Field Infestation of Phaseolus Vulgaris by Acanthoscelides Obtectus (Coleoptera: Bruchidae), Parasitoid Abundance, and Consequences for Storage Pest Control

Total Page:16

File Type:pdf, Size:1020Kb

Field Infestation of Phaseolus Vulgaris by Acanthoscelides Obtectus (Coleoptera: Bruchidae), Parasitoid Abundance, and Consequences for Storage Pest Control View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library PEST MANAGEMENT AND SAMPLING Field Infestation of Phaseolus vulgaris by Acanthoscelides obtectus (Coleoptera: Bruchidae), Parasitoid Abundance, and Consequences for Storage Pest Control 1 2 I. SCHMALE, F. L. WA¨ CKERS, C. CARDONA, AND S. DORN Institute of Plant Sciences, Applied Entomology, Swiss Federal Institute of Technology (ETH), Clausiusstrasse 25/NW, 8092 Zu¨ rich, Switzerland Environ. Entomol. 31(5): 859Ð863 (2002) ABSTRACT Over a period of 3 yr we collected 19 samples (1 kg each) of recently harvested beans (Phaseolus vulgaris L.) from eight small-scale farms in Restrepo, Valle de Cauca, Colombia. Initial infestation by Acanthoscelides obtectus (Say) was low, but frequent. At harvest, 90% of the bean samples were infested by the weevil. The average level of infestation was 16 weevils per 1,000 beans, with a maximum of 55 weevils. Infested beans usually carried multiple larvae witha maximum of 13 larvae per bean. Emergence data indicate that oviposition by A. obtectus in the Þeld is conÞned to a very short period before harvest. This relatively narrow time window can be exploited for proper timing of control measures. Only one species of parasitoid, Horismenus ashmeadii (Dalla Torre) (Hymenoptera: Eulophidae), was recorded, emerging from 21% of the samples. Samples with parasitoids had an average of Þve parasitoids per 1,000 beans, witha maximum of 12 parasitoids. Thisrepresented a parasitization level of 18%. During the 16 wk of storage, two weevil generations emerged, which caused visible damage in 0.5 and 34% of the beans (average of 14%). Although H. ashmeadii was successful in attacking the Þrst generation of A. obtectus in the Þeld, it failed to attack or develop under storage conditions. This indivates H. ashmeadii cannot serve as a postharvest control agent. KEY WORDS Acanthoscelides obtectus,beans, Bruchidae, parasitoids, oviposition behavior, storage pest MANY SPECIES FROM the family Bruchidae are world- though market prices are then usually at their lowest. wide pests of beans bothin theÞeld and in storage. CIAT (1986) estimated that this results in a 50% in- After hatching from the eggs, Þrst instars penetrate the come loss compared withprices thatcould be ob- bean seeds. The beetles develop within the seeds to tained if beans were safely stored for a few month. emerge as adults leaving typical damage in the form of Furthermore, it is expected that spreading the bean the empty feeding chambers. In addition, to this direct supply over a longer period would stabilize bean damage, indirect damage arises from contamination prices in general (van Schoonhoven 1976). by excrement, pheromone, and dead insects, which Acanthoscelides obtectus is one of two major bruchid can cause allergic reactions in humans (CIAT 1986). species causing damage to stored beans in Latin Amer- Weevil damage can also lead to a lower germination ica. It prefers cooler climates at higher elevations, and rate of damaged bean seeds (Zacher 1930). thus, can be found in mountainous and subtropical In 1986, CIAT (1986) estimated economic losses regions where it is the only insect pest of stored beans due to bruchid damage in Colombian warehouses to (Cardona 1989). A. obtectus is known to infest beans be 7.4% after 45 d of storage. Other sources reported in the Þeld by ovipositing eggs loosely in growing pods damage levels of 35% losses in Mexico and Central (Cardona 1989). Despite its economic importance, America, and 13% in Brazil after different storage