WMC-79, a Potent Agent Against Colon Cancers, Induces Apoptosis Through a P53-Dependent Pathway

Total Page:16

File Type:pdf, Size:1020Kb

WMC-79, a Potent Agent Against Colon Cancers, Induces Apoptosis Through a P53-Dependent Pathway 1617 WMC-79, a potent agent against colon cancers, induces apoptosis through a p53-dependent pathway Teresa Kosakowska-Cholody,1 Introduction 1 2 W. Marek Cholody, Anne Monks, The bisimidazoacridones are bifunctional antitumor Barbara A. Woynarowska,3 agents with strong selectivity against colon cancers (1, 2). and Christopher J. Michejda1 Recent studies of the effect of bisimidazoacridones on sensitive colon tumors cells revealed that these com- 1 Molecular Aspects of Drug Design, Structural Biophysics pounds act as cytostatic agents that completely arrest cell Laboratory, Center for Cancer Research; 2Screening Technologies Branch, Laboratory of Functional Genomics, Science Applications growth at G1 and G2-M check points but do not trigger International Corporation, National Cancer Institute at Frederick, cell death even at high concentrations (10 Amol/L; ref. 3). Frederick, Maryland; and 3Department of Radiation Oncology, The chemical structure of bisimidazoacridones is symmet- University of Texas Health Science Center, San Antonio, Texas rical in that it consists of two imidazoacridone moieties held together by linkers of various lengths and rigidities. Abstract We recently reported on the synthesis of unsymmetrical variants of the original bisimidazoacridones (4). WMC-79 WMC-79 is a synthetic agent with potent activity (Fig. 1), a compound consisting of an imidazoacridone against colon and hematopoietic tumors. In vitro, the moiety linked to a 3-nitronaphthalimide moiety via agent is most potent against colon cancer cells that 1,4-bispropenopiperazine linker, was found to be a potent carry the wild-type p53 tumor suppressor gene (HCT- but selective cytotoxic agent in a variety of tumor cell f 116 and RKO cells: GI50 <1 nmol/L, LC50 40 nmol/L). lines (4). However, it was more toxic against tumor cell Growth arrest of HCT-116 and RKO cells occurs at the lines that carry the wild-type p53 tumor suppressor gene. G1 and G2-M check points at sublethal concentrations The p53 protein is a tightly regulated transcription factor (10 nmol/L) but the entire cell population was killed at that is elevated in response to DNA damage and has a 100 nmol/L. WMC-79 is localized to the nucleus where critical function in maintaining the integrity of the genome. it binds to DNA. We hypothesized that WMC-79 binding p53-driven cell cycle arrest prevents cells with altered DNA to DNA is recognized as an unrepairable damage in the from proliferating and p53-controlled apoptosis selectively tumor cells, which results in p53 activation. This eliminates severely damaged cells (5–8). Whether the cell triggers transcriptional up-regulation of p53-dependent enters growth arrest or undergoes apoptosis depends on genes involved in replication, cell cycle progression, the final integration of incoming signals with antagonistic growth arrest, and apoptosis as evidenced by DNA effects on cell growth. Many factors affect the cellular microarrays. The change in the transcriptional profile of response to activated p53. These include cell type, HCT-116 cells is followed by a change in the levels of oncogenic status of the cell, survival stimuli, intensity of cell cycle regulatory proteins and apoptosis. The stress signals, level of p53 expression, and interaction of recruitment of the p53-dependent apoptosis pathway p53 with specific proteins (9). was suggested by the up-regulation of p53, p21, Bax, We hypothesized that WMC-79 binding to DNA is DR-4, DR-5, and p53 