Front Range Floods Teacher Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Principles and Practices for Restoration of Ponderosa Pine and Dry Mixed
United States Department of Agriculture Principles and Practices for the Restoration of Ponderosa Pine and Dry Mixed-Conifer Forests of the Colorado Front Range Robert N. Addington, Gregory H. Aplet, Mike A. Battaglia, Jennifer S. Briggs, Peter M. Brown, Antony S. Cheng, Yvette Dickinson, Jonas A. Feinstein, Kristen A. Pelz, Claudia M. Regan, Jim Thinnes, Rick Truex, Paula J. Fornwalt, Benjamin Gannon, Chad W. Julian, Jeffrey L. Underhill, Brett Wolk Forest Rocky Mountain General Technical Report Service Research Station RMRS-GTR-373 January 2018 Addington, Robert N.; Aplet, Gregory H.; Battaglia, Mike A.; Briggs, Jennifer S.; Brown, Peter M.; Cheng, Antony S.; Dickinson, Yvette; Feinstein, Jonas A.; Pelz, Kristen A.; Regan, Claudia M.; Thinnes, Jim; Truex, Rick; Fornwalt, Paula J.; Gannon, Benjamin; Julian, Chad W.; Underhill, Jeffrey L.; Wolk, Brett. 2018. Principles and practices for the restoration of ponderosa pine and dry mixed-conifer forests of the Colorado Front Range. RMRS-GTR-373. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 121 p. Abstract Wildfires have become larger and more severe over the past several decades on Colorado’s Front Range, catalyzing greater investments in forest management intended to mitigate wildfire risks.The complex ecological, social, and political context of the Front Range, however, makes forest management challenging, especially where multiple management goals including forest restoration exist. In this report, we present a science-based framework for managers to develop place-based approaches to forest restoration of Front Range ponderosa pine and dry mixed-conifer forests. We first present ecological information describing how Front Range forest structure and composition are shaped at multiple scales by interactions among topography, natural disturbances such as fire, and forest developmental processes. -
Denudation History and Internal Structure of the Front Range and Wet Mountains, Colorado, Based on Apatite-Fission-Track Thermoc
NEW MEXICO BUREAU OF GEOLOGY & MINERAL RESOURCES, BULLETIN 160, 2004 41 Denudation history and internal structure of the Front Range and Wet Mountains, Colorado, based on apatitefissiontrack thermochronology 1 2 1Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801Shari A. Kelley and Charles E. Chapin 2New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM 87801 Abstract An apatite fissiontrack (AFT) partial annealing zone (PAZ) that developed during Late Cretaceous time provides a structural datum for addressing questions concerning the timing and magnitude of denudation, as well as the structural style of Laramide deformation, in the Front Range and Wet Mountains of Colorado. AFT cooling ages are also used to estimate the magnitude and sense of dis placement across faults and to differentiate between exhumation and faultgenerated topography. AFT ages at low elevationX along the eastern margin of the southern Front Range between Golden and Colorado Springs are from 100 to 270 Ma, and the mean track lengths are short (10–12.5 µm). Old AFT ages (> 100 Ma) are also found along the western margin of the Front Range along the Elkhorn thrust fault. In contrast AFT ages of 45–75 Ma and relatively long mean track lengths (12.5–14 µm) are common in the interior of the range. The AFT ages generally decrease across northwesttrending faults toward the center of the range. The base of a fossil PAZ, which separates AFT cooling ages of 45– 70 Ma at low elevations from AFT ages > 100 Ma at higher elevations, is exposed on the south side of Pikes Peak, on Mt. -
Colorado Fourteeners Checklist
