical value, based on an understanding of autonomic physiology and our long clini- cal and research experience in the evaluation of autonomic disorders. The goals of tilt table testing are to assess orthostatic hypotension (OH), chronic orthostatic intolerance (COI), and unexplained syncope. The testing is useful for distinguishing neurogenic from non-neurogenic OH, identifying failure of the sympathetic noradrenergic system in autonomic neuropathies and ganglionopathies, and assessing barorefex-sympathoneural function in α-synucleinopathies. For COI, the testing can provide objective data related to the patient’s symptoms, diagnose postural tachycardia syndrome (POTS), and distinguish POTS from other causes of tachycardia. Provocative tilt table testing can help understand bases for recurrent transient loss of consciousness in patients with syncope, distinguish neurally mediated syncope from psychogenic pseudosyncope, and separate syncope-related convulsion from epileptic seizures. For each of these purposes, the goals, formats, endpoints, and clinical utility are diferent.
    [Show full text]
  • Syncope and Atypical Seizures
    Syncope and Atypical Seizures Ravi Mandapati, M.D., FACC.; FHRS Director, Specialized Program for Arrhythmias in Congenital Heart Disease UCLA Cardiac Arrhythmia Center David Geffen School of Medicine at UCLA Director, Pediatric Cardiac Electrophysiology Loma Linda University Medical Center Syncope • Sy ncope is a transient loss of consciousness d ue to transient global cerebral hypo perfusion characterized by rapid onset, short duration, and spontaneous complete recovery. • Without qualifying transient global hypo perfusion, the definition of syncope becomes wide enough to include disorders such as epileptic seizures and concussion. •January 14-15, 2011 SCA Conference •1 Seizures are frequently and inappropriately classified as syncope Seizures •Sheldon et al. Diagnosis of Syncope and Seizures, JACC 2002 •January 14-15, 2011 SCA Conference •2 Seizures •Sheldon et al. Diagnosis of Syncope and Seizures, JACC 2002 Breath holding spells • Infantile reflex syncopal attacks or pallid breath holding spells elicited by noxious stimuli are caused by vagally mediated cardiac inhibition. • Cyanotic breath holding spells that occur with expiratory cessation of respiration during crying •January 14-15, 2011 SCA Conference •3 Neurally Mediated Reflex Syncope/Triggers • Emotion/pain • Prolonged standing • Micturition • Post exercise • Hyperventilation and straining • Stretching • Coughing • Standing up suddenly • Deglution Syncope : Mechanical /Structural • Aortic Stenosis • Hypertrophic cardiomyopathy • Anomalous coronary artery • Severe pulmonary
    [Show full text]
  • Selecthealth Medical Policies Physical Medicine Policies
    SelectHealth Medical Policies Physical Medicine Policies Table of Contents Policy Title Policy Last Number Revised Acute Inpatient Rehabilitation 443 12/20/18 Chiropractic Care (Adult) 643 09/08/21 Computerized Microprocessor-Controlled Knee Prostheses (OttoBock C-Leg, 233 08/21/17 Endolite Adaptive Prosthesis, Ossur Prosthesis) Diagnostic and Therapeutic Interventions for Spinal Pain 626 07/21/21 Epidural Adhesiolysis (Percutaneous or Endoscopic) for the Treatment of 249 11/29/12 Chronic Back Pain Functional Anaesthetic Discography 422 08/13/09 Functional Electrical Stimulation (FES); Neuromuscular Electrical 413 01/12/09 Stimulation (NMES) Infusion Pumps (External or Implantable) 609 07/31/17 Lymphedemia Therapy 147 04/21/11 Manipulation Under Anesthesia (MUA) for Management of Back and Pelvic Pain 425 10/12/09 Negative Pressure Wound Therapy 185 05/27/21 Nonsurgical Spinal Compression for the Treatment of Chronic Low Back Pain 323 10/31/06 Percutaneous Electrical Nerve Stimulation (PENS) 162 12/19/09 Percutaneous Sacroplasty 433 12/26/09 Phonophoresis 306 05/20/06 Physical Therapy (PT); Occupational Therapy (OT) 518 10/11/18 Platelet Rich Plasma (PRP) Grafting for Bone and Soft Tissue Healing/ 315 12/17/09 Autologous Platelet-Derived Preparations Pressure Specified Sensory Device (PSSD) for Assessment of 217 02/18/10 Peripheral Neuropathy Pulsed Electrical Stimulation with an Integrated Unloading Brace 251 10/19/17 (e.g., BioniCare® Stimulator) Radiofrequency Ablation (RFA) of the Dorsal Root Ganglion (DRG) of the Spine 226 05/15/15 Radiofrequency Ablation (RFA) of the Genicular Nerve 557 11/04/20 Radiofrequency Ablation (RFA) of the Sacroiliac (SI) Joint 389 01/01/20 Sanexas Therapy 649 07/13/21 Table of Contents Continued on Page 2..