phosphorylated on Ser15; down- recognized as a damage that is not readily repaired in the regulation of Bcl-2; and activation of caspase-8, -9, -7, tumor cells and which results in the activation of p53. and -3 in cells treated with 100 nmol/L WMC-79. The aim of this study was to investigate the molecular Apoptosis was also evident from the flow cytometric mechanism by which WMC-79 induces growth arrest and studies of drug-treated HCT-116 cells as well as from apoptosis in the sensitive HCT-116 and RKO colon cancer the appearance of nuclear fragmentation. However, cell lines and to determine the role of p53 in this whereas this pathway is important in wild-type p53 mechanism. colon tumors, other pathways are also in operation because colon cancer cell lines in which the p53 gene is mutated are also affected by higher concentrations Materials and Methods of WMC-79. [Mol Cancer Ther 2005;4(10):1617–27] Chemicals All mammalian cell culture reagents and trypan blue were purchased from Life Technologies, Invitrogen Cor- poration (Grand Island, NY). Other reagents were from Received 5/24/05; revised 7/11/05; accepted 7/25/05. Sigma-Aldrich (St. Louis, MO). Requests for reprints: Christopher J. Michejda, Molecular Aspects of Drug Cell Culture Design, Structural Biophysics Laboratory, Center for Cancer Research, +/+ National Cancer Institute at Frederick, Frederick, MD 21702. The human colon cancer cell lines HCT-116 p53 , HCT- Phone: 301-846-1216; Fax: 301-846-6231. E-mail: [email protected] 116 p53À/À, HCT-116 p21+/+, and HCT-116 p21À/À were Copyright C 2005 American Association for Cancer Research. a generous gift from Dr. Bert Vogelstein (Johns Hopkins doi:10.1158/1535-7163.MCT-05-0170 University, Baltimore, MD) and were maintained in Mol Cancer Ther 2005;4(10). October 2005 Downloaded from mct.aacrjournals.org on September 30, 2021. © 2005 American Association for Cancer Research. 1618 WMC-79 Induces Apoptosis in Colon Cancer Cells 35-mm glass-bottomed microwell dishes (MatTek Corpo- ration, Ashland, MA). The following day, cells were washed and fresh medium containing 100 nmol/L WMC- 79 was added. Cells were examined at different time points under a Zeiss 410 laser scanning confocal microscope. Areas were imaged using appropriate laser lines for WMC- 79 excitation (488 nm). Figure 1. Chemical structure of WMC-79. Western Blot Analysis Immunoblot analysis of cell protein lysates was done McCoy’s 5A media. Human colon carcinoma HCT-116 according to the protocol of the manufacturer (Santa Cruz +/+ +/+ +/À (p53 ), RKO (p53 ), HCT-15 (p53 ), COLO-205 Biotechnology, Inc., Santa Cruz, CA). Briefly, cells were À/À À/À (p53 ), and HT-29 (p53 ) cells were purchased from lysed on ice for 30 to 60 minutes in radioimmunopreci- the American Type Culture Collection (Rockville, MD). pitation assay buffer (1Â PBS, 1% igepal, 0.5% sodium HCT-116, RKO, and HT-29 cells were grown in DMEM; deoxycholate, 0.1% SDS) with freshly added inhibitors COLO-205 and HCT-15 cells were grown in RPMI 1640. All (10 Ag/mL phenylmethylsulfonyl fluoride, 50 Ag/mL media were supplemented with 10% heat-inactivated fetal aprotinin, and 1 mmol/L sodium orthovanadate). Cell bovine serum, 2 mmol/L L-glutamine, 100 units/mL lysate was passed through a 21-gauge needle followed by penicillin, and 100 Ag/mL streptomycin. The cells were centrifugation at 10,000 Â g for 10 minutes at 4jC. Protein grown at 37jC in a humidified atmosphere consisting of concentration was determined using Bio-Rad protein assay 5% CO2 and 95% air. (Bio-Rad Laboratories, Hercules, CA). Samples were Drugs and Drug Preparation Procedure mixed with 2Â Laemmli buffer, denaturated at 100jC for Stock solution of WMC-79 synthesized in our laboratory 3 