Colorado Fourteeners Checklist Rank Mountain Peak Mountain Range Elevation Date Climbed 1 Mount Elbert Sawatch Range 14,440 ft 2 Mount Massive Sawatch Range 14,428 ft 3 Mount Harvard Sawatch Range 14,421 ft 4 Blanca Peak Sangre de Cristo Range 14,351 ft 5 La Plata Peak Sawatch Range 14,343 ft 6 Uncompahgre Peak San Juan Mountains 14,321 ft 7 Crestone Peak Sangre de Cristo Range 14,300 ft 8 Mount Lincoln Mosquito Range 14,293 ft 9 Castle Peak Elk Mountains 14,279 ft 10 Grays Peak Front Range 14,278 ft 11 Mount Antero Sawatch Range 14,276 ft 12 Torreys Peak Front Range 14,275 ft 13 Quandary Peak Mosquito Range 14,271 ft 14 Mount Evans Front Range 14,271 ft 15 Longs Peak Front Range 14,259 ft 16 Mount Wilson San Miguel Mountains 14,252 ft 17 Mount Shavano Sawatch Range 14,231 ft 18 Mount Princeton Sawatch Range 14,204 ft 19 Mount Belford Sawatch Range 14,203 ft 20 Crestone Needle Sangre de Cristo Range 14,203 ft 21 Mount Yale Sawatch Range 14,200 ft 22 Mount Bross Mosquito Range 14,178 ft 23 Kit Carson Mountain Sangre de Cristo Range 14,171 ft 24 Maroon Peak Elk Mountains 14,163 ft 25 Tabeguache Peak Sawatch Range 14,162 ft 26 Mount Oxford Collegiate Peaks 14,160 ft 27 Mount Sneffels Sneffels Range 14,158 ft 28 Mount Democrat Mosquito Range 14,155 ft 29 Capitol Peak Elk Mountains 14,137 ft 30 Pikes Peak Front Range 14,115 ft 31 Snowmass Mountain Elk Mountains 14,099 ft 32 Windom Peak Needle Mountains 14,093 ft 33 Mount Eolus San Juan Mountains 14,090 ft 34 Challenger Point Sangre de Cristo Range 14,087 ft 35 Mount Columbia Sawatch Range -
Front Range Floods Teach Guide
National Park Service Rocky Mountain U.S. Department of Interior Rocky Mountain National Park Front Range Floods Teacher Guide Table of Contents Rocky Mountain National Park.................................................................................................1 Teacher Guides..............................................................................................................................2 Rocky Mountain National Park Education Program Goals...................................................2 Schedule an Education Program with a Ranger.......................................................................2 Front Range Floods Introduction........................................................................................................................4 Precipitation Patterns Along The Front Range..............................................................5 Colorado Flood Events.....................................................................................................6 Flooding in Rocky Mountain National Park...............................................................12 History of Floodplain Management in the United States..........................................14 Front Range Floods Resources Glossary.............................................................................................................................20 References.........................................................................................................................22 Rocky Mountain National Park Rocky Mountain -
Colorado Climate Center Sunset
Table of Contents Why Is the Park Range Colorado’s Snowfall Capital? . .1 Wolf Creek Pass 1NE Weather Station Closes. .4 Climate in Review . .5 October 2001 . .5 November 2001 . .6 Colorado December 2001 . .8 Climate Water Year in Review . .9 Winter 2001-2002 Why Is It So Windy in Huerfano County? . .10 Vol. 3, No. 1 The Cold-Land Processes Field Experiment: North-Central Colorado . .11 Cover Photo: Group of spruce and fi r trees in Routt National Forest near the Colorado-Wyoming Border in January near Roger A. Pielke, Sr. Colorado Climate Center sunset. Photo by Chris Professor and State Climatologist Department of Atmospheric Science Fort Collins, CO 80523-1371 Hiemstra, Department Nolan J. Doesken of Atmospheric Science, Research Associate Phone: (970) 491-8545 Colorado State University. Phone and fax: (970) 491-8293 Odilia Bliss, Technical Editor Colorado Climate publication (ISSN 1529-6059) is published four times per year, Winter, Spring, If you have a photo or slide that you Summer, and Fall. Subscription rates are $15.00 for four issues or $7.50 for a single issue. would like considered for the cover of Colorado Climate, please submit The Colorado Climate Center is supported by the Colorado Agricultural Experiment Station it to the address at right. Enclose a note describing the contents and through the College of Engineering. circumstances including loca- tion and date it was taken. Digital Production Staff: Clara Chaffi n and Tara Green, Colorado Climate Center photo graphs can also be considered. Barbara Dennis and Jeannine Kline, Publications and Printing Submit digital imagery via attached fi les to: [email protected]. -