little or no information is available on the timing and times (cited in CIAT 1986). However, these data are level of this Þeld infestations. Available observations difÞcult to compare, because the types of beans and indicate that females deposit their eggs in the drying storage varied, and losses are known to be directly pods (Thiery and Jarry 1985). In addition, to this lack correlated withduration of storage. of knowledge on herbivore-plant interactions, little is Colombian farmers respond to the bruchid problem known about natural enemies attacking A. obtectus in by selling their commodity at the time of harvest, even the Þeld. In this study we wanted to quantify natural levels 1 E-mail: [email protected]. and the timing of Þeld infestations by A. obtectus, and 2 Centro Internacional de Agricultura Tropical (CIAT), Cali, Co- to investigate the subsequent dynamics of the herbi- lombia. vore populations under typical Andean storage con- 0046-225X/02/0859Ð0863$02.00/0 ᭧ 2002 Entomological Society of America 860 ENVIRONMENTAL ENTOMOLOGY Vol. 31, no. 5 ditions. We also surveyed parasitoids attacking A. ob- laboratory and kept in glass jars in a chamber at 20Ð tectus in the Þeld by taking samples of various sites 25ЊC and 70% RH. All newly emerged insects were over 3 yr. removed from the jars and counted at weekly inter- vals. Samples were discarded after 5 wk, which covers the development time of the weevil under given con- Materials and Methods ditions. This ensured recovery of the majority of All observations were made using the commonly emerging adults and prevented counting F1-genera- cultivated susceptible bean variety Phaseolus vulgaris tion individuals. L. variety Diacol-Calima (Leguminosae). Percentage bean damage was calculated. Beans Initial Bean Damage. To investigate the level of were counted as ÔdamagedÕ when at least one emer- natural Þeld infestation by A. obtectus, a total of 19 gence hole made by A. obtectus was visible at the time bean samples of Ϸ1 kg eachwere taken from eight the samples were collected. Because larvae inside the small-scale farms in Restrepo, Valle de Cauca, Colom- seeds are not visible they have no direct impact on bia (1,360 m above MSL). Four farms had their Þelds value, and thus were not counted as ÔdamagedÕ. situated in the center of the bean-growing area, where Also, the intensity of infestation was calculated us- beans are permanently present in the Þeld, the other ing the following formula: intensity of infestation ϭ four farms had their Þelds situated outside the center total number of emergence holes/number of damaged of the bean-growing area, where crop rotation re- seeds. sulted in bean-free periods. Sampling took place at 15 dates over a 3-yr period (1997Ð1999). Samples were Results taken on-farm within the Þrst week after harvest. Time of harvest was recorded for each sample. Initial Bean Damage: Weevil Emergence. An aver- At the time of collecting the sample, every bean age of 26, 13, and 14 A. obtectus adults emerged from seed was examined for insect damage, in particular 1,000 bean seeds collected at harvest in the years 1997, weevil or parasitoid emergence holes. Subsequently, 1998, and 1999, respectively. Therefore, the mean Þeld the samples were kept in glass jars in a laboratory infestation over the whole period was 16 weevils per chamber at 20Ð25ЊC and 70% RH. All newly emerged 1,000 seeds, witha maximum of 55 weevils. Only two insects were removed from the jars and counted at of the 19 samples were uninfested (both in 1998). In weekly intervals. Samples were discarded after 5 wk, the 3 yr, emergence started the third, the fourth, and which covers the development time of the weevil the Þfth week after harvest, respectively (Fig. 1). under the given conditions. This ensured that the Acanthoscelides obtectus adults emerged over a period majority of emerging adults was recorded, but pre- of 3 wk, following