United States District Court

Total Page:16

File Type:pdf, Size:1020Kb

United States District Court Case 2:16-cv-03869-DOC-PLA Document 209 Filed 09/23/18 Page 1 of 152 Page ID #:26702 1 2 3 4 5 6 UNITED STATES DISTRICT COURT 7 CENTRAL DISTRICT OF CALIFORNIA 8 SOUTHERN DIVISION 9 10 WISHTOYO FOUNDATION ET AL., Case No.: CV 16-3869-DOC (PLAx) 11 Plaintiffs, ORDER RE: MOTIONS IN LIMINE 12 [93] [94] [108] [109] [111] [113] [114] 13 vs. [117]; ORDER DENYING WITHOUT 14 PREJUDICE CONDITIONAL MOTION FOR JOINDER AND 15 UNITED WATER CONSERVATION MOTION TO DISMISS FOR FAILURE 16 DISTRICT, TO JOIN [163] [164]; ORDER DENYING AS MOOT RENEWED 17 Defendant. MOTION FOR PRELIMINARY 18 INJUNCTION [201]; AND 19 FINDINGS OF FACT AND 20 CONCLUSIONS OF LAW [176] 21 HOLDING THAT PLAINTIFFS ARE 22 ENTITLED TO DECLARATORY AND INJUNCTIVE RELIEF ON THEIR 23 CLAIM FOR TAKE OF SOUTHERN 24 CALIFORNIA STEELHEAD, BUT NOT ON THEIR CLAIM FOR TAKE 25 OF SOUTHWESTERN WILLOW 26 FLYCATCHER 27 28 1 Case 2:16-cv-03869-DOC-PLA Document 209 Filed 09/23/18 Page 2 of 152 Page ID #:26703 1 I. INTRODUCTION ...................................................................................................... 3 2 II. PROCEDURAL BACKGROUND ............................................................................ 8 3 III. MOTIONS IN LIMINE ............................................................................................ 11 4 IV. FINDINGS OF FACT .............................................................................................. 13 5 A. United Operates the Vern Freeman Diversion Dam (“VFD”) on the Santa Clara River, Built in 1988–91 with Federal Funds ............................. 14 6 B. VFD Sits on a Migration Corridor for Southern California Steelhead, 7 Listed As Endangered by the National Marine Fisheries Service in 1997 ............................................................................................................... 19 8 1. Multiple Federal Agencies, With United’s Participation, 9 Consulted Regarding VFD’s Impact on Steelhead ............................ 29 10 2. National Marine Fisheries Service Issued a Biological Opinion in 2008 Finding that VFD is Likely to Jeopardize the 11 Continued Existence of Southern California Steelhead ..................... 33 12 3. United Took Steps to Address VFD’s Impacts on Steelhead, But Also Dragged its Feet; and the Federal Government Failed 13 to Take Concrete Action Prior to Plaintiffs Filing this Lawsuit ........ 57 14 4. Plaintiffs Propose Remedies to Reduce Impacts on Steelhead .......... 94 15 C. Flycatcher, an Endangered Bird, Migrates to Areas Adjacent to VFD ....... 100 16 1. Flycatcher Biology and Behavior ..................................................... 101 17 2. Flycatcher in the Santa Clara River Watershed ............................... 106 18 V. CONCLUSIONS OF LAW .................................................................................... 111 19 A. Jurisdiction, Venue, and Standing ............................................................... 111 20 B. Unauthorized Take under ESA Section 9 .................................................... 112 21 1. United Took Steelhead ..................................................................... 115 22 2. Plaintiffs Do Not Prevail on their Claim for Take of Flycatcher ..... 124 23 C. Permanent Injunction for Take of Steelhead ............................................... 125 24 1. Irreparable Harm .............................................................................. 126 25 2. Injunctive Relief ............................................................................... 131 26 VI. TRIAL AND POST-TRIAL MOTIONS ................................................................ 147 27 VII. DISPOSITION ........................................................................................................ 