Dysregulation of Peripheral Expression of the YWHA Genes

Total Page:16

File Type:pdf, Size:1020Kb

Dysregulation of Peripheral Expression of the YWHA Genes Dysregulation of peripheral expression of the YWHA genes during conversion to psychosis Fanny Demars, Oussama Kebir, Aude Marzo, Anton Iftimovici, Catherine Schramm, Marie-Odile Krebs, Boris Chaumette To cite this version: Fanny Demars, Oussama Kebir, Aude Marzo, Anton Iftimovici, Catherine Schramm, et al.. Dysregu- lation of peripheral expression of the YWHA genes during conversion to psychosis. Scientific Reports, Nature Publishing Group, 2020, 10 (1), pp.9863. 10.1038/s41598-020-66901-1. inserm-02881451 HAL Id: inserm-02881451 https://www.hal.inserm.fr/inserm-02881451 Submitted on 25 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Dysregulation of peripheral expression of the YWHA genes during conversion to psychosis Fanny Demars1, Oussama Kebir1,2, Aude Marzo1, Anton Iftimovici1,3, Catherine Schramm4, ICAAR Study Group*, Marie-Odile Krebs1,2 ✉ & Boris Chaumette1,2,5 The seven human 14-3-3 proteins are encoded by the YWHA-gene family. They are expressed in the brain where they play multiple roles including the modulation of synaptic plasticity and neuronal development. Previous studies have provided arguments for their involvement in schizophrenia, but their role during disease onset is unknown. We explored the peripheral-blood expression level of the seven YWHA genes in 92 young individuals at ultra-high risk for psychosis (UHR). During the study, 36 participants converted to psychosis (converters) while 56 did not (non-converters). YWHA genes expression was evaluated at baseline and after a mean follow-up of 10.3 months using multiplex quantitative PCR. Compared with non-converters, the converters had a signifcantly higher baseline expression levels for 5 YWHA family genes, and signifcantly diferent longitudinal changes in the expression of YWHAE, YWHAG, YWHAH, YWHAS and YWAHZ. A principal-component analysis also indicated that the YWHA expression was signifcantly diferent between converters and non-converters suggesting a dysregulation of the YWHA co-expression network. Although these results were obtained from peripheral blood which indirectly refects brain chemistry, they indicate that this gene family may play a role in psychosis onset, opening the way to the identifcation of prognostic biomarkers or new drug targets. Schizophrenia is a frequent disabling psychotic disorder, resulting from complex interactions between genetic factors and pre/post-natal exposure to environmental insults. It is a progressive illness that typically emerges during late adolescence and is characterized by several stages: early vulnerability, at-risk mental state (also called ultra-high risk, UHR), frst episode of psychosis (FEP), and chronic disease1. It has been estimated that one third of UHR individuals convert to psychosis afer three years of follow-up (converters), while a large majority remain with subthreshold symptoms, exhibiting a decrease in intensity or remission (non-converters)2. Te biological mechanisms underlying this diferential prognosis are not yet understood. We have previously reported that some methylomic and transcriptomic changes accompany the emergence of psychosis during adolescence3,4. However, additional longitudinal biological studies on UHR patients are crucially needed to identify biomarkers and to improve the current understanding of the pathophysiological mechanisms that accompany conversion from prodromes to major psychosis. In recent decades, the importance of the YWHA gene family in neuropsychiatric disorders, including schizo- phrenia has been highlighted5,6. Te YWHA genes (YWHAB/G/E/Z/H/Q/S) encode the 14-3-3 proteins (β, γ, ε, ζ, η, θ and σ, respectively), a family of highly conserved, multifunctional isoforms highly expressed in the brain7,8. YWHAS is also known as SFN, the gene coding for Stratifn. Tese proteins form homo- and heterodimers which bind other proteins among several hundreds of possible targets9–11. Te YWHA gene family plays important roles in neuronal and synaptic development, function and plasticity5,12–15. In particular, they participate in the activation of the tyrosine and tryptophan hydroxylases, the rate limiting enzymes in the synthesis of some neuro- transmitters including serotonin and dopamine16. Consistent with this latter role, we recently reported a low level of dopaminergic metabolites in the cerebrospinal fuid of a 20-year-old woman sufering from schizophrenia and carrying a de novo copy number variant (CNV; dup17p13.3) encompassing the YWHAE gene17. Moreover, genetic 1Université de Paris, Institut of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, team Physiopathologie des Maladies Psychiatriques, GDR3557-Institut de Psychiatrie, Paris, France. 