Geography and Physiography

Total Page:16

File Type:pdf, Size:1020Kb

Geography and Physiography General Geology by Whitman Cross, assisted toy Arthur Coe Spencer. Economic Geology by Chester Wells Puriiigton. GEOGRAPHY AND PHYSIOGRAPHY. several of its branches have cut into or across the Banded Mountain is a term used in one or two which has been recently cut through a forest cov^ broken mesa, causing much diversity in the places by Holmes as an alternative for Hesperus ering into brecciated rock, in which erosion is now GENERAL RELATIONS. topography. Peak, but as the latter was finally placed upon proceeding at a rapid rate. Geographic position. The La Plata quadrangle Culture. - -The La Plata Mountains have been the Hayden map and was generally used through­ Bear Greek. The basin head of this stream is situated in southwestern Colorado, near the found to contain metalliferous deposits, and in the out the Hayden reports, the other name is applied overlaps the extreme head of the La Plata for 1^ State line, as is shown by the index map on development of mining operations a small town, to the summit of similar character north of miles and is excavated in the stocks of Diorite the title page of this folio. It is bounded by named La Plata, has grown up in the heart of the Mount Moss. Peak and Mount Moss and of the indurated and _ meridians 108° and 108° 15' west longi-o ExtentD . and. mountains. The Rio Grande Southern Towns, The other names on the map are those of local metamorphosed strata between them. Polished tude and parallels 37° 15' and 37° 30' drainage- Railroad crosses the quadrangle south usage as far as that could be ascertained. and striated areas in the upper part of the basin north latitude, embracing 237.22 square miles. of the mountains. Hesperus, situated show that this was the source of a local glacier, LA PLATA MOUNTAINS. Within its borders are the headwaters of the La at the crossing of the La Plata River, is the main but no considerable morainal accumulations exist Plata and Mancos rivers and of Bear Creek, an station within the area for the traffic from the Size and form of tlie group. The La Platas in the lower valley. Bear Creek enters the important tributary of the Dolores River. All of mountains and the valley below. Coal mining is form a compact group of high peaks, all the prin­ Dolores River in the Rico quadrangle, 8 miles this drainage is tributary to the Colorado River. carried on in the immediate vicinity of Hesperus cipal summits lying within a circle 9 miles in from the La Plata line, at an elevation of 7900 Relations to San Juan Mountains and the Pla­ on either side of the river. Agricultural lands, diameter, the center of which is situated in the feet. Fig. 5 represents the Sharkstooth, on the teau country. The quadrangle lies some 20 miles developed through irrigation, extend down the La Plata Valley near the mouth of Tirbircio west side of Bear Creek, the most northerly sum­ southwest of the San Juan Mountain front. In La Plata Valley from Hesperus, while in Thomp­ Creek. The lesser summits and outlying ridges mit of the La Platas. the intermediate space is a heavily timbered, hilly son Park and on the East Mancos are a number all come within an oval area 12 to 15 miles in Branches of Mancos River. The entire west­ country occupied by Paleozoic and lower Meso- of ranches. diameter. Nearly all the peaks of the inner circle ern slope of the mountains is drained by the three zoic formations. Westward the level expanse On the La Plata River at the entrance to the are situated within the La Plata quadrangle, but forks of the Mancos River, two of which penetrate of the Dolores Plateau stretches far toward the mountains is Parrott, once the county seat of La a few lie beyond its eastern border, in the Durango at their heads within the inner circle of peaks. canyon of the Colorado. On the southwest, and Plata County, when it embraced the whole south­ quadrangle. Of these branches the West Mancos is the longer, rising nearly 2000 feet above that plateau, is the west corner of Colorado, but the town is now Many of the summits rise to more than 12,000 rising in Owen Basin under Mount Moss and famous Mesa Verde, dissected by the deep can­ reduced to a single inhabited house. The present feet above sea level, and the highest, Hesperus Hesperus, Babcock, and Spiller peaks, all of yons of the Mancos River and its tributaries, the boundary of La Plata and Montezuma counties Peak,' reaches an altitude of 13,225' Height , _ of. which exceed 13,000 feet in height. The extreme favorite fastnesses of the cliff dwellers. The quad­ traverses the