minutes, and proteins were separated by electrophoresis (4) was freshly prepared by dissolving the free base form (NuPAGE 4-12% Bis-Tris Gel, Invitrogen, Life Technologies, of the compound in 2 equivalents of methanesulfonic acid Carlsbad, CA). Separated proteins were transferred to (as 10 mmol/L water solution) and then diluted with water polyvinylidene difluoride membrane (Millipore, Bedford, to a final concentration of 500 Amol/L. This solution was MA) and subjected to immunoblotting with various primary used to prepare 2 Amol/L working solution and its 10-fold antibodies. Positive antibody reactions were visualized with serial dilutions in appropriate complete tissue culture a horseradish peroxidase–conujugated secondary antibody media. and an enhanced chemiluminescence detection system CellViability (Amersham Pharmacia Biotech, Little Chalfont, United 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Kingdom) according to the protocol of the manufacturer. Bromide Assay. Cellular growth in the presence or The membrane was then deprobed and reprobed with an absence of experimental agents was determined using anti-actin antibody to confirm that all samples contained the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium similar amounts of proteins. TBS-0.05% Tween 20 was used bromide (MTT)–based CellTiter96 Non-Radioactive Cell as a wash buffer; 5% nonfat dry milk (Bio-Rad Laboratories) Proliferation Assay (Promega, Madison, WI) according to was dissolved in TBS-0.05% Tween 20 and was used as a the instruction of the manufacturer with small modifica- blocking solution. The following antibodies were used in tions as previously described (4, 10). Trypan blue exclusion this study: mouse anti-Bax (Ab-3), mouse anti-Bcl-2 (Ab-1), assay was used to determine the number of live/dead cells mouse anti–cyclin D1 (Ab-3), mouse anti-E2F1 (Ab-1), in HCT-116 cultures exposed to WMC-79. mouse anti-Mdm2 (Ab-2), mouse anti-p21 (Ab-1), mouse Fluorescence-Activated Cell Sorting. Tumor cells in anti-p53 (Ab-6), mouse anti-pRb (Ab-5), rabbit anti-caspase- exponential phase of growth were seeded at a density of 7 (AB-1), rabbit anti-DR4 (AB-1), rabbit anti-DR5 (AB-2), 0.5 Â 106 to 1 Â 106 cells in 25 or 75 cm2 T flasks, allowed to rabbit anti-phospho-p53(Ser15) (Ab-3; Oncogene Research attach for 24 hours, and then exposed to 10 or 100 nmol/L Products, Boston, MA), goat anti-actin (C-11), goat anti- WMC-79. At appropriate intervals, drug-treated and caspase-8 (C-20), rabbit anti-caspase-9 (PharMingen, San control cells (attached and floating) were collected and Diego, CA), mouse anti–cyclin A, mouse anti–cyclin B1, washed twice in ice-cold PBS containing 1% fetal bovine rabbit anti–cyclin E (Biosource International, Camarillo, serum.
Recommended publications
  • LDB3 Monoclonal Antibody (M06), Gene Alias: CYPHER, FLJ35865, KIAA01613, Clone 3C8 KIAA0613, ORACLE, PDLIM6, ZASP, Ldb3z1, Ldb3z4
    LDB3 monoclonal antibody (M06), Gene Alias: CYPHER, FLJ35865, KIAA01613, clone 3C8 KIAA0613, ORACLE, PDLIM6, ZASP, ldb3z1, ldb3z4 Gene Summary: This gene encodes a PDZ Catalog Number: H00011155-M06 domain-containing protein. PDZ motifs are modular Regulatory Status: For research use only (RUO) protein-protein interaction domains consisting of 80-120 amino acid residues. PDZ domain-containing proteins Product Description: Mouse monoclonal antibody interact with each other in cytoskeletal assembly or with raised against a full-length recombinant LDB3. other proteins involved in targeting and clustering of membrane proteins. The protein encoded by this gene Clone Name: 3C8 interacts with alpha-actinin-2 through its N-terminal PDZ domain and with protein kinase C via its C-terminal LIM