2GHU Paris Psychiatrie et Neurosciences, Paris, France. 3NeuroSpin, Commissariat à l’Energie Atomique, Gif-sur-Yvette, France. 4University of Montreal, Sainte Justine Hospital Research Center, Montreal, Canada. 5Department of Psychiatry, McGill University, Montreal, Canada. *A list of authors and their afliations appears at the end of the paper. ✉e-mail: [email protected] SCIENTIFIC REPORTS | (2020) 10:9863 | https://doi.org/10.1038/s41598-020-66901-1 1 www.nature.com/scientificreports/ www.nature.com/scientificreports Converters Non-converters P-value (Mann- Variable (N = 36) (N = 56) Whitney or Fisher test) Age 20.0 (2.53) 21.8 (3.65) 0.023 Sex ratio (male/female) 27/9 30/26 0.049 Tobacco (daily use) 50% 35.4% 0.25 Cannabis (use in the last 30 days) 37.5% 20.5% 0.12 Psychotropic medication at inclusion 62% 60% 1 Follow-up duration in months 9.8 (5.7) 13.7 (4.0) 0.002 BPRS at baseline 56.03 (13.88) 54.79 (12.11) 0.93 BPRS at the end of the follow-up 52.54 (14.00) 44.45 (11.36) 0.016 CGI at baseline 4.53 (0.84) 4.59 (0.82) 0.7 CGI at the end of the follow-up 4.78 (0.85) 3.74 (1.20) <10−3 Quality of RNA measured by RIN 8.51 (0.45) 8.38 (0.54) 0.11 Table 1. Demographic and clinical characteristics of the population. BPRS (Brief Psychiatric Rating Scale); CGI (Clinical Global Impressions Scale). P-values <0.05 are in bold. Values represent population mean (and standard deviation). studies have reported multiple single nucleotide polymorphisms (SNPs) in YWHAE, YWHAH and YWHAZ in diferent cohorts of patients with schizophrenia18–23. Several transcriptomic and proteomic analyses have iden- tifed alterations in 14-3-3 protein isoforms in postmortem brain tissue of people with schizophrenia6,24–26. All these studies support the implication of the YWHA genes in chronic stages of schizophrenia. To our knowledge, only one study focused on early stages of this disease by exploring the levels of mRNA of the YWHA gene family in FEP27. Tis study reported a signifcantly lower expression of YWHAB, YWHAE, YWHAG, YWHAQ and a signifcantly higher expression of YHWAS. Te authors proposed that the expression levels of the YWHA gene family could be used as indicators of schizophrenia severity. Tis promising fnding urged us to investigate whether the expression of the YWHA gene family is dysregu- lated in earlier stages of the disease, before the frst-episode of psychosis, and during the emergence of psychotic symptoms. Terefore, we have used the longitudinal clinical and biological data of the French ICAAR cohort of psychiatric help-seeking young adults to explore the expression levels of the seven YWHA genes in UHR partic- ipants using multiplex quantitative-PCR (Q-PCR). We compared the baseline as well as the longitudinal changes of the expression levels between converters and non-converters. Results Demographic and clinical data of the study population. In total, 92 UHR participants were evalu- ated. Among them, 36 participants developed psychotic disorders during the follow-up (converters) and 56 did not (non-converters). Te demographic and clinical characteristics (age, sex ratio, cannabis and tobacco use, psychotropic treatment intake, duration of the follow-up, severity of the symptoms, and RNA-sample quality) are reported in Table 1. At study start, there were no signifcant diferences between converter and non-converter groups for daily use of tobacco, cannabis use within the last month, and psychotropic medication. Tere were no signifcant diferences between groups in RNA quality from the samples obtained at the beginning and the end of the follow-up. Te follow-up was longer for non-converters (p = 0.002), because converters were reassessed rapidly afer conversion, whereas the follow-up was extended for non-converters to have greater confdence in concluding