a roughly normal distribution. vented the counting of F1 generation individuals. Parasitoid Emergence. Hymenopteran parasitoids Storage Monitoring. To investigate the population were observed in 11 samples collected from four farms dynamics of A. obtectus, beans were harvested in 1998 in the center of the village. They uniformly belonged and 1999 from seven representative Þelds in Restrepo. to a species in the genus Horismenus (Hymenoptera: Three Þelds were situated in the center of the bean- Eulophidae), which was determined to be either growing area, where beans are permanently present in Horismenus ashmeadii (Dalla Torre) or an unde- the Þeld, and four Þelds were situated outside the scribed species close to H. ashmeadii (witha longer center of the bean-growing area, where crop rotation female gaster) (det.: Christer Hansson, Institute of resulted in bean-free periods. Bags containing 40 kg of Zoology, Lund, Sweden). In this article, the species is bean seeds eachwere Þlled and stored on-farm. The referred to as H. ashmeadii. Emergence of H. ashmea- climatic conditions over 25 yr in this region are 19.6ЊC; dii occurred over the same period as emergence of A. 82.25% RH, and 86.75 mm precipitation (GIS, Centro obtectus, but there was greater variation between Internacional de Agricultura Tropical, Cali, Colom- farms withrespect to thepeak of emergence (Fig. 2). bia). Precipitation during the experimental period was The fraction of samples yielding parasitoids was 100, elevated due to the climatic phenomenon ÔEl Nin˜ oÕ 55, and 25% in 1997, 1998, and 1999, respectively. In and rainy and dry seasons were less distinct than parasitized samples, an average of 6, 3, and 18 H. normal. After harvest, bean pods were spread out for ashmeadii adults emerged from 1,000 bean seeds in sun drying and subsequently threshed. A 1-kg sample these same years. Over the whole period, a maximum of beans was removed to evaluate Þeld infestation of 12 parasitoids per 1,000 seeds emerged representing levels, and 40 kg of seeds eachwere poured into seven a parasitization rate of 18%. polypropylene bags and stored on-farm for 16 wk. Storage Monitoring. During 16 wk of storage, two Over this period, 0.5 kg of beans were removed at bruchid generations emerged (Fig.
Recommended publications
  • Genetic Dissection of Azuki Bean Weevil (Callosobruchus Chinensis L.) Resistance in Moth Bean (Vigna Aconitifolia [Jaqc.] Maréchal)
    G C A T T A C G G C A T genes Article Genetic Dissection of Azuki Bean Weevil (Callosobruchus chinensis L.) Resistance in Moth Bean (Vigna aconitifolia [Jaqc.] Maréchal) Prakit Somta 1,2,3,* , Achara Jomsangawong 4, Chutintorn Yundaeng 1, Xingxing Yuan 1, Jingbin Chen 1 , Norihiko Tomooka 5 and Xin Chen 1,* 1 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; [email protected] (C.Y.); [email protected] (X.Y.); [email protected] (J.C.) 2 Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand 3 Center for Agricultural Biotechnology (AG-BIO/PEDRO-CHE), Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand 4 Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; [email protected] 5 Genetic Resources Center, Gene Bank, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan; [email protected] * Correspondence: [email protected] (P.S.); [email protected] (X.C.) Received: 3 September 2018; Accepted: 12 November 2018; Published: 15 November 2018 Abstract: The azuki bean weevil (Callosobruchus chinensis L.) is an insect pest responsible for serious postharvest seed loss in leguminous crops. In this study, we performed quantitative trait locus (QTL) mapping of seed resistance to C. chinensis in moth bean (Vigna aconitifolia [Jaqc.] Maréchal). An F2 population of 188 plants developed by crossing resistant accession ‘TN67’ (wild type from India; male parent) and susceptible accession ‘IPCMO056’ (cultivated type from India; female parent) was used for mapping.