151 28 2 Case 2:16-cv-03869-DOC-PLA Document 209 Filed 09/23/18 Page 3 of 152 Page ID #:26704 1 I. INTRODUCTION 2 Located in Ventura and Los Angeles counties, the Santa Clara River flows 3 westward from its headwaters in the San Gabriel Mountains, across the broad Santa Clara 4 River valley and expansive Oxnard Plain, to the Pacific Ocean.1 The Santa Clara River and 5 its tributaries experience high flow variability, multi-year droughts, and extreme seasonal 6 flooding, resulting in a highly dynamic system.2 The Santa Clara River watershed is one of 7 the largest on the coast of southern California, draining about 1,600 square miles.3 8 The Vern Freeman Diversion Dam (“VFD”), built in the late 1980s and early 1990s 9 with federal funds, is a concrete diversion dam spanning the width of the Santa Clara River 10 at about 10.5 river miles from the Pacific Ocean,4 as shown below: 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 Trial Exhibit List (“Trial”) (Dkt. 178) Ex. 218 at 2. 2 Id. 27 3 Id. 4 28 Trial Ex. 245 Fig. 1. 3 Case 2:16-cv-03869-DOC-PLA Document 209 Filed 09/23/18 Page 4 of 152 Page ID #:26705 1 Defendant United Water Conservation District (“United” or “Defendant”) operates 2 VFD. Using a series of channels and gates, United can divert surface water from the River 3 into recharge basins (which in turn recharge aquifers in the Oxnard plain to increase the 4 availability of groundwater) or into a piping system to the Pleasant Valley water district.5 5 The Santa Clara River is also a habitat for steelhead—fish that are born in 6 freshwater, can migrate to the ocean to mature, and return to freshwater as adults to 7 spawn.6 After spawning, steelhead can return to the ocean, and then come back again to 8 freshwater to spawn, sometimes two or more times.7 In the upper Santa Clara River 9 watershed, the tributaries to the Santa Clara River provide spawning and rearing habitat for 10 steelhead, and historically steelhead have migrated between the spawning grounds in the 11 upper Santa Clara River and the Pacific Ocean.8 12 Today, in the Santa Clara River, steelhead hatch and rear upstream, above VFD.9 13 As juveniles, steelhead can migrate downstream—either passing over the top of the crest 14 of VFD or through VFD via a bypass pipe, flushing channel, or via trap and release—and 15 16 17 5 See generally Trial Ex. 218; Testimony of Anthony Emmert (“Emmert Test.”), Dec. 15, 2017, 18 Vol. 1; Testimony of Murray McEachron (“McEachron Test.”), Dec. 18, 2017, Vol. 4. (When citing testimony for which the transcripts have not been produced for publication at this time, the 19 Court will cite to the witness name, date, and volume number for that date.) 6 20 See Trial Facts Stipulation (“TFS”) (Dkt. 149) ¶ 21; Trial Ex. 2 (“Biological Opinion”) at 8; 71 Fed. Reg. 834 (Jan. 5, 2006); TFS ¶¶ 14–16. Steelhead are fish in the species Oncorhynchus 21 mykiss (or “O. mykiss”); O. mykiss includes two life history forms: (1) the anadromous form, called steelhead or steelhead trout; and (2) the resident form, often called rainbow trout. TFS ¶ 13. 22 The difference between the two forms is that steelhead spends a portion of its life history in the ocean before returning to freshwater for spawning, whereas the resident form (rainbow trout) 23 spends its entire life in freshwater. Id. ¶ 13. O. mykiss exhibit great plasticity and are capable of 24 rearing in fresh water and growing to adults entirely in freshwater and residing in freshwater for multiple seasons before becoming anadromous steelhead and outmigrating to ocean waters when 25 conditions are favorable; O. mykiss are even capable of reproducing several generations of purely resident rainbow trout, the offspring of which are capable of reverting to anadromous behavior 26 when conditions are favorable. Id. ¶ 16. 7 See Biological Opinion at 8; 71 Fed. Reg. 834 (Jan. 5, 2006); TFS ¶¶ 14–16. 