(Rc) Binding Protein Family Stimulate the Activity of the C-Myc Internal Ribosome Entry Segment in Vitro and in Vivo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SRC Antibody - N-Terminal Region (ARP32476 P050) Data Sheet
SRC antibody - N-terminal region (ARP32476_P050) Data Sheet Product Number ARP32476_P050 Product Name SRC antibody - N-terminal region (ARP32476_P050) Size 50ug Gene Symbol SRC Alias Symbols ASV; SRC1; c-SRC; p60-Src Nucleotide Accession# NM_005417 Protein Size (# AA) 536 amino acids Molecular Weight 60kDa Product Format Lyophilized powder NCBI Gene Id 6714 Host Rabbit Clonality Polyclonal Official Gene Full Name V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) Gene Family SH2D This is a rabbit polyclonal antibody against SRC. It was validated on Western Blot by Aviva Systems Biology. At Aviva Systems Biology we manufacture rabbit polyclonal antibodies on a large scale (200-1000 Description products/month) of high throughput manner. Our antibodies are peptide based and protein family oriented. We usually provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire (). Peptide Sequence Synthetic peptide located within the following region: QTPSKPASADGHRGPSAAFAPAAAEPKLFGGFNSSDTVTSPQRAGPLAGG This gene is highly similar to the v-src gene of Rous sarcoma virus. This proto-oncogene may play a role in the Description of Target regulation of embryonic development and cell growth. SRC protein is a tyrosine-protein kinase whose activity can be inhibited by phosphorylation by c-SRC kinase. Mutations in this gene could be involved in the -
Interplay Between Coding and Exonic Splicing Regulatory Sequences
Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Research Interplay between coding and exonic splicing regulatory sequences Nicolas Fontrodona,1,4 Fabien Aubé,1,4 Jean-Baptiste Claude,1 Hélène Polvèche,1,5 Sébastien Lemaire,1 Léon-Charles Tranchevent,2 Laurent Modolo,3 Franck Mortreux,1 Cyril F. Bourgeois,1 and Didier Auboeuf1 1Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France; 2Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health (LIH), L-1445 Strassen, Luxembourg; 3LBMC Biocomputing Center, CNRS UMR 5239, INSERM U1210, F-69007, Lyon, France The inclusion of exons during the splicing process depends on the binding of splicing factors to short low-complexity reg- ulatory sequences. The relationship between exonic splicing regulatory sequences and coding sequences is still poorly un- derstood. We demonstrate that exons that are coregulated by any given splicing factor share a similar nucleotide composition bias and preferentially code for amino acids with similar physicochemical properties because of the nonran- domness of the genetic code. Indeed, amino acids sharing similar physicochemical properties correspond to codons that have the same nucleotide composition bias. In particular, we uncover that the TRA2A and TRA2B splicing factors that bind to adenine-rich motifs promote the inclusion of adenine-rich exons coding preferentially for hydrophilic amino acids that correspond to adenine-rich codons. SRSF2 that binds guanine/cytosine-rich motifs promotes the inclusion of GC-rich exons coding preferentially for small amino acids, whereas SRSF3 that binds cytosine-rich motifs promotes the inclusion of exons coding preferentially for uncharged amino acids, like serine and threonine that can be phosphorylated. -
Stefano Sellitto 19-05-2020.Pdf
RNA Binding Proteins: from physiology to pathology An update Stefano Sellitto RBPs regulate the RNA metabolism A ‘conventional’ RNA-Binding Protein (RBP) participates in the formation of ribonucleoprotein (RNP) complexes that are principally involved in gene expression. Keene, 2007 High-Throughuput sequencing to study the RBPs world RIP-Seq (i)CLIP PAR-CLIP Hentze et al., 2018 The concept of RNA operon The RBPs profile is highly dynamic The combinatorial association of many RBPs acting in trans on RNA molecules results in the metabolic regulation of a distinct RNA subpopulations. Keene, 2007 The molecular features of protein-RNA interactions "Classical" RNA-Binding Domains Lunde et al., 