Rocky Mountain National Park Lawn Lake Flood Interpretive Area (Elevation 8,640 Ft)
1 NCSS Conference 2001 Field Tour -- Colorado Rocky Mountains Wednesday, June 27, 2001 7:00 AM Depart Ft. Collins Marriott 8:30 Arrive Rocky Mountain National Park Lawn Lake Flood Interpretive Area (elevation 8,640 ft) 8:45 "Soil Survey of Rocky Mountain National Park" - Lee Neve, Soil Survey Project Leader, Natural Resources Conservation Service 9:00 "Correlation and Classification of the Soils" - Thomas Hahn, Soil Data Quality Specialist, MLRA Office 6, Natural Resources Conservation Service 9:15-9:30 "Interpretive Story of the Lawn Lake Flood" - Rocky Mountain National Park Interpretive Staff, National Park Service 10:00 Depart 10:45 Arrive Alpine Visitors Center (elevation 11,796 ft) 11:00 "Research Needs in the National Parks" - Pete Biggam, Soil Scientist, National Park Service 11:05 "Pedology and Biogeochemistry Research in Rocky Mountain National Park" - Dr. Eugene Kelly, Colorado State University 11:25 - 11:40 "Soil Features and Geologic Processes in the Alpine Tundra"- Mike Petersen and Tim Wheeler, Soil Scientists, Natural Resources Conservation Service Box Lunch 12:30 PM Depart 1:00 Arrive Many Parks Curve Interpretive Area (elevation 9,620 ft.) View of Valleys and Glacial Moraines, Photo Opportunity 1:30 Depart 3:00 Arrive Bobcat Gulch Fire Area, Arapaho-Roosevelt National Forest 3:10 "Fire History and Burned Area Emergency Rehabilitation Efforts" - Carl Chambers, U. S. Forest Service 3:40 "Involvement and Interaction With the Private Sector"- Todd Boldt; District Conservationist, Natural Resources Conservation Service 4:10 "Current Research on the Fire" - Colorado State University 4:45 Depart 6:00 Arrive Ft. Collins Marriott 2 3 Navigator’s Narrative Tim Wheeler Between the Fall River Visitors Center and the Lawn Lake Alluvial Debris Fan: This Park, or open grassy area, is called Horseshoe Park and is the tail end of the Park’s largest valley glacier. -
50 Years Celebrating Earth, Atmosphere, Astronomy, and Oceans: Stories of a Great Department
University of Northern Colorado Scholarship & Creative Works @ Digital UNC Earth & Atmospheric Sciences Faculty Publications Earth & Atmospheric Sciences 2020 50 Years Celebrating Earth, Atmosphere, Astronomy, and Oceans: Stories of a Great Department William Henry Hoyt Follow this and additional works at: https://digscholarship.unco.edu/easfacpub 50 Years Celebrating Earth, Atmosphere, Astronomy, and Oceans: Stories of a great Department By William H. Hoyt, Ph. D. University of Northern Colorado Department of Earth Sciences (Earth & Atmospheric Sciences) 1970-2020 1 1956-1970s: THE FIRST YEARS, Tollefson the Magnificent The first tale I ever heard about how the Department of Earth Sciences started hearkens out of the mid-1950s. Oscar W. Tollefson, who had almost graduated from the Univ. of Colorado (Ph D in geology), found himself sitting next to Colorado State College (CSC) President Bill Ross on a commercial flight between Washington, D.C. and Denver. Tolley, as he was universally known in professional circles, was the loquacious sort and so of course he struck up a conversation with a guy who, it turns out, was an amateur rock , fossil, and mineral collector. Bill Ross came from a background in buildings and grounds and knew a lot about earth materials and weather! Though we don’t know exactly what was said in that four hours, we do know that Bill Ross recognized a rare enthusiasm for teaching and learning in the young Tolley. Ross also probably recognized that Tolley’s persuasiveness and persistence would go a long way at the growing College. The Earth Sciences academic program was founded at Colorado State College (CSC) in 1956 by Dr. -
Colorado Mountain Club 2009 Donors to CMC Annual Campaign [Oct