    [Show full text]
  • Nghiên Cứu Thành Phần Mọt Hại Ngô Sau
    VIỆN HÀN LÂM KHOA HỌC BỘ GIÁO DỤC VÀ ĐÀO TẠO VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- NGUYỄN VĂN DƯƠNG NGHIÊN CỨU THÀNH PHẦN MỌT HẠI NGÔ SAU THU HOẠCH VÀ ẢNH HƯỞNG CỦA MỘT SỐ YẾU TỐ SINH THÁI ĐẾN SỰ PHÁT TRIỂN CỦA LOÀI MỌT Sitophilus zeamais Motschulsky TRONG KHO BẢO QUẢN Ở SƠN LA LUẬN ÁN TIẾN SĨ SINH HỌC Hà Nội – 2021 VIỆN HÀN LÂM KHOA HỌC BỘ GIÁO DỤC VÀ ĐÀO TẠO VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- NGUYỄN VĂN DƯƠNG NGHIÊN CỨU THÀNH PHẦN MỌT HẠI NGÔ SAU THU HOẠCH VÀ ẢNH HƯỞNG CỦA MỘT SỐ YẾU TỐ SINH THÁI ĐẾN SỰ PHÁT TRIỂN CỦA LOÀI MỌT Sitophilus zeamais Motschulsky TRONG KHO BẢO QUẢN Ở SƠN LA Chuyên ngành: Sinh thái học Mã số: 9 42 01 20 Người hướng dẫn khoa học: 1. PGS.TS. Khuất Đăng Long 2. PGS.TS. Lê Xuân Quế Hà Nội – 2021 LỜI CAM ĐOAN Để đảm bảo tính trung thực của luận án, tôi xin cam đoan: Luận án “Nghiên cứu thành phần mọt hại ngô sau thu hoạch và ảnh hưởng của một số yếu tố sinh thái đến sự phát triển loài mọt Sitophilus zeamais Motschulsky trong kho bảo quản ở Sơn La”. Là công trình nghiên cứu của cá nhân tôi, dưới sự hướng dẫn khoa học của PGS.TS. Khuất Đăng Long và PGS.TS. Lê Xuân Quế, các tài liệu tham khảo đều được trích nguồn. Các kết quả trình bày trong luận án là trung thực và chưa từng được công bố ở bất kì công trình nào trước đây./.
    [Show full text]
  • Callosobruchus Spp.) in Vigna Crops: a Review
    NU Science Journal 2007; 4(1): 01 - 17 Genetics and Breeding of Resistance to Bruchids (Callosobruchus spp.) in Vigna Crops: A Review Peerasak Srinives1*, Prakit Somta1 and Chanida Somta2 1Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Parham, 73140 Thailand 2Asian Regional Center, AVRDC-The World Vegetable Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand *Corresponding author. E-mail: [email protected] ABSTRACT Vigna crops include mungbean (V. radiata), blackgram (V. mungo), azuki bean (V. angularis) and cowpea (V. unguiculata) are agriculturally and economically important crops in tropical and subtropical Asia and/or Africa. Bruchid beetles, Callosobruchus chinensis (L.) and C. maculatus (F.) are the most serious insect pests of Vigna crops during storage. Use of resistant cultivars is the best way to manage the bruchids. Bruchid resistant cowpea and mungbean have been developed and comercially used, each with single resistance source. However, considering that enough time and evolutionary pressure may lead bruchids to overcome the resistance, new resistance sources are neccessary. Genetics and mechanism of the resistance should be clarified and understood to develop multiple resistance cultivars. Gene technology may be a choice to develop bruchid resistance in Vigna. In this paper we review sources, mechanism, genetics and breeding of resistance to C. chinensis and C. maculatus in Vigna crops with the emphasis on mungbean, blackgram, azuki bean and cowpea. Keywords: Bruchid resistance, Callosobruchus spp., Legumes, Vigna spp. INTRODUCTION The genus Vigna falls within the tribe Phaseoleae and family Fabaceae. Species in this taxon mainly distribute in pan-tropical Asia and Africa. Seven Vigna species are widely cultivated and known as food legume crops.