27 8 See Biological Opinion at 9–10; TFS ¶ 22. 9 28 See TFS ¶ 22. 4 Case 2:16-cv-03869-DOC-PLA Document 209 Filed 09/23/18 Page 5 of 152 Page ID #:26706 1 then swim to the estuary and the Pacific Ocean.10 In the ocean, steelhead can mature into 2 adults.11 As adults, Steelhead can then return to the Santa Clara River to migrate upstream 3 in an effort to reach their natal streams to spawn.12 In order reach the upper Santa Clara 4 River, steelhead must swim through the estuary and the lower portion of the river, and then 5 pass through VFD via a fish ladder, and finally swim upstream above VFD toward the 6 spawning habitat.13 7 Along this pathway, VFD presents two notable obstacles to steelhead migration, 8 especially for adults. First, United’s diversion of water at VFD reduces the availability of 9 water downstream for steelhead migration.14 For instance, during dry summer months, a 10 sandbar typically builds up at the mouth of the Santa Clara River estuary, which (along 11 with other dry portions over the river) cuts off migratory access to the Santa Clara River to 12 or from the ocean.15 But when river flow levels increase during the wet season—typically 13 December through April—a migration corridor can be created, and the sandbar can be 14 breached, allowing steelhead to migrate upstream and downstream (assuming there is 15 sufficient water depth and height for the fish).16 However, United—by diverting water at 16 VFD—artificially shortens the frequency and durations of migration corridor periods, 17 thereby reducing migration opportunities for steelhead.17 18 Second, VFD is a bottleneck in the river; and the only way for adult steelhead 19 swimming upstream to pass VFD is to enter VFD’s fish ladder, climb the ladder, and exit 20 the ladder above VFD, but it is difficult for adult steelhead to successfully pass through the 21 22 23 10 See TFS ¶ 30; Biological Opinion at 11,
Recommended publications
  • Intermittent Rivers and Ephemeral Streams
    Intermittent Rivers and Ephemeral Streams: A Unique Biome With Important Contributions to Biodiversity and Ecosystem Services Ross Vander Vorste, University of Wisconsin La Crosse, La Crosse, WI, United States Romain Sarremejane, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom Thibault Datry, IRSTEA, UR-Riverly, Centre de Lyon-Villeurbanne, Villeurbanne, France © 2019 Elsevier Inc. All rights reserved. What Are Intermittent Rivers and Ephemeral Streams? 1 Hydrologically Diverse and Globally Abundant 1 Three-in-One: IRES Contribute to Lotic, Lentic, and Terrestrial Dynamics 2 Biogeochemical Dynamics in Intermittent Rivers and Ephemeral Streams 3 Biodiversity in Intermittent Rivers and Ephemeral Streams 4 From Microbes to Elephants, IRES Support High Biodiversity 4 Strategies for Persistence in IRES 6 Organization of Metacommunities Within IRES 6 Management of Intermittent Rivers and Ephemeral Streams 7 Ecosystem Services Provided by IRES 7 Protection and Management of IRES 7 Future of IRES and Global Change 7 Summary 8 References 9 Abstract The majority of flowing waterbodies throughout the world can be considered intermittent rivers or ephemeral streams (IRES) because at some point in time and space they stop flowing or dry. Despite their global abundance, less is known about this biome compared to perennial—permanently flowing—rivers. However, a recent surge in research has dramatically improved our understanding of how IRES function and what types of biodiversity and ecosystem services they support. A cycle of terrestrial-aquatic habitat conditions caused by the periodic drying and rewetting creates a high temporal dynamic in the biogeochemistry, biodiversity, and ecosystem services of IRES. Vast amounts of accumulated sediment, organic matter and organisms can be transported from IRES downstream to larger rivers or lakes, contributing to the global C cycle.