2007 "Classical" RNA-Binding Domains RNA-recognition motif (RRM) double-stranded RNA-binding motif (dsRBM) Zinc-finger motif Stefl et al., 2005 Modularity of RBPs RBPs are usually composed by several repeated domains Lunde et al., 2007 Expanding the concept of the RNA Binding Hentze et al., 2018 Novel types of RNA binding Hentze et al., 2018 Lunde et al., 2007 RNA metabolism and neurological diseases RNA binding proteins preserves neuronal integrity De Conti et al., 2017 Alterations of RBPs in neurological disorders Nussbacher et al., 2019 Microsatellite expansion in FXS: reduced FMR1 transcription The reduction of FMRP levels induces an overexpressed LTD activity Bassell & Warren, 2008 Huber et al., 2002 Microsatellite expansion in FXTAS: FMR1 RNA-meidated toxicity FMR1 expanded RNA impairs the miRNA processing Sellier et al., 2013 Loss-of-function VS Gain-of-function Park et al., 2015 TDP-43 and FUS/TLS Ling et al., 2013 TDP-43 and FUS/TLS in ALS and FTD Ling et al., 2013 Cookson, 2017 Loss-of-function VS Gain-of-function Nucelar clearance (LOF) TDP-43 Nuclear TDP-43 (LOF) Loss of TDP-43 negative autoregulation Nucleus Abolishing RNA binding ability Cytoplasmatic stress (GOF) mitigates mutant TDP-43 toxicity Prevent mutant TDP-43 toxic activity on RNAs (GOF) Ihara et al., 2013 . -
Save Pdf (0.04
58 cambridge.org/jcts 2172 with these clinical observations, we observed altered myelopoiesis in HnrnpkTg mice. These mice demonstrate increased CD11b + Gr1 + populations in the Association between CYP450 polymorphisms and the bone marrow and peripheral blood. Indeed, these mice develop myeloid use of complementary medicine among patients with leukemia, indicated by >20% of circulating white blood cells harboring markers drug-resistant epilepsy in Puerto Rico of immature stem cells in conjunction with positive myeloperoxidase staining Bianca A. Torres-Hernández, Miriam E. Ríos Motta, Adrián Llerenaes and blast-appearing morphology. RPPA revealed expression of c-Myc positively correlated with increased hnRNP K levels. In HnrnpkTg mice, c-Myc protein and Jorge Duconge was increased, yet MYC RNA was invariably decreased compared to wildtype. University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto To decipher a mechanism by which this may occur, we demonstrated a post- Rico transcriptional interaction between hnRNP K and c-Myc in vivo. JQ1, a BRD4 inhibitor, that epigenetically decreases c-Myc expression showed preferential activity against myeloid cells expressing high levels of hnRNP K both in vitro and OBJECTIVES/SPECIFIC AIMS: Patients with epilepsy often combine their in vivo. DISCUSSION/SIGNIFICANCE OF IMPACT: These preliminary studies antiepileptic drugs (AEDs) with complementary medicine (CM). They use CM demonstrate that hnRNP K overexpression causes myeloid malignancies in to treat their symptoms of comorbidities disorder, to reduce the side effect of both mouse and man. We have determined that c-Myc contributes in part to the AEDs or trying to achieve better control of their seizures. However, the hnRNP K-mediated leukemogenesis, and that targeting c-Myc may be an inconsistent patters of the use of CM among countries have been attributed to effective strategy for hnRNP K-overexpressing AML. -
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d. -
Genes with 5' Terminal Oligopyrimidine Tracts Preferentially Escape Global Suppression of Translation by the SARS-Cov-2 NSP1 Protein
Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Genes with 5′ terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein Shilpa Raoa, Ian Hoskinsa, Tori Tonna, P. Daniela Garciaa, Hakan Ozadama, Elif Sarinay Cenika, Can Cenika,1 a Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA 1Corresponding author: [email protected] Key words: SARS-CoV-2, Nsp1, MeTAFlow, translation, ribosome profiling, RNA-Seq, 5′ TOP, Ribo-Seq, gene expression 1 Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a non-structural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-Seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation level. We discover that a functionally-coherent subset of human genes are preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5′ terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes. -