    [Show full text]
  • The Development and Use of Varieties of Beans Resistant to Certain Insect Pests of Legumes
    THE DEVELOPMENT AND USE OF VARIETIES OF BEANS RESISTANT TO CERTAIN INSECT PESTS OF LEGUMES, DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By JOSE CALDERON GUEVARA, Ing. Agr., M. Sc. The Ohio State University. 1957 Approved by: CONTENTS Page INTRODUCTION ...................... 1 REVIEW OE LITERATURE ............................. 4 Insect Outbreaks .................... 4 Food Plant Selection by Insects ................ 11 The Mechanisms of Resistance .................. 14 Cause of Resistance ........................... 18 Factors that Affect the Expression or the Permanence of Resistance .................. 22 SYNOPSIS OF THE BIOLOGY OF THE APION POD WEEVIL .... 29 SELECTION OF VARIETIES RESISTANT TO THE APION POD WEEVIL, APION GODMANI WAG................... 30 Seasonal infestation of A. godmani Wagner in Susceptible Varieties .............. 31 Investigation of the Cause of Resistance on beans to Apion godmani Wagner ........... 37 Crossing Program for A. godmani Resistance ....... 42 Classification of Bean Varieties and Lines ac­ cording to Resistance to the ApionPod Weevil .. 49 NOTES ON THE BIOLOGY OF THE SEED CORN MAGGOT IN MEXICO .... 52 Experiments on Seed Color Preference of Hylemya cilicrura .................................. 59 Preliminary Selection of Resistant Varieties to the Seed Corn Maggot ........... 61, ii PRELIMINARY EXPERIMENTS ON THE SELECTION. OF BEAN VARIETIES RESISTANT TO THE POTATO LEAFHOPPER .... 64 Experiments at the University Farm, Columbus,Ohio. 67 Experimental Designs ........................... 67 Relationship Between the Potato Leafhopper and Bean Plants ................................. 68 Leafhopper Damage .................... ......... 69 Recuperation of the Bean Plant from Insect Attack and Seasonal Differences .............. 72 Effect of Weather on the Potato Leafhopper and the Bean Plant .............................. 76 Tolerance of Different Bean Varieties to the Potato Leafhopper .....
    [Show full text]
  • General-Poster
    XXIV International Congress of Entomology General-Poster > 157 Section 1 Taxonomy August 20-22 (Mon-Wed) Presentation Title Code No. Authors_Presenting author PS1M001 Madagascar’s millipede assassin bugs (Hemiptera: Reduviidae: Ectrichodiinae): Taxonomy, phylogenetics and sexual dimorphism Michael Forthman, Christiane Weirauch PS1M002 Phylogenetic reconstruction of the Papilio memnon complex suggests multiple origins of mimetic colour pattern and sexual dimorphism Chia-Hsuan Wei, Matheiu Joron, Shen-HornYen PS1M003 The evolution of host utilization and shelter building behavior in the genus Parapoynx (Lepidoptera: Crambidae: Acentropinae) Ling-Ying Tsai, Chia-Hsuan Wei, Shen-Horn Yen PS1M004 Phylogenetic analysis of the spider mite family Tetranychidae Tomoko Matsuda, Norihide Hinomoto, Maiko Morishita, Yasuki Kitashima, Tetsuo Gotoh PS1M005 A pteromalid (Hymenoptera: Chalcidoidea) parasitizing larvae of Aphidoletes aphidimyza (Diptera: Cecidomyiidae) and the fi rst fi nding of the facial pit in Chalcidoidea Kazunori Matsuo, Junichiro Abe, Kanako Atomura, Junichi Yukawa PS1M006 Population genetics of common Palearctic solitary bee Anthophora plumipes (Hymenoptera: Anthophoridae) in whole species areal and result of its recent introduction in the USA Katerina Cerna, Pavel Munclinger, Jakub Straka PS1M007 Multiple nuclear and mitochondrial DNA analyses support a cryptic species complex of the global invasive pest, - Poster General Bemisia tabaci (Gennadius) (Insecta: Hemiptera: Aleyrodidae) Chia-Hung Hsieh, Hurng-Yi Wang, Cheng-Han Chung,
    [Show full text]
  • An Annotated Bibliography of Archaeoentomology
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Distance Master of Science in Entomology Projects Entomology, Department of 4-2020 An Annotated Bibliography of Archaeoentomology Diana Gallagher Follow this and additional works at: https://digitalcommons.unl.edu/entodistmasters Part of the Entomology Commons This Thesis is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Distance Master of Science in Entomology Projects by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Diana Gallagher Master’s Project for the M.S. in Entomology An Annotated Bibliography of Archaeoentomology April 2020 Introduction For my Master’s Degree Project, I have undertaken to compile an annotated bibliography of a selection of the current literature on archaeoentomology. While not exhaustive by any means, it is designed to cover the main topics of interest to entomologists and archaeologists working in this odd, dark corner at the intersection of these two disciplines. I have found many obscure works but some publications are not available without a trip to the Royal Society’s library in London or the expenditure of far more funds than I can justify. Still, the goal is to provide in one place, a list, as comprehensive as possible, of the scholarly literature available to a researcher in this area. The main categories are broad but cover the most important subareas of the discipline. Full books are far out-numbered by book chapters and journal articles, although Harry Kenward, well represented here, will be publishing a book in June of 2020 on archaeoentomology.