quadrangle, following the watershed feet. The general character of the peaks- head of the West Mancos is shown in fig. 11. rangleo is thus situated on the border Border_ . line,. between the Mancos and La Plata rivers. mountains and of the valleys dissecting them may The East Mancos heads in Rush Basin, under between the well-watered and forest- l^Slns Geographic names. In the course of work be seen on the Topographic, Structure Section, Spiller Peak, an amphitheater corresponding to clad mountain region of the San Juan andplateaus- in the La Plata Mountains it became desirable and Illustration sheets of this folio. that at the source of the west fork of the river. and the arid mesa, plateau, and canyon country to have names for various peaks and ridges Drainage system. The La Plata Mountains The Middle Mancos is practically a branch of the which extends far into Utah, Arizona, and New hitherto nameless. In a few other cases it was are the result of a domal uplift which has been East Mancos, heading in minor streams on either Mexico. These relations are brought out by figs. found that local usage was conflicting or for dissected by erosion. Consequently Domedis= side of the Hogback. 1, 2, and 3 of the Illustration sheets, to which some reason undesirable. Since in the drainage system of the mountains Eastern drainage. As shown by the topo­ Revival of streams- further reference will be made. these instances there were names earlier has a general radiate arrangement. graphic sheet, the two principal branches of Light­ names. Physical features. By virtue of its position, already applied in earlier publications But the work accomplished by the various streams ner Creek rise on the eastern side of the higher described above, the La Plata quadrangle presents concerning the La Platas, these older terms have has not been equal. The master stream is the La peaks of the La Platas. From Eagle Pass north varied physical features, typical of the broad, been revived. Plata, which, flowing south, has cut back at its to Cumberland Peak, which is just beyond the level, canyon-dissected plains to the west, and of The name Rampart Hills, applied to the prom­ head almost to the northern rim of the group, eastern margin of the quadrangle, are a number the foothills of the San Juan Mountains, but the inences due to the porphyry sheet on the eastern dividing the mountains into nearly equal parts. of small branches of Junction Creek. But while most prominent element in the topography is bank of the West Mancos Canyon, needs no The main northern stream, Bear Creek, has also Lightner and Junction creeks have cut back to the rugged La Plata Mountain group, occupying explanation. As seen from the west these por­ penetrated the inner circle of peaks, overlapping the main eastern divide of the mountains, there is the greater part of the northeastern section of the phyry cliffs present the aspect of an outlying the La Plata, a narrow divide separating the but a single summit of importance isolated by area. These peaks form one of a number of iso­ breastwork of the mountains. The long ridge basins at the heads of these streams. this erosion from the other high summits of the lated groups, rising high above the gen­ leading north from the La Platas to the Rico On the west side two forks of the Mancos have group. This is Bald Knob (11,600+ feet), situa­ eral plateau level, which are scattered Mountains Mountains was the course of an old Indian trail, cut slightly into the core of the group, leaving ted east of Baker Peak, about one-half mile east of over thet adjacent-i. portions otP/-II Colorado, T boneofanum-aetre°f * - s which in several places has been worn deep in but a jagged crest between their headwaters and the quadrangle line. While Lightner and Junc­ Utah, Arizona, and New Mexico. From the soft sandstones of the La Plata formation. the La Plata drainage. On the east the attack of tion creeks have but short courses Great , erosion the western summits of the La Platas may be This line of communication appears to have been the radial streams has been less effective, but within the physiographic limits of the j^jSnctfon seen the Rico, El Late, Carriso, Abajo, La Sal, a favorite one for the Indians of the region, and several branches of Lightner and Junction creeks La Plata Mountains, they have done a and, in the far distance, the Henry Mountains, all the name Indian Trail Ridge is applied to the head on the slopes of the highest peaks. These greater amount of work than the forks of the mountains of analogous origin. divide followed. The names "Sliderock" and streams are tributary to the Animas River.