Immunogen: LDB3 (AAH10929, 1 a.a. ~ 283 a.a) domains. The LIM domain is a cysteine-rich motif full-length recombinant protein with GST tag. MW of the defined by 50-60 amino acids containing two GST tag alone is 26 KDa. zinc-binding modules. This protein also interacts with all three members of the myozenin family. Mutations in this Sequence: gene have been associated with myofibrillar myopathy MSYSVTLTGPGPWGFRLQGGKDFNMPLTISRITPGSK and dilated cardiomyopathy. Alternatively spliced AAQSQLSQGDLVVAIDGVNTDTMTHLEAQNKIKSASY transcript variants encoding different isoforms have been NLSLTLQKSKRPIPISTTAPPVQTPLPVIPHQKVVVNSP identified; all isoforms have N-terminal PDZ domains ANADYQERFNPSALKDSALSTHKPIEVKGLGGKATIIHA while only longer isoforms (1 and 2) have C-terminal
    [Show full text]
  • Targeted Genes and Methodology Details for Neuromuscular Genetic Panels
    Targeted Genes and Methodology Details for Neuromuscular Genetic Panels Reference transcripts based on build GRCh37 (hg19) interrogated by Neuromuscular Genetic Panels Next-generation sequencing (NGS) and/or Sanger sequencing is performed Motor Neuron Disease Panel to test for the presence of a mutation in these genes. Gene GenBank Accession Number Regions of homology, high GC-rich content, and repetitive sequences may ALS2 NM_020919 not provide accurate sequence. Therefore, all reported alterations detected ANG NM_001145 by NGS are confirmed by an independent reference method based on laboratory developed criteria. However, this does not rule out the possibility CHMP2B NM_014043 of a false-negative result in these regions. ERBB4 NM_005235 Sanger sequencing is used to confirm alterations detected by NGS when FIG4 NM_014845 appropriate.(Unpublished Mayo method) FUS NM_004960 HNRNPA1 NM_031157 OPTN NM_021980 PFN1 NM_005022 SETX NM_015046 SIGMAR1 NM_005866 SOD1 NM_000454 SQSTM1 NM_003900 TARDBP NM_007375 UBQLN2 NM_013444 VAPB NM_004738 VCP NM_007126 ©2018 Mayo Foundation for Medical Education and Research Page 1 of 14 MC4091-83rev1018 Muscular Dystrophy Panel Muscular Dystrophy Panel Gene GenBank Accession Number Gene GenBank Accession Number ACTA1 NM_001100 LMNA NM_170707 ANO5 NM_213599 LPIN1 NM_145693 B3GALNT2 NM_152490 MATR3 NM_199189 B4GAT1 NM_006876 MYH2 NM_017534 BAG3 NM_004281 MYH7 NM_000257 BIN1 NM_139343 MYOT NM_006790 BVES NM_007073 NEB NM_004543 CAPN3 NM_000070 PLEC NM_000445 CAV3 NM_033337 POMGNT1 NM_017739 CAVIN1 NM_012232 POMGNT2
    [Show full text]
  • Determining the Role of P53 Mutation in Human Breast
    Determining the Role of p53 Mutation in Human Breast Cancer Progression Using Recombinant Mutant/Wild-Type p53 Heterozygous Human Mammary Epithelial Cell Culture Models Item Type text; Electronic Dissertation Authors Junk, Damian Jerome Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 18:36:12 Link to Item http://hdl.handle.net/10150/193600 DETERMINING THE ROLE OF P53 MUTATION IN HUMAN BREAST CANCER PROGRESSION USING RECOMBINANT MUTANT/WILD-TYPE P53 HETEROZYGOUS HUMAN MAMMARY EPITHELIAL CELL CULTURE MODELS by Damian Jerome Junk _________________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN CANCER BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2008 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Damian Jerome Junk entitled Determining the Role of p53 Mutation in Human Breast Cancer Progression Using Recombinant Mutant/Wild-Type p53 Heterozygous Human Mammary Epithelial Cell Culture Models and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 4/18/08 Bernard W. Futscher, Ph.D. _______________________________________________________________________ Date: 4/18/08 Anne E. Cress, Ph.D. _______________________________________________________________________ Date: 4/18/08 Jesse D.