that outcome. As expected, the scores for clinical grading (BPRS, CGI) were not diferent at baseline but were higher in converters than non-convertors afer the follow-up. Converters were younger and more fre- quently male than non-converters; consequently, the statistical models were adjusted with respect to age and sex. Comparison of baseline expression of YWHA genes between converters and non-converters. In the logistic-regression analysis, the baseline expression levels for YHWAB, YWHAE, YWHAG, YWHAQ and YWHAZ were signifcantly higher in converters than in non-converters (Table 2, Fig. 1a–g, Supplementary Fig. 1). By contrast, the baseline expression levels of YWHAH and YWHAS were not signifcantly diferent between con- verters and non-converters. Te baseline expression levels of YWHAB, YWHAE, YWHAQ and YWHAS were signifcantly correlated with several clinical scores at the end of the follow-up, especially with the score of negative symptoms (Supplementary Table 1). Comparison of longitudinal changes in expression of YWHA genes between converters and non-converters. YWHA mRNA expression data at the end of the study were obtained for 67 patients (29 converters and 38 non-converters).
Recommended publications
  • Determining the Role of P53 Mutation in Human Breast
    Determining the Role of p53 Mutation in Human Breast Cancer Progression Using Recombinant Mutant/Wild-Type p53 Heterozygous Human Mammary Epithelial Cell Culture Models Item Type text; Electronic Dissertation Authors Junk, Damian Jerome Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 18:36:12 Link to Item http://hdl.handle.net/10150/193600 DETERMINING THE ROLE OF P53 MUTATION IN HUMAN BREAST CANCER PROGRESSION USING RECOMBINANT MUTANT/WILD-TYPE P53 HETEROZYGOUS HUMAN MAMMARY EPITHELIAL CELL CULTURE MODELS by Damian Jerome Junk _________________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN CANCER BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2008 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Damian Jerome Junk entitled Determining the Role of p53 Mutation in Human Breast Cancer Progression Using Recombinant Mutant/Wild-Type p53 Heterozygous Human Mammary Epithelial Cell Culture Models and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 4/18/08 Bernard W. Futscher, Ph.D. _______________________________________________________________________ Date: 4/18/08 Anne E. Cress, Ph.D. _______________________________________________________________________ Date: 4/18/08 Jesse D.
    [Show full text]
  • RT² Profiler PCR Array (384-Well Format) Human Apoptosis 384HT
    RT² Profiler PCR Array (384-Well Format) Human Apoptosis 384HT Cat. no. 330231 PAHS-3012ZE For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 7900HT (384-well block), Format E ViiA™ 7 (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (384-well block) Format G Description The Human Apoptosis RT² Profiler PCR Array profiles the expression of 370 key genes involved in apoptosis, or programmed cell death. The array includes the TNF ligands and their receptors; members of the bcl-2 family, BIR (baculoviral IAP repeat) domain proteins, CARD domain (caspase recruitment domain) proteins, death domain proteins, TRAF (TNF receptor-associated factor) domain proteins and caspases. These 370 genes are also grouped by their functional contribution to apoptosis, either anti-apoptosis or induction of apoptosis. Using real-time PCR, you can easily and reliably analyze expression of a focused panel of genes related to apoptosis with this array. For further details, consult the RT² Profiler PCR Array Handbook. Sample & Assay Technologies Shipping and storage RT² Profiler PCR Arrays in formats E and G are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products. For long term storage, keep plates at –20°C. Note: Ensure that you have the correct RT² Profiler PCR Array format for your real-time cycler (see table above). Note: Open the package and store the products appropriately immediately
    [Show full text]
  • 14-3-3Sigma Negatively Regulates the Stability and Subcellular Localization of Cop1