    [Show full text]
  • Biology and Biointensive Management of Acanthoscelides Obtectus (Say) (Coleoptera: Chrysomelidae) – a Pest of Kidney Beans Wordwide
    11th International Working Conference on Stored Product Protection Biology and biointensive management of Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae) – a pest of kidney beans wordwide Thakur, D.R.*#, Renuka Department of Biosciences, Himachal Pradesh University, Summerhill, Shimla 171005, India *Corresponding author, Email: [email protected], [email protected] #Presenting author, Email: [email protected] [email protected] DOI: 10.14455/DOA.res.2014.24 Abstract Insects in the family Bruchidae are commonly called “pulse weevils” and are cosmopolitan in distribution. These beetles cause serious economic loss of legume commodities both in fields and every year. Pulses constitute the main source of protein for developing countries like India where per capita consumption of animal protein is very low. Due to their high protein quantity and quality, legumes are considered as “poor man‟s meat”. A large number of non-native pulse beetles have crossed geographical boundaries and becoming cosmopolitan in distribution, thus posing major pest problem worldwide. A kidney bean pest, Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae) native to Central and Southern America has recently infested stored kidney beans in the Indian subcontinent. The present investigations determined life cycle, behaviour, facundity, pest status, host range and developmental compatibility on diffent legumes and different cultivars of kidney beans. Acetone and alcoholic extracts of some botanicals have been tested and proved effective to suppress facundity, egg hatch and adult longivity of the pest population under laboratory conditions. Keywords: Acanthoscelides obtectus, biology, resistance, developmental compatiblity, botanical management 1. Introduction Most pulses have 17-24% protein content which are 2.3 times higher than traditional cereals. Any stored materials of plant origin are vulnerable to attack by insect pests if the pulses are dried and stored improperly.
    [Show full text]
  • The Use of Entomopathogenic Fungi in Biological Control of Pests
    Acta fytotechn. zootechn., 18, 2015(Special Issue): 102-105 Short Communication doi:http://dx.doi.org/10.15414/afz.2015.18.si.102-105 The use of entomopathogenic fungi in biological control of pests Eliška Ondráčková* AGRITEC, Research, Breeding and Services, Ltd., Šumperk, Czech Republic The efficacy of entomopathogenic fungi from genus Lecanicillium, Isaria, Beauveria, and Purpureocillium were tested against larvae and adults of bean weevil (Acanthoscelides obtectus Say.). Some strains of Lecanicillium, Isaria and Beauveria showed obvious efficacy against adults of bean weevil but no treatment of bean seeds prevented the reproduction of adults, oviposition nor subsequent infestation of bean seeds. Keywords: entomopathogenic fungi, bean weevil, biological control 1 Introduction In recent decades intensive development of biological control of pests plays an important role in integrated pest management. The reason is to reduce using of chemicals and to protect the environment. Currently there are more than 750 species of fungi pathogenic for plant pests (Koubová, 2009). Entomopathogenic fungi were detected on members of all insect orders, mostly on Hemiptera, Orthoptera, Thysanoptera, Homoptera, Lepidoptera, Coleoptera and Diptera (Koubová, 2009). Some of them are polyphagous, that means they attack members of many insect orders at different development stages, others are specialized to one group of pests or only to certain species. Entomopathogenic fungi belonging to the genera Beauveria, Lecanicillium, Metarhizium, Isaria and Hirsutella are the best known and most frequently used in biological control of pests (Grent, 2011; Koubová, 2009). The advantage of entomopathogenic fungi is little likelihood of insect resistance development to them. Their disadvantage is that efficacy of fungi against pests is dependent on environmental conditions, particularly on temperature and humidity.