    [Show full text]
  • The Role of Z-Disc Proteins in Myopathy and Cardiomyopathy
    International Journal of Molecular Sciences Review The Role of Z-disc Proteins in Myopathy and Cardiomyopathy Kirsty Wadmore 1,†, Amar J. Azad 1,† and Katja Gehmlich 1,2,* 1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (K.W.); [email protected] (A.J.A.) 2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK * Correspondence: [email protected]; Tel.: +44-121-414-8259 † These authors contributed equally. Abstract: The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
    [Show full text]
  • Entrez Symbols Name Termid Termdesc 117553 Uba3,Ube1c
    Entrez Symbols Name TermID TermDesc 117553 Uba3,Ube1c ubiquitin-like modifier activating enzyme 3 GO:0016881 acid-amino acid ligase activity 299002 G2e3,RGD1310263 G2/M-phase specific E3 ubiquitin ligase GO:0016881 acid-amino acid ligase activity 303614 RGD1310067,Smurf2 SMAD specific E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 308669 Herc2 hect domain and RLD 2 GO:0016881 acid-amino acid ligase activity 309331 Uhrf2 ubiquitin-like with PHD and ring finger domains 2 GO:0016881 acid-amino acid ligase activity 316395 Hecw2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 361866 Hace1 HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 GO:0016881 acid-amino acid ligase activity 117029 Ccr5,Ckr5,Cmkbr5 chemokine (C-C motif) receptor 5 GO:0003779 actin binding 117538 Waspip,Wip,Wipf1 WAS/WASL interacting protein family, member 1 GO:0003779 actin binding 117557 TM30nm,Tpm3,Tpm5 tropomyosin 3, gamma GO:0003779 actin binding 24779 MGC93554,Slc4a1 solute carrier family 4 (anion exchanger), member 1 GO:0003779 actin binding 24851 Alpha-tm,Tma2,Tmsa,Tpm1 tropomyosin 1, alpha GO:0003779 actin binding 25132 Myo5b,Myr6 myosin Vb GO:0003779 actin binding 25152 Map1a,Mtap1a microtubule-associated protein 1A GO:0003779 actin binding 25230 Add3 adducin 3 (gamma) GO:0003779 actin binding 25386 AQP-2,Aqp2,MGC156502,aquaporin-2aquaporin 2 (collecting duct) GO:0003779 actin binding 25484 MYR5,Myo1e,Myr3 myosin IE GO:0003779 actin binding 25576 14-3-3e1,MGC93547,Ywhah
    [Show full text]
  • The N-Cadherin Interactome in Primary Cardiomyocytes As Defined Using Quantitative Proximity Proteomics Yang Li1,*, Chelsea D
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs221606. doi:10.1242/jcs.221606 TOOLS AND RESOURCES The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics Yang Li1,*, Chelsea D. Merkel1,*, Xuemei Zeng2, Jonathon A. Heier1, Pamela S. Cantrell2, Mai Sun2, Donna B. Stolz1, Simon C. Watkins1, Nathan A. Yates1,2,3 and Adam V. Kwiatkowski1,‡ ABSTRACT requires multiple adhesion, cytoskeletal and signaling proteins, The junctional complexes that couple cardiomyocytes must transmit and mutations in these proteins can cause cardiomyopathies (Ehler, the mechanical forces of contraction while maintaining adhesive 2018). However, the molecular composition of ICD junctional homeostasis. The adherens junction (AJ) connects the actomyosin complexes remains poorly defined. – networks of neighboring cardiomyocytes and is required for proper The core of the AJ is the cadherin catenin complex (Halbleib and heart function. Yet little is known about the molecular composition of the Nelson, 2006; Ratheesh and Yap, 2012). Classical cadherins are cardiomyocyte AJ or how it is organized to function under mechanical single-pass transmembrane proteins with an extracellular domain that load. Here, we define the architecture, dynamics and proteome of mediates calcium-dependent homotypic interactions. The adhesive the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble properties of classical cadherins are driven by the recruitment of stable AJs along intercellular contacts with organizational and cytosolic catenin proteins to the cadherin tail, with p120-catenin β structural hallmarks similar to mature contacts. We combine (CTNND1) binding to the juxta-membrane domain and -catenin β quantitative mass spectrometry with proximity labeling to identify the (CTNNB1) binding to the distal part of the tail.