Recommended publications
  • Group Living Frequently Asked Questions
    Group Living Project – Common Questions General questions about the project: Page 1 Household Regulations: Page 3 Residential Care: Page 6 Advisory Committee: Page 9 Next Steps: Page 10 What is this project about and how long has it been going on? For the last two and a half years, Denver city planners have been working with residents, policy experts, advocates and service providers for vulnerable populations and other community members to update the Denver Zoning Code’s regulations on residential uses. These regulations govern everything from conventional households to group homes, shelters and assisted living facilities. Why do residential use rules need to be updated? Current rules create obstacles for residents who need flexible housing options and for providers who offer much-needed services to vulnerable populations. Current rules also perpetuate inequity by making it harder for certain communities to live in residential neighborhoods and near jobs, transit or other services they need. The project and the proposed changes aim to increase flexibility and housing options for residents, to streamline permitting processes for providers while fostering good relationships with neighbors, and to make it easier for those experiencing homelessness, trying to get sober or who have other special needs to live and access services with dignity. Why can’t we move more slowly with these changes? This project has been in progress for more than two years. The issues addressed have become even more urgent in the wake of the ongoing pandemic, job losses that are leading to a wave of evictions, the forthcoming loss of Denver’s existing community corrections resources, and our country’s long-overdue awakening to issues of equity.
    [Show full text]
  • Geologic Map of the Frisco Quadrangle, Summit County, Colorado
    Geologic Map of the Frisco Quadrangle, Summit County, Colorado By Karl S. Kellogg, Paul J. Bartos, and Cindy L. Williams Pamphlet to accompany MISCELLANEOUS FIELD STUDIES MAP MF-2340 2002 U.S. Department of the Interior U.S. Geological Survey Geologic Map of the Frisco Quadrangle, Summit County, Colorado By Karl S. Kellogg, Paul J. Bartos, and Cindy L. Williams DESCRIPTION OF MAP UNITS af Artificial fill (recent)—Compacted and uncompacted rock fragments and finer material underlying roadbed and embankments along and adjacent to Interstate 70. Also includes material comprising Dillon Dam dt Dredge tailings (recent)—Unconsolidated, clast-supported deposits containing mostly well- rounded to subrounded, cobble- to boulder-size clasts derived from dredging of alluvium for gold along the Blue and Swan Rivers; similar dredge tailings along Gold Run Gulch are too small to show on map. Dredge tailings were mapped from 1974 air photos; most tailings have now been redistributed and leveled for commercial development Qal Alluvium (Holocene)—Unconsolidated clast-supported deposits containing silt- to boulder-size, moderately sorted to well-sorted clasts in modern floodplains; includes overbank deposits. Clasts are as long as 1 m in Blue River channel; clasts are larger in some side-stream channels. Larger clasts are moderately rounded to well rounded. Includes some wetland deposits in and adjacent to beaver ponds along Ryan Gulch. Maximum thickness unknown, but greater than 10 m in Blue River channel Qw Wetland deposits (Holocene)—Dark-brown to black, organic-rich sediment underlying wetland areas, commonly containing standing water and dense willow stands. Maximum thickness estimated to be about 15 m Qav Avalanche deposits (Holocene)—Unsorted, unstratified hummocky deposits at the distal ends of avalanche-prone hillside in Sec.