    [Show full text]
  • Acanthoscelides Pallidipennis
    118373_Vol_2.qxp 8/16/04 10:10 AM Page 867 Entomology BIOLOGY OF A NEW BRUCHID SPECIES IN HUNGARY: ACANTHOSCELIDES PALLIDIPENNIS Zoltán Horváth, Kecskemét High School, High School Faculty of Horticulture, Kecskemét, Hungary Gábor Bujáki, Szent István University, GödöllĘ, Hungary E-mail: [email protected] Abstract In July 1984, tiny bruchid adults were observed feeding until maturation on the composite flowers of sunflower, in the edges of a hybrid sunflower seed production field surrounded by forest strips. The species, emerging in high numbers, was identified as Acanthoscelides pallidipennis Motschulsky Fall (syn. Acanthoscelides collusus Fall), originating from North America. The species is monophagous. Its host plant is Amorpha fruticosa L. (desert false indigo), also originating from North America. Larvae develop in the seeds. Adults of the overwintering generation emerge early in the spring (end of March, beginning of April). Emergence may take a long time. Adults feed for maturation on the flowers of early weeds, e.g., Reseda lutea L. (weld), Artemisia spp., and Orobanche major L. (great broomrape). Following the feeding period, from the end of May until the end of August, adults lay their eggs continuously on the young pods of A. fruticosa. Adults of the new generation emerge in June, feed on the characteristically bursting anthers of A. fruticosa, but they also visit the male parent plants of the sunflower hybrid seed production fields. In these fields, pollination capacity of the damaged male parent plants is significantly reduced, especially at the field edges. Thus, within the pest fauna of sunflower, A. pallidipensis can be categorized as a typical pest on the edges of fields.
    [Show full text]
  • Phylogenetic Relationships in the Neotropical Bruchid Genus Acanthoscelides (Bruchinae, Bruchidae, Coleoptera)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Published in Journal of Zoological Systematics and Evolutionary Research 44 issue 1, 63-74, 2006 1 which should be used for any reference to this work Phylogenetic relationships in the Neotropical bruchid genus Acanthoscelides (Bruchinae, Bruchidae, Coleoptera) N. Alvarez1,2,J.Romero Napoles3, K.-W. Anton4,B.Benrey2 and M. Hossaert-McKey1 1CEFE-CNRS, 1919 route de Mende, Montpellier cedex 5, France; 2LEAE, Institut de Zoologie, Universite´ de Neuchaˆtel, 11 rue Emile-Argand, Neuchaˆtel, Switzerland; 3Instituto de Fitosanidad, Colegio de Postgraduados, Km 36.5 carr. Me´xico-Texcoco, Montecillo, Edo. de Me´xico, Mexico; 4Gru¨newaldstrasse 13, Emmendingen, Germany Abstract Adaptation to host-plant defences through key innovations is a driving force of evolution in phytophagous insects. Species of the neotropical bruchid genus Acanthoscelides Schilsky are known to be associated with specific host plants. The speciation processes involved in such specialization pattern that have produced these specific associations may reflect radiations linked to particular kinds of host plants. By studying host-plant associations in closely related bruchid species, we have shown that adaptation to a particular host-plant (e.g. with a certain type of secondary compounds) could generally lead to a radiation of bruchid species at the level of terminal branches. However, in some cases of recent host shifts, there is no congruence between genetic proximity of bruchid species, and taxonomic similarity of host plants. At deeper branches in the phylogeny, vicariance or long-distance colonization events seem to be responsible for genetic divergence between well-marked clades rather than adaptation to host plants.