The Colorado Mountain Club ANNUAL REPORT 2009 Annual Report 2009 1 From the Chief Executive Officer he past year was an Dominguez Escalante National Conservation Area just south incredibly challenging time of Grand Junction. On the Front Range, we celebrated the for our entire country, designation of Rocky Mountain National Park’s backcountry Teconomically speaking. Businesses as wilderness. This designation is one of the final chapters in around the country failed, and the long journey of protecting the beloved park the CMC many people saw their personal played a major role in creating in 1915. finances change significantly. Every Our Youth Education Program introduced nearly once in awhile an event happens 5,000 youth and their chaperones to an education only the that makes all of us change our great outdoors can bring, and we furthered our work with focus and get back to basics. In the severely disabled children. I can’t tell you what an honor it nonprofit world, buckling down was for me to watch a young man who has been wheelchair while still achieving our goals is bound his entire life get to the top of our climbing wall. That not new to us; we always make experience alone gave me strength to get through last year’s magic happen with very little. I’m tough times. proud to report that the Colorado The upcoming year will be another time of growth Mountain Club saw a number of and change for the CMC. We are inching our way closer to achievements this past year despite our 100th anniversary and have begun a rebranding project the economic challenges. -
The Flood Of'82
A window of opportunity The flood of '82 was clearly tragic in terms of life and property loss. But the area of impact was quickly recognized as a place for learning, and Out of disaster scientists gathered to study the impacts of the comes knowledge — flood, especially the recovery of high altitude eco systems. The studies will continue for decades. In this instance both of the workings of nature and Here are some research findings: the failures of mankind's works. The lessons are sharp, but they do give guidance for the future. The Flood Plant succession Those lessons are now being applied across the 35 species of willows and grasses were found nation, to manage or remove other high mountain growing after the first full season. dams. of'82 Bird populations The number of bird species living in the area has increased since the flood. Dam break modeling WARNING: Predictive models helped to reconstruct the be Streambanks are lined with dangerously havior of water in such a flood. unstable boulders. For your safety stay on the paved trail. Sedimentation studies Revealed downstream movement of distinctive lobes of fine sediment. Art: Bill Border The Lawn Lake flood of July 15, 1982 is an On steep slopes the "wet brown cloud" tore Park filled, then the water crashed forward —over experience the people in the Estes Valley will re through the ground and scoured 50 feet or more Cascade Dam, through Aspenglen Campground member for a long time. It affected many people into the earth. On gentler slopes the water on the edge of Rocky Mountain National Park, that day, but months passed before the events dropped sand, gravel, boulders, and battered and down Fall River. -
30Th Anniversary of the Lawn Lake Dam Failure: a Look Back at the State and Federal Response July 27, 2012 Mark E
30th Anniversary of the Lawn Lake Dam Failure: A Look Back at the State and Federal Response July 27, 2012 Mark E. Baker, P.E. National Park Service, Denver, CO Bill McCormick, P.E., P.G., Colorado Division of Water Resources, Salida, CO ABSTRACT On July 15, 1982, deep in Rocky Mountain National Park, the 26-foot high Lawn Lake Dam failed. The resulting flood charged down a mountain carving deep ravines and depositing huge fields of rock. It also wiped out campsites, tragically killing 3 people. The flood inundated businesses in the town of Estes Park and caused $31 million in damages. This paper describes how the State of Colorado (State) and Federal agencies responded to the event. The many impacts of this dam failure are explored so that the dam safety community can be better prepared to handle the myriad of issues associated with dam failures efficiently. The paper reviews the State’s response including communications immediately following the failure and the details of conducting a dam failure investigation, including the forensic analysis to determine likely failure mechanisms. Changes to the State dam safety program as a result of the failure are described. The effects of the failure on the NPS dam safety program, including the decision to remove other dams within Rocky Mountain National Park are also explored. The role of FEMA in coordinating post- failure research studies conducted by Federal agencies, including the USGS, USBR, and the NPS are also discussed. Finally, the paper describes the types of legal investigations conducted and lawsuits filed following the failure. -