    [Show full text]
  • Principles and Practices for Restoration of Ponderosa Pine and Dry Mixed
    United States Department of Agriculture Principles and Practices for the Restoration of Ponderosa Pine and Dry Mixed-Conifer Forests of the Colorado Front Range Robert N. Addington, Gregory H. Aplet, Mike A. Battaglia, Jennifer S. Briggs, Peter M. Brown, Antony S. Cheng, Yvette Dickinson, Jonas A. Feinstein, Kristen A. Pelz, Claudia M. Regan, Jim Thinnes, Rick Truex, Paula J. Fornwalt, Benjamin Gannon, Chad W. Julian, Jeffrey L. Underhill, Brett Wolk Forest Rocky Mountain General Technical Report Service Research Station RMRS-GTR-373 January 2018 Addington, Robert N.; Aplet, Gregory H.; Battaglia, Mike A.; Briggs, Jennifer S.; Brown, Peter M.; Cheng, Antony S.; Dickinson, Yvette; Feinstein, Jonas A.; Pelz, Kristen A.; Regan, Claudia M.; Thinnes, Jim; Truex, Rick; Fornwalt, Paula J.; Gannon, Benjamin; Julian, Chad W.; Underhill, Jeffrey L.; Wolk, Brett. 2018. Principles and practices for the restoration of ponderosa pine and dry mixed-conifer forests of the Colorado Front Range. RMRS-GTR-373. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 121 p. Abstract Wildfires have become larger and more severe over the past several decades on Colorado’s Front Range, catalyzing greater investments in forest management intended to mitigate wildfire risks.The complex ecological, social, and political context of the Front Range, however, makes forest management challenging, especially where multiple management goals including forest restoration exist. In this report, we present a science-based framework for managers to develop place-based approaches to forest restoration of Front Range ponderosa pine and dry mixed-conifer forests. We first present ecological information describing how Front Range forest structure and composition are shaped at multiple scales by interactions among topography, natural disturbances such as fire, and forest developmental processes.
    [Show full text]
  • Denudation History and Internal Structure of the Front Range and Wet Mountains, Colorado, Based on Apatite-Fission-Track Thermoc
    NEW MEXICO BUREAU OF GEOLOGY & MINERAL RESOURCES, BULLETIN 160, 2004 41 Denudation history and internal structure of the Front Range and Wet Mountains, Colorado, based on apatite­fission­track thermochronology 1 2 1Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801Shari A. Kelley and Charles E. Chapin 2New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM 87801 Abstract An apatite fission­track (AFT) partial annealing zone (PAZ) that developed during Late Cretaceous time provides a structural datum for addressing questions concerning the timing and magnitude of denudation, as well as the structural style of Laramide deformation, in the Front Range and Wet Mountains of Colorado. AFT cooling ages are also used to estimate the magnitude and sense of dis­ placement across faults and to differentiate between exhumation and fault­generated topography. AFT ages at low elevationX along the eastern margin of the southern Front Range between Golden and Colorado Springs are from 100 to 270 Ma, and the mean track lengths are short (10–12.5 µm). Old AFT ages (> 100 Ma) are also found along the western margin of the Front Range along the Elkhorn thrust fault. In contrast AFT ages of 45–75 Ma and relatively long mean track lengths (12.5–14 µm) are common in the interior of the range. The AFT ages generally decrease across northwest­trending faults toward the center of the range. The base of a fossil PAZ, which separates AFT cooling ages of 45– 70 Ma at low elevations from AFT ages > 100 Ma at higher elevations, is exposed on the south side of Pikes Peak, on Mt.
    [Show full text]
  • Historical Range of Variability and Current Landscape Condition Analysis: South Central Highlands Section, Southwestern Colorado & Northwestern New Mexico
    Historical Range of Variability and Current Landscape Condition Analysis: South Central Highlands Section, Southwestern Colorado & Northwestern New Mexico William H. Romme, M. Lisa Floyd, David Hanna with contributions by Elisabeth J. Bartlett, Michele Crist, Dan Green, Henri D. Grissino-Mayer, J. Page Lindsey, Kevin McGarigal, & Jeffery S.Redders Produced by the Colorado Forest Restoration Institute at Colorado State University, and Region 2 of the U.S. Forest Service May 12, 2009 Table of Contents EXECUTIVE SUMMARY … p 5 AUTHORS’ AFFILIATIONS … p 16 ACKNOWLEDGEMENTS … p 16 CHAPTER I. INTRODUCTION A. Objectives and Organization of This Report … p 17 B. Overview of Physical Geography and Vegetation … p 19 C. Climate Variability in Space and Time … p 21 1. Geographic Patterns in Climate 2. Long-Term Variability in Climate D. Reference Conditions: Concept and Application … p 25 1. Historical Range of Variability (HRV) Concept 2. The Reference Period for this Analysis 3. Human Residents and Influences during the Reference Period E. Overview of Integrated Ecosystem Management … p 30 F. Literature Cited … p 34 CHAPTER II. PONDEROSA PINE FORESTS A. Vegetation Structure and Composition … p 39 B. Reference Conditions … p 40 1. Reference Period Fire Regimes 2. Other agents of disturbance 3. Pre-1870 stand structures C. Legacies of Euro-American Settlement and Current Conditions … p 67 1. Logging (“High-Grading”) in the Late 1800s and Early 1900s 2. Excessive Livestock Grazing in the Late 1800s and Early 1900s 3. Fire Exclusion Since the Late 1800s 4. Interactions: Logging, Grazing, Fire, Climate, and the Forests of Today D. Summary … p 83 E. Literature Cited … p 84 CHAPTER III.