KH Domain Containing RNA-Binding Proteins Coordinate with Micrornas to Regulate
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.235127; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 KH domain containing RNA-binding proteins coordinate with microRNAs to regulate 2 Caenorhabditis elegans development. 3 4 Haskell D 1, Zinovyeva A1*. 5 6 7 (1) Division of Biology. Kansas State University. Manhattan, KS, 66506 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.235127; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 24 Running title: KH domain proteins coordinate with microRNAs, C. elegans 25 26 27 28 29 30 Keywords: microRNA, RNA binding protein, KH domain, hnRNPK 31 32 33 34 35 * Corresponding author: Anna Zinovyeva, PhD, 28 Ackert Hall, 1717 Claflin Road, Manhattan, 36 KS 66506, phone: 1-785-532-7727, email: [email protected] 37 38 39 40 41 42 43 44 45 46 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.235127; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Genetic and Pharmacological Approaches to Preventing Neurodegeneration
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2012 Genetic and Pharmacological Approaches to Preventing Neurodegeneration Marco Boccitto University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Neuroscience and Neurobiology Commons Recommended Citation Boccitto, Marco, "Genetic and Pharmacological Approaches to Preventing Neurodegeneration" (2012). Publicly Accessible Penn Dissertations. 494. https://repository.upenn.edu/edissertations/494 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/494 For more information, please contact [email protected]. Genetic and Pharmacological Approaches to Preventing Neurodegeneration Abstract The Insulin/Insulin-like Growth Factor 1 Signaling (IIS) pathway was first identified as a major modifier of aging in C.elegans. It has since become clear that the ability of this pathway to modify aging is phylogenetically conserved. Aging is a major risk factor for a variety of neurodegenerative diseases including the motor neuron disease, Amyotrophic Lateral Sclerosis (ALS). This raises the possibility that the IIS pathway might have therapeutic potential to modify the disease progression of ALS. In a C. elegans model of ALS we found that decreased IIS had a beneficial effect on ALS pathology in this model. This beneficial effect was dependent on activation of the transcription factor daf-16. To further validate IIS as a potential therapeutic target for treatment of ALS, manipulations of IIS in mammalian cells were investigated for neuroprotective activity. Genetic manipulations that increase the activity of the mammalian ortholog of daf-16, FOXO3, were found to be neuroprotective in a series of in vitro models of ALS toxicity. -
Ncomms2091.Pdf
ARTICLE Received 18 Apr 2012 | Accepted 24 Aug 2012 | Published 25 Sep 2012 DOI: 10.1038/ncomms2091 Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres Yong Chen1,2, Konggang Qu1, Chuanqi Zhao1, Li Wu1, Jinsong Ren1, Jiasi Wang1 & Xiaogang Qu1 Both human telomeric G-rich and C-rich DNA have been considered as specific drug targets for cancer therapy. However, due to i-motif structure instability and lack of specific binding agents, it remains unclear whether stabilization of telomeric i-motif can inhibit telomerase activity. Single-walled carbon nanotubes (SWNTs) have been reported as the first ligand that can selectively stabilize human telomeric i-motif DNA. Here we report that SWNTs can inhibit telomerase activity through stabilization of i-motif structure. The persistence of i-motif and the concomitant G-quadruplex eventually leads to telomere uncapping and displaces telomere- binding proteins from telomere. The dysfunctional telomere triggers DNA damage response and elicits upregulation of p16 and p21 proteins. This is the first example that SWNTs can inhibit telomerase activity and interfere with the telomere functions in cancer cells. These results provide new insights into understanding the biomedical effects of SWNTs and the biological importance of i-motif DNA. 1 Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China. 2 College of Life Science, Jilin University, Changchun, Jilin 130012, China. Correspondence and requests for materials should be addressed to X.Q. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Spermatozoal Gene KO Studies for the Highly Present Paternal Transcripts