    [Show full text]
  • Georgia Water Quality
    GEORGIA SURFACE WATER AND GROUNDWATER QUALITY MONITORING AND ASSESSMENT STRATEGY Okefenokee Swamp, Georgia PHOTO: Kathy Methier Georgia Department of Natural Resources Environmental Protection Division Watershed Protection Branch 2 Martin Luther King Jr. Drive Suite 1152, East Tower Atlanta, GA 30334 GEORGIA SURFACE WATER AND GROUND WATER QUALITY MONITORING AND ASSESSMENT STRATEGY 2015 Update PREFACE The Georgia Environmental Protection Division (GAEPD) of the Department of Natural Resources (DNR) developed this document entitled “Georgia Surface Water and Groundwater Quality Monitoring and Assessment Strategy”. As a part of the State’s Water Quality Management Program, this report focuses on the GAEPD’s water quality monitoring efforts to address key elements identified by the U.S. Environmental Protection Agency (USEPA) monitoring strategy guidance entitled “Elements of a State Monitoring and Assessment Program, March 2003”. This report updates the State’s water quality monitoring strategy as required by the USEPA’s regulations addressing water management plans of the Clean Water Act, Section 106(e)(1). Georgia Department of Natural Resources Environmental Protection Division Watershed Protection Branch 2 Martin Luther King Jr. Drive Suite 1152, East Tower Atlanta, GA 30334 GEORGIA SURFACE WATER AND GROUND WATER QUALITY MONITORING AND ASSESSMENT STRATEGY 2015 Update TABLE OF CONTENTS TABLE OF CONTENTS .............................................................................................. 1 INTRODUCTION.........................................................................................................
    [Show full text]
  • THE WATER QUALITY of the LITTLE COLORADO RIVER WATERSHED Fiscal Year 2007
    THE WATER QUALITY OF THE LITTLE COLORADO RIVER WATERSHED Fiscal Year 2007 Prepared by the Surface Water Section March 2009 Publication Number OFR 09-11 LCR REPORT FY 2007 THE WATER QUALITY OF THE LITTLE COLORADO RIVER WATERSHED Fiscal Year 2007 By The Monitoring and Assessments Units Edited by Jason Jones and Meghan Smart Arizona Department of Environmental Quality ADEQ Water Quality Division Surface Water Section Monitoring Unit, Standards & Assessment Unit 1110 West Washington St. Phoenix, Arizona 85007-2935 ii LCR REPORT FY 2007 THANKS: Field Assistance: Anel Avila, Justin Bern, Aiko Condon, Kurt Ehrenburg, Karyn Hanson, Lee Johnson, Jason Jones, Lin Lawson, Sam Rector, Patti Spindler, Meghan Smart, and John Woods. Report Review: Kurt Ehrenburg, Lin Lawson, and Patti Spindler. Report Cover: From left to right: EMAP team including ADEQ, AZGF, and USGS; Rainbow over the Round Valley in the White Mountains; Measuring Tape, and Clear Creek located east of Payson. iii LCR REPORT FY 2007 ABBREVIATIONS Abbreviation Name Abbreviation Name ALKCACO3 Total Alkalinity SO4-T Sulfate Total ALKPHEN Phenolphthalein Alkalinity SPCOND Specific Conductivity Arizona Department of Suspended Sediment AQEQ Environmental Quality SSC Concentration AS-D Arsenic Dissolved su Standard pH Units AS-T Arsenic Total TDS Total Dissolved Solids Arizona Game and Fish AZGF Department TEMP-AIR Air Temperature Arizona Pollutant Discharge TEMP- AZPDES Elimination System WATER Water Temperature BA-D Barium Dissolved TKN Total Kjeldahl Nitrogen B-T Boron Total TMDL Total Maximum Daily Load CA-T Calcium Total USGS U.S. Geological Survey CFS Cubic Feet per Second ZN-D Zinc Dissolved CO3 Carbonate ZN-T Zinc Total CU-TRACE Copper Trace Metal CWA Clean Water Act DO-MGL Dissolved Oxygen in mg/l DO- PERCENT Dissolved Oxygen in Percent E.