    [Show full text]
  • 2015 SSSA Program
    Latinos and the Change of a Nation: Implications for the Social Sciences 95th Annual Meeting of the Southwestern Social Science Association April 8 – 11, 2015 Grand Hyatt, Denver Denver, Colorado 1 SSSA Events Time Location Wednesday April 8 Registration & Exhibits 2:00 - 5:00 p.m. Imperial Ballroom SSSA Executive Committee 3:00 - 5:00 p.m. Mount Harvard Nominations Committee Meeting 1 4:00 – 5:30 pm Mount Yale Thursday April 9 Registration & Exhibits 8:00 a.m. – 5:00 p.m. Imperial Ballroom Nominations Committee 8:30 - 9:45 a.m. Mount Harvard Membership Committee 8:30 - 9:45 a.m. Mount Yale Budget and Financial Policies Committee 8:30 - 9:45 a.m. Mount Oxford Resolutions Committee 10:00 - 11:15 a.m. Mount Harvard Editorial Policies Committee 10:00 - 11:15 a.m. Mount Oxford Site Policy Committee 10:00 - 11:15 a.m. Mount Yale SSSA Council 1:00 - 3:45 p.m. Mount Oxford SSSA Presidential Address 4:00 - 5:15 p.m. Mount Sopris B SSSA Presidential Reception 5:30 - 7:30 p.m. Mount Evans Friday April 10 Registration & Exhibits 8:00 a.m. – 5:00 p.m. Imperial Ballroom SSSA Student Social & Welcome Continental 7:15 – 8:45 a.m. Grand Ballroom Breakfast (FOR REGISTERED STUDENTS ONLY, No Guests or Faculty/Professional Members) SSSA General Business Meeting 1:00 - 2:15 p.m. Grand Ballroom Saturday April 11 Registration 8:00 – 11:00 am Imperial Ballroom 2016 Program Committee 7:15 - 8:30 a.m. Pike’s Peak Getting to Know SSSA 8:30 – 9:15 a.m.
    [Show full text]
  • Colorado Fourteeners Checklist
    Colorado Fourteeners Checklist Rank Mountain Peak Mountain Range Elevation Date Climbed 1 Mount Elbert Sawatch Range 14,440 ft 2 Mount Massive Sawatch Range 14,428 ft 3 Mount Harvard Sawatch Range 14,421 ft 4 Blanca Peak Sangre de Cristo Range 14,351 ft 5 La Plata Peak Sawatch Range 14,343 ft 6 Uncompahgre Peak San Juan Mountains 14,321 ft 7 Crestone Peak Sangre de Cristo Range 14,300 ft 8 Mount Lincoln Mosquito Range 14,293 ft 9 Castle Peak Elk Mountains 14,279 ft 10 Grays Peak Front Range 14,278 ft 11 Mount Antero Sawatch Range 14,276 ft 12 Torreys Peak Front Range 14,275 ft 13 Quandary Peak Mosquito Range 14,271 ft 14 Mount Evans Front Range 14,271 ft 15 Longs Peak Front Range 14,259 ft 16 Mount Wilson San Miguel Mountains 14,252 ft 17 Mount Shavano Sawatch Range 14,231 ft 18 Mount Princeton Sawatch Range 14,204 ft 19 Mount Belford Sawatch Range 14,203 ft 20 Crestone Needle Sangre de Cristo Range 14,203 ft 21 Mount Yale Sawatch Range 14,200 ft 22 Mount Bross Mosquito Range 14,178 ft 23 Kit Carson Mountain Sangre de Cristo Range 14,171 ft 24 Maroon Peak Elk Mountains 14,163 ft 25 Tabeguache Peak Sawatch Range 14,162 ft 26 Mount Oxford Collegiate Peaks 14,160 ft 27 Mount Sneffels Sneffels Range 14,158 ft 28 Mount Democrat Mosquito Range 14,155 ft 29 Capitol Peak Elk Mountains 14,137 ft 30 Pikes Peak Front Range 14,115 ft 31 Snowmass Mountain Elk Mountains 14,099 ft 32 Windom Peak Needle Mountains 14,093 ft 33 Mount Eolus San Juan Mountains 14,090 ft 34 Challenger Point Sangre de Cristo Range 14,087 ft 35 Mount Columbia Sawatch Range
    [Show full text]
  • The High Deccan Duricrusts of India and Their Significance for the 'Laterite