Spermatozoal gene KO studies for the highly present paternal Potential maternal interactions Conclusions of the KO studies on the maternal gene transcripts detected by GeneMANIA candidates for interaction with the paternal Fbxo2 Selective cochlear degeneration in mice lacking Cul1, Fbxl2, Fbxl3, Fbxl5, Cul-1 KO causes early embryonic lethality at E6.5 before Fbxo2 Fbxo34, Fbxo5, Itgb1, Rbx1, the onset of gastrulation http://www.jneurosci.org/content/27/19/5163.full Skp1a http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641602/. Loss of Cul1 results in early embryonic lethality and Another KO study showed the following: Loss of dysregulation of cyclin E F-box only protein 2 (Fbxo2) disrupts levels and http://www.ncbi.nlm.nih.gov/pubmed/10508527?dopt=Abs localization of select NMDA receptor subunits, tract. and promotes aberrant synaptic connectivity http://www.ncbi.nlm.nih.gov/pubmed/25878288. Fbxo5 (or Emi1): Regulates early mitosis. KO studies shown lethal defects in preimplantation embryo A third KO study showed that Fbxo2 regulates development http://mcb.asm.org/content/26/14/5373.full. amyloid precursor protein levels and processing http://www.jbc.org/content/289/10/7038.long#fn- Rbx1/Roc1: Rbx1 disruption results in early embryonic 1. lethality due to proliferation failure http://www.pnas.org/content/106/15/6203.full.pdf & Fbxo2 has been found to be involved in http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732615/. neurons, but it has not been tested for potential decreased fertilization or pregnancy rates. It Skp1a: In vivo interference with Skp1 function leads to shows high expression levels in testis, indicating genetic instability and neoplastic transformation potential other not investigated functions http://www.ncbi.nlm.nih.gov/pubmed/12417738?dopt=Abs http://biogps.org/#goto=genereport&id=230904 tract. -
Investigation of the Protein-Protein Interaction Between PCBP1 and Y -Synuclein Amanda Hunkele Seton Hall University
Seton Hall University eRepository @ Seton Hall Seton Hall University Dissertations and Theses Seton Hall University Dissertations and Theses (ETDs) 2010 Investigation of the Protein-Protein Interaction Between PCBP1 and y -synuclein Amanda Hunkele Seton Hall University Follow this and additional works at: https://scholarship.shu.edu/dissertations Part of the Biology Commons Recommended Citation Hunkele, Amanda, "Investigation of the Protein-Protein Interaction Between PCBP1 and y -synuclein" (2010). Seton Hall University Dissertations and Theses (ETDs). 685. https://scholarship.shu.edu/dissertations/685 Investigation of the protein-protein interaction between PCBPl and y-synuclein Amanda Hunkeie Submitted in partial fulfiient of the requiremenk for the Degree of Master of Science in Biology from the Department of Biology of Seton HaU University September 2010 APPROVED BY I I Jane L. K0,'Ph.D. Mentor &2_3 -kfeping Zhou, Pb. D. Committee Member Tin-Chun C~U,Ph.D. Committee Member - ~arrohhawn,Ph.D. Director of Graduate Studies Chairperson, Department of Biological Sciences Acknowledgements I first want to thank my mentor, Dr. Jane KO, for her continued support and encouragement throughout my research project. Her patience and enthusiasm made this a very rewarding experience. I would also like to thank my committee members, Dr. Zhou and Dr. Chu, for their time and contribution to this project. Also, I would like to thank the Biology department faculty for all their guidance and contributions to my academic development. Additionally I would like to thank the other members of Dr. KO's lab for all their help academically and their f?iendship. Their support tmly helped me through this research experience.