    [Show full text]
  • Goat Anti-PCK1 / PEPCKC (Internal) Antibody Peptide-Affinity Purified Goat Antibody Catalog # Af1796b
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Goat Anti-PCK1 / PEPCKC (internal) Antibody Peptide-affinity purified goat antibody Catalog # AF1796b Specification Goat Anti-PCK1 / PEPCKC (internal) Antibody - Product Information Application IHC Primary Accession P35558 Other Accession NP_002582, 5105 Reactivity Human Predicted Mouse, Rat, Pig, Dog, Cow Host Goat Clonality Polyclonal Concentration 100ug/200ul Isotype IgG Calculated MW 69195 AF1796b (2 µg/ml) staining of paraffin embedded Human Cerebral Cortex. Steamed antigen retrieval with citrate buffer pH 6, Goat Anti-PCK1 / PEPCKC (internal) Antibody - AP-staining. Additional Information Goat Anti-PCK1 / PEPCKC (internal) Gene ID 5105 Antibody - Background Other Names Phosphoenolpyruvate carboxykinase, This gene is a main control point for the cytosolic [GTP], PEPCK-C, 4.1.1.32, PCK1, regulation of gluconeogenesis. The cytosolic PEPCK1 enzyme encoded by this gene, along with GTP, catalyzes the formation of Format phosphoenolpyruvate from oxaloacetate, with 0.5 mg IgG/ml in Tris saline (20mM Tris the release of carbon dioxide and GDP. The pH7.3, 150mM NaCl), 0.02% sodium azide, expression of this gene can be regulated by with 0.5% bovine serum albumin insulin, glucocorticoids, glucagon, cAMP, and diet. Defects in this gene are a cause of Storage cytosolic phosphoenolpyruvate carboxykinase Maintain refrigerated at 2-8°C for up to 6 deficiency. A mitochondrial isozyme of the months. For long term storage store at encoded protein also has been characterized. -20°C in small aliquots to prevent freeze-thaw cycles. Goat Anti-PCK1 / PEPCKC (internal) Antibody - References Precautions Goat Anti-PCK1 / PEPCKC (internal) Antibody COMMON VARIANTS IN 40 GENES ASSESSED is for research use only and not for use in FOR DIABETES INCIDENCE AND RESPONSE TO diagnostic or therapeutic procedures.
    [Show full text]
  • Genome-Wide Linkage and Admixture Mapping of Type 2 Diabetes In
    ORIGINAL ARTICLE Genome-Wide Linkage and Admixture Mapping of Type 2 Diabetes in African American Families From the American Diabetes Association GENNID (Genetics of NIDDM) Study Cohort Steven C. Elbein,1,2 Swapan K. Das,1,2 D. Michael Hallman,3 Craig L. Hanis,3 and Sandra J. Hasstedt4 OBJECTIVE—We used a single nucleotide polymorphism (SNP) map in a large cohort of 580 African American families to identify regions linked to type 2 diabetes, age of type 2 diabetes ype 2 diabetes is marked by a clear genetic diagnosis, and BMI. propensity, a high concordance in identical twins, tendencies for both diabetes and age of RESEARCH DESIGN AND METHODS—After removing outli- onset to be familial (1), and marked differences ers and problematic samples, we conducted linkage analysis T in prevalence among ethnic groups (2). Despite consider- using 5,914 SNPs in 1,344 individuals from 530 families. Linkage analysis was conducted using variance components for type 2 able evidence for a genetic predisposition, unraveling the diabetes, age of type 2 diabetes diagnosis, and BMI and nonpara- genetic etiology has been daunting, with few confirmed metric linkage analyses. Ordered subset analyses were con- genes identified from genome-wide linkage scans. Recent ducted ranking on age of type 2 diabetes diagnosis, BMI, waist successes with genome-wide association scans (3) have circumference, waist-to-hip ratio, and amount of European ad- greatly increased the number of confirmed genetic loci, mixture. Admixture mapping was conducted using 4,486 markers but these successes have been limited primarily to Cauca- not in linkage disequilibrium.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • TITLE PAGE Oxidative Stress and Response to Thymidylate Synthase
    Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 2, 2021 -Targeted -Targeted 1 , University of of , University SC K.W.B., South Columbia, (U.O., Carolina, This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted.
    [Show full text]
  • 140503 IPF Signatures Supplement Withfigs Thorax
    Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network.
    [Show full text]