    The High Deccan duricrusts of India and their significance for the ‘laterite’ issue Cliff D Ollier1 and Hetu C Sheth2,∗ 1School of Earth and Geographical Sciences, The University of Western Australia, Nedlands, W.A. 6009, Australia. 2Department of Earth Sciences, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400 076, India. ∗e-mail: [email protected] In the Deccan region of western India ferricrete duricrusts, usually described as laterites, cap some basalt summits east of the Western Ghats escarpment, basalts of the low-lying Konkan Plain to its west, as well as some sizeable isolated basalt plateaus rising from the Plain. The duricrusts are iron-cemented saprolite with vermiform hollows, but apart from that have little in common with the common descriptions of laterite. The classical laterite profile is not present. In particular there are no pisolitic concretions, no or minimal development of con- cretionary crust, and the pallid zone, commonly assumed to be typical of laterites, is absent. A relatively thin, non-indurated saprolite usually lies between the duricrust and fresh basalt. The duricrust resembles the classical laterite of Angadippuram in Kerala (southwestern India), but is much harder. The High Deccan duricrusts capping the basalt summits in the Western Ghats have been interpreted as residuals from a continuous (but now largely destroyed) laterite blan- ket that represents in situ transformation of the uppermost lavas, and thereby as marking the original top of the lava pile. But the unusual pattern of the duricrusts on the map and other evidence suggest instead that the duricrusts formed along a palaeoriver system, and are now in inverted relief.
    [Show full text]
  • Multiple Intrusions in the San Miguel Mountains, Colorado Calvin S
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/19 Multiple intrusions in the San Miguel Mountains, Colorado Calvin S. Bromfield and Alfred L. Bush, 1968, pp. 94-99 in: San Juan, San Miguel, La Plata Region (New Mexico and Colorado), Shomaker, J. W.; [ed.], New Mexico Geological Society 19th Annual Fall Field Conference Guidebook, 212 p. This is one of many related papers that were included in the 1968 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Colorado Climate Center Sunset
    Table of Contents Why Is the Park Range Colorado’s Snowfall Capital? . .1 Wolf Creek Pass 1NE Weather Station Closes. .4 Climate in Review . .5 October 2001 . .5 November 2001 . .6 Colorado December 2001 . .8 Climate Water Year in Review . .9 Winter 2001-2002 Why Is It So Windy in Huerfano County? . .10 Vol. 3, No. 1 The Cold-Land Processes Field Experiment: North-Central Colorado . .11 Cover Photo: Group of spruce and fi r trees in Routt National Forest near the Colorado-Wyoming Border in January near Roger A. Pielke, Sr. Colorado Climate Center sunset. Photo by Chris Professor and State Climatologist Department of Atmospheric Science Fort Collins, CO 80523-1371 Hiemstra, Department Nolan J. Doesken of Atmospheric Science, Research Associate Phone: (970) 491-8545 Colorado State University. Phone and fax: (970) 491-8293 Odilia Bliss, Technical Editor Colorado Climate publication (ISSN 1529-6059) is published four times per year, Winter, Spring, If you have a photo or slide that you Summer, and Fall. Subscription rates are $15.00 for four issues or $7.50 for a single issue. would like considered for the cover of Colorado Climate, please submit The Colorado Climate Center is supported by the Colorado Agricultural Experiment Station it to the address at right. Enclose a note describing the contents and through the College of Engineering. circumstances including loca- tion and date it was taken. Digital Production Staff: Clara Chaffi n and Tara Green, Colorado Climate Center photo graphs can also be considered. Barbara Dennis and Jeannine Kline, Publications and Printing Submit digital imagery via attached fi les to: [email protected].