Rocky Mountain National Park Geologic Resource Evaluation Report
National Park Service U.S. Department of the Interior Geologic Resources Division Denver, Colorado Rocky Mountain National Park Geologic Resource Evaluation Report Rocky Mountain National Park Geologic Resource Evaluation Geologic Resources Division Denver, Colorado U.S. Department of the Interior Washington, DC Table of Contents Executive Summary ...................................................................................................... 1 Dedication and Acknowledgements............................................................................ 2 Introduction ................................................................................................................... 3 Purpose of the Geologic Resource Evaluation Program ............................................................................................3 Geologic Setting .........................................................................................................................................................3 Geologic Issues............................................................................................................. 5 Alpine Environments...................................................................................................................................................5 Flooding......................................................................................................................................................................5 Hydrogeology .............................................................................................................................................................6 -
Big Thompson Flood
, .. r . .. ~ ...... 1 . ,.' Twenty Years Later ' , < . , , . ~ ," ':L '~, ", ~ ' What ,~We Have . ":"' learned' Since the ".,!.,.. 'f . Big thompson flood .... '.. .. ~ .. , ' . .. <o?; f . .- , : -: ..... >, '. , . Proceedings of a Meeting . Held in Fort Collins, Colorado , . July 13-15, 1996. • > • '. TWENTY YEARS LA TER WHAT WE HAVE LEARNED SINCE THE BIG THOMPSON FLOOD Eve Gruntfest Editor Proceedings of a Meeting Held in Fort Collins, Colorado July 13-15, 1996 Special Publication No. 33 Natural Hazards Research and Applications Information Center University of Colorado Boulder, Colorado The opinions contained in this volume are those of the authors and do not necessarily represent the views of the funding or sponsoring organiza tions. The use of trademarks or brand names.in these papers is not intended as an endorsement of any product. Published 1997. This volume is available from: The Natural Hazards Research and Applications Information Center Institute of Behavioral Science Campus Box 482 University of Colorado Boulder, CO 80309-0482 tel: (303) 492-6819 fax: (303) 492-2151 e-mail: [email protected] WWW: http://www .colorado. edu/hazards ii TABLE OF CONTENTS Table of Contents . .. iii Acknowledgments .............................. vii List of Abbreviations ............................ ix List of Participants . x INTRODUCTION AND OVERVIEW ................... 1 PART 1: FEDERAL PERSPECTIVE Barriers and Opportunities in Mitigation Richard W. Krimm ............................ 15 The Bureau of Reclamation and Dam Safety Howard Gunnarson ........................... 21 Flood Warning/Preparedness Programs of the Corps of Engineers Kenneth Zwickl .............................. 26 PART II: DAM SAFETY Olympus Dam Early Warning System David B. Fisher . 31 Dams, Defects, and Time Wayne J. Graham ............................ 40 1996 Willamette and Columbia River Flood Cynthia A. Henriksen .......................... 50 PART III: HUMAN DIMENSIONS OF DISASTER Emergency Communications: A Survey of the Century's Progress and Implications for Future Planning Bascombe J.