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2010 14-3-3SIGMA NEGATIVELY REGULATES THE STABILITY AND SUBCELLULAR LOCALIZATION OF COP1 Chun-Hui Su Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biology Commons Recommended Citation Su, Chun-Hui, "14-3-3SIGMA NEGATIVELY REGULATES THE STABILITY AND SUBCELLULAR LOCALIZATION OF COP1" (2010). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 101. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/101 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. 14-3-3SIGMA NEGATIVELY REGULATES THE STABILITY AND SUBCELLULAR LOCALIZATION OF COP1 By Chun-Hui Su, M.S. APPROVED: ______________________________ Mong-Hong Lee, Supervisory Professor ______________________________ Randy
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • YWHAG Antibody (Center) Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap2939c
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 YWHAG Antibody (Center) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP2939c Specification YWHAG Antibody (Center) - Product Information Application WB, IHC-P, FC,E Primary Accession P61981 Other Accession Q6NRY9, Q6PCG0, P61983, P61982, Q5F3W6, P68252, P68253 Reactivity Human, Mouse Predicted Bovine, Chicken, Rat, Sheep, Xenopus Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 28303 Western blot analysis of YWHAG Antibody Antigen Region 136-164 (Center) (Cat. #AP2939c) in mouse cerebellum tissue lysates (35ug/lane). YWHAG Antibody (Center) - Additional YWHAG (arrow) was detected using the Information purified Pab. Gene ID 7532 Other Names 14-3-3 protein gamma, Protein kinase C inhibitor protein 1, KCIP-1, 14-3-3 protein gamma, N-terminally processed, YWHAG Target/Specificity This YWHAG antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 136-164 amino acids from the Central region of human YWHAG. Dilution Western blot analysis of YWHAG (arrow) WB~~1:1000 using rabbit polyclonal YWHAG Antibody IHC-P~~1:50~100 (Center) (Cat. #AP2939c). 293 cell lysates (2 FC~~1:10~50 ug/lane) either nontransfected (Lane 1) or transiently transfected (Lane 2) with the Format YWHAG gene. Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS. Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Storage Maintain refrigerated at 2-8°C for up to 2 weeks.
    [Show full text]
  • TITLE PAGE Oxidative Stress and Response to Thymidylate Synthase
    Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 2, 2021 -Targeted -Targeted 1 , University of of , University SC K.W.B., South Columbia, (U.O., Carolina, This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted.
    [Show full text]
  • 140503 IPF Signatures Supplement Withfigs Thorax
    Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network.
    [Show full text]
  • Mir-222 Inhibited OS Via YWHAG
    European Review for Medical and Pharmacological Sciences 2018; 22: 2588-2597 MicroRNA-222 contributed to cell proliferation, invasion and migration via regulating YWHAG in osteosarcoma Y.-W. CHU1, C.-R. WANG1, F.-B. WENG1, Z.-J. YAN1, C. WANG2 1Department of Orthopedic, First People’s Hospital of Wujiang District, Affiliated Hospital of Nantong University Medical School, Suzhou, China 2Department of Orthopedic, The Third People’s Hospital of Yancheng, Affiliated Yancheng Hospital of Southeast University Medical School, Yancheng, China Yawei Chu and Churong Wang contributed equally to this work Abstract. – OBJECTIVE: The aim of this study Introduction was to investigate the role of microRNA-222 (miR-222) in osteosarcoma (OS), and to further Osteosarcoma (OS) is a common malignant explore the potential molecular mechanism. osteogenic tumor, which is predisposed to attack PATIENTS AND METHODS: We measured the the adolescence, and has a poor prognosis with a level of miR-222 in OS tissues and cell lines using high degree of malignancy1. The current 5-year quantitative Real-time polymerase chain reaction. Synthesized miR-222 mimics or inhibitors were survival rate is only about 55% to 68%, with the obtained to up-regulate or down-regulate the ex- vast majority of patients eventually occurring 2 pression of miR-222 in U2OS or Saos2 cells. Cell tumor metastasis . Therefore, looking for new counting kit-8 (CCK8) and colony formation assay and effective prevention and control measures to were employed to detect the ability of cell prolif- improve the quality of life and survival of pa- eration, and transwell assay was used to confirm tients and to prevent or delay the transfer of OS the ability of cell invasion.