    [Show full text]
  • Memorial to W.A. “Bill” Cobban (1916–2015) NEAL L
    Memorial to W.A. “Bill” Cobban (1916–2015) NEAL L. LARSON Larson Paleontology Unlimited, LLC, Keystone, South Dakota 57745, USA; [email protected] NEIL H. LANDMAN American Museum of Natural History, Division of Paleontology (Invertebrates), New York, New York 10024, USA; [email protected] STEPHEN C. HOOK Atarque Geologic Consulting, LLC, Socorro, New Mexico 87810, USA; [email protected] Dr. W.A. “Bill” Cobban, one of the most highly re- spected, honored and published geologist-paleontologists of all time, passed away peacefully in his sleep in the morning of 21 April 2015 at the age of 98 in Lakewood, Colorado. Bill was an extraordinary field collector, geologist, stratigrapher, biostratigrapher, paleontologist, and mapmaker who spent nearly his entire life working for the U.S. Geo- logical Survey (USGS). In a career that spanned almost 75 years, he fundamentally changed our understanding of the Upper Cretaceous Western Interior through its fossils, making it known throughout the world. William Aubrey “Bill” Cobban was born in 1916 near Great Falls, Montana. As a teenager, he discovered a dinosaur in the Kootenai Formation catching the attention of Barnum Brown, premier dinosaur collector at the American Museum of Natural History, where the dinosaur now resides. A few years later, as Bill told, he read about the discovery of fossil bones in Shelby, Montana, during excavation of the Toole County Courthouse. The bones turned out to actually be baculites and other iridescent ammonites. These ammonites made such an impression on Bill they would change his life forever. He attended Montana State University in 1936, where he met a geology professor who encouraged an already developing love for geology and paleontology and received his B.S.
    [Show full text]
  • On the Glaciology of Edgegya and Barentsgya, Svalbard
    On the glaciology of Edgegya and Barentsgya, Svalbard JULIAN A. DOWDESWELL and JONATHAN L. BAMBER Dowdeswell J. A. & Bamber. J. L. 1995: On the glaciology of Edgeoya and Barentsoya, Svalbard. Polar Research 14(2). 105-122. The ice masses on Edgeoya and Barentsdya are the least well known in Svalbard. The islands are 42-47% ice covered with the largest ice cap, Edge0yjokulen. 1365 km2 in area. The tidewater ice cliffs of eastern Edgedya are over 80 km long and produce small tabular icebergs. Several of the ice-cap outlet glaciers on Edgeoya and Barentsoya are known to surge, and different drainage basins within the ice caps behave as dynamically separate units. Terminus advances during surging have punctuated more general retreat from Little Ice Age moraines, probably linked to Twentieth Century climate warming and mass balance change. Airborne radio-echo sounding at 60 MHz along 340 km of flight track over the ice masses of Edgeoya and Barentsldya has provided ice thickness and elevation data. Ice is grounded below sea level to about 20 km inland from the tidewater terminus of Stonebreen. Ice thickens from <lo0 rn close to the margins, to about 250 m in the interior of Edgeeiyj~kulen.The maximum ice thickness measured on Barentsjokulen was 270111. Landsat MSS images of the two islands, calibrated to in-band reflectance values, allow synoptic examination of snowline position in late July/early August. Snow and bare glacier ice were identified. and images were digitally stretched and enhanced. The snowline was at about 300111 on the east side of Edgeoyjbkulen, and 50-100 m higher to the west.
    [Show full text]