    [Show full text]
  • Biosystematics of the Genus Merobruchus of Continental North America and the West Indies (Coleóptera: Bruchidae)
    '^^. United States |L|cJ|i Department of ^%^ Agriculture Biosystematics of the Agricultural Research Service Genus Merobruchus Technical Bulletin Number 1744 of Continental North America and the West Indies (Coleóptera: Bruchidae) Abstract Kingsolver, John M. 1988. Biosystematics of the genus Merobruchus of continental North America and the West Indies (Coleóptera: Bruchidae). U.S. Department of Agri- culture, Technical Bulletin No. 1744, 63 pp. A diagnosis of the genus Merobruchus is presented, includ- ing a key to species, synonymical names, geographical dis- tribution, and host plant associations detailed for the 22 species now assigned to this genus for the United States, Mexico, Central America, and the West Indies. The follow- ing seven of these species are new to science: chetumalae, cristoensis, iysilomae, politus, porphyreus, triacanthus, and xanthopygus. Pseudopachymerus steinbachi Pic is a NEW SYNONYM of Merobruchus pickeli (Pic) (NEW COMBINA- TION), and Pachymerus subuniformis Pic is a NEW SYN- ONYM of Merobruchus bicoloripes (Pic). Bruchus flexicaulis Schaeffer is shown to be an available name and is provi- sionally synonymized with Merobruchus major (Fall) (NEW SYNONYMY). Bruchus limpidus Sharp is synonymized with Merobruchus placidus (Horn) (NEW SYNONYMY). Illustra- tions of salient characters are provided for each species. All known host associations are with seeds of leguminous trees and shrubs in the subfamily Mimosoideae, mostly in the genera Acacia, Lysiloma, and Pithecellobium. None of the species affect major agricultural crops, but they reduce the potential for regeneration of trees used for fuel, furni- ture, vegetable gums, tanbark, honey sources, and orna- mental plantings. This is part of a series of studies on bruchid genera contrib- uting to a comprehensive database for this important seed- feeding beetle family of North America.
    [Show full text]
  • Potency of Traditional Insecticide Materials Against Stored Bean Weevil, Acanthoscelides Obtectus (Coleoptera: Bruchidae) in Tanzania
    Potency of Traditional Insecticide Materials against Stored Bean Weevil, Acanthoscelides Obtectus (Coleoptera: Bruchidae) in Tanzania Costancia Peter Rugumamu Department of Zoology and Wildlife Conservation University of Dar es Salaam E-mail: [email protected] Abstract: The bean weevil, Acanthoscelides obtectus is a major insect pest of stored common bean, Phaseolus vulgaris an important source of plant protein in many parts of the world, Tanzania inclusive. In rural Tanzania, most smallholder farmers apply traditional insecticide materials in the protection of bean from insect pests. The laboratory study investigates the potency of the selected traditional insecticide materials employed by small scale farmers to reduce stored bean losses caused by A. obtectus. The materials were identified and collected from Kimuli and Mabira villages in Kagera region and from Dar es Salaam. The effect of the materials to A. obtectus at different doses and durations was determined by both the number of surviving insects in treated set-ups reflecting the insect mortality and by the insects' reproductive performance at first filial generation (F 1). The findings revealed effectiveness of the materials against A. obtectus to vary in the order: Azadirachta indica > Tephrosia vogelii> Nicotiana tabacum > Vegetation ash > Ocimum gratissimum > Crassocephalum crepidioides. Kruskal-Wallis test indicated significant differences in the number of A. obtectus survivors among the treatments at different doses during the study periods and also in the number of insects’ progeny (F 1) produced at the end of their life cycle. It was concluded that the materials exhibit potency against A. obtectus at varying levels. Keywords: Traditional insecticide materials, Acanthoscelides obtectus, potency, Phaseolus vulgaris , mortality.
    [Show full text]