    [Show full text]
  • Hydrological, Environmental and Taxonomical Heterogeneity During the Transition from Drying to Flowing Conditions in a Mediterranean Intermittent River
    biology Article Hydrological, Environmental and Taxonomical Heterogeneity during the Transition from Drying to Flowing Conditions in a Mediterranean Intermittent River Andy Banegas-Medina 1,2,*, Isis-Yelena Montes 1,2 , Ourania Tzoraki 3 , Luc Brendonck 4,5 , Tom Pinceel 4,6, Gustavo Diaz 1 , Pedro Arriagada 7, Jose-Luis Arumi 8 , Pablo Pedreros 1 and Ricardo Figueroa 1 1 Centre of Environmental Sciences EULA-Chile and CHRIAM Water Research Centre, Department of Aquatic Systems, Faculty of Environmental Sciences, Universidad de Concepción, P.O. Box 160-C Concepción, Chile; [email protected] (I.-Y.M.); [email protected] (G.D.); [email protected] (P.P.); rfi[email protected] (R.F.) 2 Laboratory of Biology, Department of Sciences, Danlí Technological Campus, Universidad Nacional Autónoma de Honduras, Panamerican Highway km 95, 13201 Danlí, Honduras 3 Marine Sciences Department, School of Environment, University of the Aegean, University Hill, 81100 Mytilene, Lesvos, Greece; [email protected] 4 Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium; [email protected] (L.B.); [email protected] (T.P.) 5 Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, 2520 Potchefstroom, South Africa 6 Centre for Environmental Management, University of the Free State, P.O. Box 339, 9300 Bloemfontein, South Africa Citation: Banegas-Medina, A.; 7 Centre of Environmental Sciences EULA-Chile and CHRIAM Water Research Centre, Department of Montes, I.-Y.; Tzoraki, O.; Brendonck, Environmental Engineering, Faculty of Environmental Sciences, Universidad de Concepción, L.; Pinceel, T.; Diaz, G.; Arriagada, P.; P.O.
    [Show full text]
  • September 2, 2021
    September 2, 2021 Via www.regulations.gov The Honorable Michael Regan The Honorable Jaime A. Pinkham Administrator Acting Assistant Secretary of the Army for U.S. Environmental Protection Agency Civil Works 1200 Pennsylvania Avenue NW Department of the Army Washington, DC 20460 108 Army Pentagon Washington, DC 20310 Mr. John Goodin Director Mr. Vance F. Stewart III Office of Wetlands, Oceans and Watersheds Acting Principal Deputy U.S. Environmental Protection Agency Office of the Assistant Secretary of the 1200 Pennsylvania Avenue NW Army for Civil Works Washington, DC 20460 Department of the Army 108 Army Pentagon Washington, DC 20310 Re: Request for Recommendations on Defining “Waters of the United States” Docket No. EPA-HQ-OW-2021-03281 Dear Administrator Regan, Acting Assistant Secretary Pinkham, Mr. Goodin, and Mr. Stewart: Together, our 85 organizations write to ask you to take two steps to protect critical wetlands, streams, and other waters that we and our millions of members rely on for swimming, fishing, boating, drinking water, and our livelihoods. First, we urge the U.S. Environmental Protection Agency (“EPA”) and U.S. Army Corps of Engineers (“Corps”) (together, the “Agencies”) to promptly restore and implement the regulatory framework in effect prior to the so-called Navigable Waters Protection Rule (“NWPR”). Second, we urge the Agencies to promulgate a new definition of “waters of the United States” that is rooted in science, consistent with Supreme Court precedent, and faithful to the objective of the Clean Water Act.