    [Show full text]
  • Assessment of Gastrointestinal Autonomic Dysfunction: Present and Future Perspectives
    Journal of Clinical Medicine Review Assessment of Gastrointestinal Autonomic Dysfunction: Present and Future Perspectives Ditte S. Kornum 1,2,* , Astrid J. Terkelsen 3, Davide Bertoli 4, Mette W. Klinge 1, Katrine L. Høyer 1,2, Huda H. A. Kufaishi 5, Per Borghammer 6, Asbjørn M. Drewes 4,7, Christina Brock 4,7 and Klaus Krogh 1,2 1 Department of Hepatology and Gastroenterology, Aarhus University Hospital, DK8200 Aarhus, Denmark; [email protected] (M.W.K.); [email protected] (K.L.H.); [email protected] (K.K.) 2 Steno Diabetes Centre Aarhus, Aarhus University Hospital, DK8200 Aarhus, Denmark 3 Department of Neurology, Aarhus University Hospital, DK8200 Aarhus, Denmark; [email protected] 4 Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, DK9100 Aalborg, Denmark; [email protected] (D.B.); [email protected] (A.M.D.); [email protected] (C.B.) 5 Steno Diabetes Centre Copenhagen, Gentofte Hospital, DK2820 Gentofte, Denmark; [email protected] 6 Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, DK8200 Aarhus, Denmark; [email protected] 7 Steno Diabetes Centre North Jutland, Aalborg University Hospital, DK9100 Aalborg, Denmark * Correspondence: [email protected] Abstract: The autonomic nervous system delicately regulates the function of several target organs, including the gastrointestinal tract. Thus, nerve lesions or other nerve pathologies may cause autonomic dysfunction (AD). Some of the most common causes of AD are diabetes mellitus and α-synucleinopathies such as Parkinson’s disease. Widespread dysmotility throughout the gastroin- Citation: Kornum, D.S.; Terkelsen, testinal tract is a common finding in AD, but no commercially available method exists for direct A.J.; Bertoli, D.; Klinge, M.W.; Høyer, K.L.; Kufaishi, H.H.A.; Borghammer, verification of enteric dysfunction.
    [Show full text]
  • Tilt Table Testing
    Tilt Table Testing ____________________________________________________________________________________ Policy Number: Original Effective Date: MM.02.024 01/01/2015 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 09/22/2017 Section: Medicine Place(s) of Service: Office, Outpatient I. Description The tilt table test can be used to diagnose neurocardiogenic or neurally mediated syncope caused by a sudden, temporary failure of the autonomic nervous system to maintain blood pressure and heart rate. The device required for a tilt-table test is a motorized table designed specifically for use in a cardiac catheterization/electrophysiology laboratory. This table differs from tilt tables used in radiology and physical therapy departments. The tilt table for syncope testing must change the patient’s position from 0 to 60˚ in less than 10 seconds, must be able to restore the patient equally quickly to a supine position, and must have proper restraints. The patient is held at a 60˚ angle for an extended period of time, during which heart rate and blood pressure are monitored if syncope occurs. Syncope is defined as a sudden, transient loss of consciousness, accompanied by loss of postural tone. Background Syncope is a common clinical problem and accounts for 3.5% of all emergency room visits and 1 to 6% of all hospital admissions in the United States each year. Neurocardiogenic syncope is the most common type of syncope. Also referred to as neurally mediated, vasodepressor and vasovagal syncope, neurocardiogenic syncope is characterized by a sudden failure of the autonomic nervous system to maintain blood pressure, and sometimes heart rate, at a level that adequately maintains cerebral perfusion and consciousness.