    [Show full text]
  • Curcumin Alters Gene Expression-Associated DNA Damage, Cell Cycle, Cell Survival and Cell Migration and Invasion in NCI-H460 Human Lung Cancer Cells in Vitro
    ONCOLOGY REPORTS 34: 1853-1874, 2015 Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro I-TSANG CHIANG1,2, WEI-SHU WANG3, HSIN-CHUNG LIU4, SU-TSO YANG5, NOU-YING TANG6 and JING-GUNG CHUNG4,7 1Department of Radiation Oncology, National Yang‑Ming University Hospital, Yilan 260; 2Department of Radiological Technology, Central Taiwan University of Science and Technology, Taichung 40601; 3Department of Internal Medicine, National Yang‑Ming University Hospital, Yilan 260; 4Department of Biological Science and Technology, China Medical University, Taichung 404; 5Department of Radiology, China Medical University Hospital, Taichung 404; 6Graduate Institute of Chinese Medicine, China Medical University, Taichung 404; 7Department of Biotechnology, Asia University, Taichung 404, Taiwan, R.O.C. Received March 31, 2015; Accepted June 26, 2015 DOI: 10.3892/or.2015.4159 Abstract. Lung cancer is the most common cause of cancer CARD6, ID1 and ID2 genes, associated with cell survival and mortality and new cases are on the increase worldwide. the BRMS1L, associated with cell migration and invasion. However, the treatment of lung cancer remains unsatisfactory. Additionally, 59 downregulated genes exhibited a >4-fold Curcumin has been shown to induce cell death in many human change, including the DDIT3 gene, associated with DNA cancer cells, including human lung cancer cells. However, the damage; while 97 genes had a >3- to 4-fold change including the effects of curcumin on genetic mechanisms associated with DDIT4 gene, associated with DNA damage; the CCPG1 gene, these actions remain unclear. Curcumin (2 µM) was added associated with cell cycle and 321 genes with a >2- to 3-fold to NCI-H460 human lung cancer cells and the cells were including the GADD45A and CGREF1 genes, associated with incubated for 24 h.
    [Show full text]
  • Supplementary Table 8. Cpcp PPI Network Details for Significantly Changed Proteins, As Identified in 3.2, Underlying Each of the Five Functional Domains
    Supplementary Table 8. cPCP PPI network details for significantly changed proteins, as identified in 3.2, underlying each of the five functional domains. The network nodes represent each significant protein, followed by the list of interactors. Note that identifiers were converted to gene names to facilitate PPI database queries. Functional Domain Node Interactors Development and Park7 Rack1 differentiation Kcnma1 Atp6v1a Ywhae Ywhaz Pgls Hsd3b7 Development and Prdx6 Ncoa3 differentiation Pla2g4a Sufu Ncf2 Gstp1 Grin2b Ywhae Pgls Hsd3b7 Development and Atp1a2 Kcnma1 differentiation Vamp2 Development and Cntn1 Prnp differentiation Ywhaz Clstn1 Dlg4 App Ywhae Ywhab Development and Rac1 Pak1 differentiation Cdc42 Rhoa Dlg4 Ctnnb1 Mapk9 Mapk8 Pik3cb Sod1 Rrad Epb41l2 Nono Ltbp1 Evi5 Rbm39 Aplp2 Smurf2 Grin1 Grin2b Xiap Chn2 Cav1 Cybb Pgls Ywhae Development and Hbb-b1 Atp5b differentiation Hba Kcnma1 Got1 Aldoa Ywhaz Pgls Hsd3b4 Hsd3b7 Ywhae Development and Myh6 Mybpc3 differentiation Prkce Ywhae Development and Amph Capn2 differentiation Ap2a2 Dnm1 Dnm3 Dnm2 Atp6v1a Ywhab Development and Dnm3 Bin1 differentiation Amph Pacsin1 Grb2 Ywhae Bsn Development and Eef2 Ywhaz differentiation Rpgrip1l Atp6v1a Nphp1 Iqcb1 Ezh2 Ywhae Ywhab Pgls Hsd3b7 Hsd3b4 Development and Gnai1 Dlg4 differentiation Development and Gnao1 Dlg4 differentiation Vamp2 App Ywhae Ywhab Development and Psmd3 Rpgrip1l differentiation Psmd4 Hmga2 Development and Thy1 Syp differentiation Atp6v1a App Ywhae Ywhaz Ywhab Hsd3b7 Hsd3b4 Development and Tubb2a Ywhaz differentiation Nphp4