    [Show full text]
  • WATER QUALITY in GEORGIA 2016-2017 (2018 Integrated 305B/303D Report)
    WATER QUALITY IN GEORGIA 2016-2017 (2018 Integrated 305b/303d Report) WATER QUALITY IN GEORGIA Georgia Department of Natural Resources Environmental Protection Division WATER QUALITY IN GEORGIA 2016-2017 (2018 Integrated 305b/303d Report) Preface This report was prepared by the Georgia Environmental Protection Division (EPD), Department of Natural Resources, as required by Section 305(b) of Public Law 92-500 (the Clean Water Act) and as a public information document. It represents a synoptic extraction of the EPD files and, in certain cases, information has been presented in summary form from those files. The reader is therefore advised to use this condensed information with the knowledge that it is a summary document and more detailed information may be available in EPD files. This report covers a two-year period, January 1, 2016 through December 31, 2017. Comments or questions related to the content of this report are invited and should be addressed to: Environmental Protection Division Georgia Department of Natural Resources Watershed Protection Branch 2 Martin Luther King, Jr. Drive, SE Suite 1162 East Tower Atlanta, Georgia 30334 WATER QUALITY IN GEORGIA This page is intentionally blank. WATER QUALITY IN GEORGIA CHAPTER 1 Watershed Protection in Georgia The GAEPD is a comprehensive environmental agency Executive Summary responsible for environmental protection, management, regulation, permitting, and Purpose This report, Water Quality in Georgia, enforcement in Georgia. The GAEPD has for 2016-20172016-2017, was prepared by the many years aggressively sought most available Georgia Environmental Protection Division program delegations from the USEPA in order to (EPD) of the Department of Natural Resources achieve and maintain a coordinated, integrated (DNR).
    [Show full text]
  • A Review of the Effects of Pollution and Water Scarcity on the Stream Biota of an Intermittent Mediterranean Basin
    Received: 19 October 2017 Revised: 21 December 2017 Accepted: 2 January 2018 DOI: 10.1002/rra.3254 REVIEW PAPER A review of the effects of pollution and water scarcity on the stream biota of an intermittent Mediterranean basin Ioannis Karaouzas | Christos Theodoropoulos | Leonidas Vardakas | Eleni Kalogianni | Nikolaos Th. Skoulikidis Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Abstract Waters, Anavyssos, Greece This review presents the main results of a 10‐year research study conducted in a Mediterranean Correspondence intermittent basin (Evrotas River). By assembling the main outcomes of past and ongoing research Ioannis Karaouzas, Hellenic Centre for Marine projects, this study provides an overview of multiple stressor effects, with emphasis on water scar- Research, Institute of Marine Biological city, focusing on hydro‐biogeochemical processes, as well as on spatial and temporal variations in Resources and Inland Waters, 46.7 km Athens‐ Sounio Ave., Anavyssos 19013, Greece. benthic macroinvertebrates and fish fauna. The major impact in the basin has been the over‐exploi- Email: [email protected] tation of surface and groundwater resources, which, in combination with droughts, has resulted in the recurrent artificial desiccation of large parts of the hydrological network. The response to Funding information intermittency of the macroinvertebrate fauna is characterized by high resilience through various Sixth Framework Programme, Grant/Award drought‐resistant evolutionary mechanisms, with assemblages recovering successfully after Number: LIFE05 ENV/GR/000245; Seventh Framework Programme, Grant/Award Num- recurrent droughts. However, when pollution is evident in combination with drought, effects on bers: FP7/2007‐2011, No. 603629; benthic species richness, abundance, and assemblage structure can be severe.