    [Show full text]
  • Head-Up Tilt-Table Test (HUTT)
    Central Committee on Cardiac Service Tilt Table Test (傾斜牀檢查) Effective date: 1 April 2019 Document no.: PILIC0011E version1.3 Version 1.3 Page 1 of 2 Tilt-Table Test Introduction Patients may have unexplained recurrent symptoms of dizziness or loss of consciousness. There are many causes. One common cause is vasovagal syncope, which is a disease of the autonomic nervous system. The mechanism is a sudden drop of blood pressure or heart rate or both, in response to adrenergic stimulation. Tilt table test is used to diagnose vasovagal syncope. Patient lying on a stretcher will be tilted up to almost standing position. This, together with the use of drugs, can act as an adrenergic stimulation to provoke vasovagal syncope. Importance of Procedure Tilt Table test is used in diagnosing vasovagal syncope. Once the diagnosis is confirmed, specific treatment can be considered. If you refuse this test, it may be difficult to understand the cause of your symptoms. There is no alternative test that is specific in diagnosing vasovagal syncope, although there are tests that may detect other causes of your symptoms. Pre-Procedure Preparation The test is often performed as an outpatient procedure. You have to omit drugs as instructed by your doctor. Preferably you should be accompanied by relatives or friends. Fasting for 4-6 hours before the test is necessary. Our staff will explain to you and your relatives the details of the procedure together with the possible risks and complications. You have to sign an informed consent. Intravenous line will be inserted. The Procedure You need to lie down on the tilt table in a horizontal position.
    [Show full text]
  • Subjective Tests for Vestibular Dysfunction
    Global Journal of Otolaryngology ISSN 2474-7556 Powerpoint presentation Glob J Otolaryngol - Special Issue March 2017 Copyright © All rights are reserved by Lalsa Shilpa Perepa DOI: 10.19080/GJO.2017.05.555664 Subjective Tests for Vestibular Dysfunction Basic Advantages a) Well established - criteria for diagnostic testing Indications pontomedullary b) Insights into site of lesion lesions produce ipsiversive tilts (deviation of a) Brandt and Dietrich [2] found that c) Alerts the examiner Pontomesencephalic lesions produce contraversive tilts subjective visual vertical toward the side of the lesion), Basicd) Disadvantages High specificity (away from the lesion). The deviations accompanied by the a) Require New and improvised versions of test ocularb) Disruption tilt reaction. of both the otolithic and vertical b) Not well supported for diagnosing semicircular canal pathways are thought to be involved inc) theThalamic deviations. lesions c) Low sensitivity may produce either ipsiversive or of the parietoinsular vestibular cortex tend to produce Subjectived) Requires Visual objective Vertical tests test to support findings contraversive tilts of subjective visual vertical. Lesions level of the thalamus and above contraversive deviations. Lesions at the Given By-Bohmer A, Rickenmann J [1]. will not produce an accompanying SVV is an estimation technique whereby a subject adjusts a oculard) Lesions tilt reaction. in the inner ear also produce deviation of visible luminescent line, while seated in complete darkness, to subjective visual vertical due to differences in the tonic whatPrinciple they consider to be upright or true vertical. outpute) Abnormal from the inotolithic headache organs in the inner ear [3]. with migraine SVV or SVH a s me a su r ed i n t he upr ig ht posit ion i s i n f luenced sufferers, particularly those byPurpose the utricles, saccules and horizontal semicircular canals.
    [Show full text]