    [Show full text]
  • Differential Expression of 14-3-3 Isoforms in Human Alcoholic Brain
    Published in final edited form as: Alcohol Clin Exp Res. 2011 June ; 35(6): 1041±1049. doi:10.1111/j.1530-0277.2011.01436.x. Differential expression of 14-3-3 isoforms in human alcoholic brain Rachel K. MacKay, M.MolBiol1, Natalie J. Colson, PhD1, Peter R. Dodd, PhD2, and Joanne M. Lewohl, PhD1 1Griffith Health Institute and School of Medical Sciences, Griffith University, Gold Coast Campus, Southport, Australia 2School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia Abstract Background—Neuropathological damage due to chronic alcohol abuse often results in impairment of cognitive function. The damage is particularly marked in the frontal cortex. The 14-3-3 protein family consists of 7 proteins, β, γ, ε, ζ, η, θ and σ, encoded by 7 distinct genes. They are highly conserved molecular chaperones with roles in regulation of metabolism, signal transduction, cell-cycle control, protein trafficking, and apoptosis. They may also play an important role in neurodegeneration in chronic alcoholism. Methods—We used Real-Time PCR to measure the expression of 14-3-3 mRNA transcripts in both the dorsolateral prefrontal cortex and motor cortex of human brains obtained at autopsy. Results—We found significantly lower 14-3-3β, γ and θ expression in both cortical areas of alcoholics; but no difference in 14-3-3η expression, and higher expression of 14-3-3σ, in both areas. Levels of 14-3-3ζ and ε transcripts were significantly lower only in alcoholic motor cortex. Conclusions—Altered 14-3-3 expression could contribute to synaptic dysfunction and altered neurotransmission in chronic alcohol misuse by human subjects.
    [Show full text]
  • Characterization of Genes in the CFTR-Mediated Innate Immune Response
    The University of Maine DigitalCommons@UMaine Honors College 5-2012 Characterization of Genes in the CFTR-Mediated Innate Immune Response Eric Peterman Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Cell and Developmental Biology Commons, and the Molecular Biology Commons Recommended Citation Peterman, Eric, "Characterization of Genes in the CFTR-Mediated Innate Immune Response" (2012). Honors College. 71. https://digitalcommons.library.umaine.edu/honors/71 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. CHARACTERIZATION OF GENES IN THE CFTR-MEDIATED INNATE IMMUNE RESPONSE by Eric Peterman A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Biochemistry, Molecular and Cellular Biology) The Honors College University of Maine May 2012 Advisory Committee: Carol Kim, Professor, Molecular & Biomedical Sciences Robert Gundersen, Associate Professor, Molecular & Biomedical Sciences John Singer, Professor, Molecular & Biomedical Sciences Julie Gosse, Assistant Professor, Molecular & Biomedical Sciences Keith Hutchison, Professor, Molecular & Biomedical Sciences Mark Haggerty, Lecturer, Rezendes Preceptor for Civic Engagement Abstract: Recently, the Kim Lab has shown that the cystic fibrosis transmembrane conductance regulator (cftr) gene is responsible for mediating resistance to Pseudomonas aeruginosa in a zebrafish infection model. Using the Gene Expression Omnibus, an NCBI functional genomics data repository, it was determined that Smad3, a transcription factor in the TGF-β signaling pathway, is upregulated in the presence of P. aeruginosa. It was found that in our zebrafish model, the Smad3 paralogs Smad3a and Smad3b are upregulated following microinjection of a cftr antisense morpholino oligomer.
    [Show full text]