    [Show full text]
  • River Ecosystem Conceptual Models and Non-Perennial Rivers: a Critical Review
    Received: 6 March 2020 Revised: 16 June 2020 Accepted: 29 June 2020 DOI: 10.1002/wat2.1473 ADVANCED REVIEW River ecosystem conceptual models and non-perennial rivers: A critical review Daniel C. Allen1 | Thibault Datry2 | Kate S. Boersma3 | Michael T. Bogan4 | Andrew J. Boulton5 | Daniel Bruno6 | Michelle H. Busch7 | Katie H. Costigan8 | Walter K. Dodds9 | Ken M. Fritz10 | Sarah E. Godsey11 | Jeremy B. Jones12 | Tatiana Kaletova13 | Stephanie K. Kampf14 | Meryl C. Mims15 | Thomas M. Neeson16 | Julian D. Olden17,18 | Amandine V. Pastor19 | N. LeRoy Poff20,21 | Benjamin L. Ruddell22 | Albert Ruhi23 | Gabriel Singer24 | Paolo Vezza25 | Adam S. Ward26 | Margaret Zimmer27 1Department of Biology, University of Oklahoma, Norman, Oklahoma 2INRAE, UR-RIVERLY, Centre de Lyon-Villeurbanne, Villeurbanne, CEDEX France 3Department of Biology, University of San Diego, San Diego, California 4School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona 5School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia 6Department of Biodiversity and Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Zaragoza, Spain 7Department of Biology, University of Oklahoma, Norman, Oklahoma 8School of Geosciences, University of Louisiana, Lafayette, Louisiana 9Division of Biology, Kansas State University, Manhattan, Kansas 10Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 11Department of Geosciences, Idaho State University, Pocatello, Idaho 12Institute
    [Show full text]
  • Implications for Clean Water Act Implementation
    UNIVERSITY OF CALIFORNIA Los Angeles Protecting and Restoring our Nation’s Waters: The Effects of Science, Law, and Policy on Clean Water Act Jurisdiction with a focus on the Arid West A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Environmental Science and Engineering by Forrest Brown Vanderbilt 2013 © Copyright by Forrest Brown Vanderbilt 2013 ABSTRACT OF THE DISSERTATION Protecting and Restoring our Nation’s Waters: The Effects of Science, Law, and Policy on Clean Water Act Jurisdiction with a focus on the Arid West by Forrest Brown Vanderbilt Doctor of Environmental Science and Engineering University of California, Los Angeles, 2013 Professor Richard F. Ambrose, Chair Since its initial passage in 1972, the Clean Water Act has attempted to restore and protect our Nation’s waters. The definition of ‘our Nation’s waters’ has undergone periodic debate and scrutiny as the U.S. Environmental Protection Agency, the U.S. Army Corps of Engineers, and the Supreme Court have defined and redefined the standards for determining CWA jurisdiction. The Supreme Court’s most recent set of standards, including the “significant nexus” test, appear to both increase the uncertainty in what is regulated and increase the burden of proof for determining CWA jurisdiction. The Arid West was singled out in the most recent EPA and Corps joint jurisdictional guidance as a problematic area. Focusing on the Arid West, my dissertation evaluates the CWA jurisdiction process from three perspectives: law, policy, and ii science, and explores an understanding of the past, present, and potential future path of CWA jurisdiction.
    [Show full text]
  • April 15, 2019 Via Regulations.Gov Federal Rulemaking Portal U.S. Environmental Protection Agency EPA Docket Center Office of W
    April 15, 2019 via Regulations.gov federal rulemaking portal U.S. Environmental Protection Agency EPA Docket Center Office of Water Docket Mail Code 28221T 1200 Pennsylvania Avenue NW Washington, D.C. 20460 Re: Revised Definition of “Waters of the United States;” Docket ID No. EPA-HQ-OW- 2018-0149; Comments of Sierra Club, Puget Soundkeeper Alliance, Idaho Conservation League, Pacific Coast Federation of Fishermen’s Associations, Institute for Fisheries Resources, Tucson Audubon Society, National Association for the Advancement of Colored People (“NAACP”), and Southeast Alaska Conservation Council To U.S. Environmental Protection Agency and U.S. Dep’t of the Army, Corps of Engineers: These comments in opposition to the Revised Definition of Waters of the United States, 84 Fed. Reg. 4154 (Feb. 14, 2019) (“Dirty Water Rule” or “proposed rule”), are submitted by Earthjustice on behalf of the Sierra Club, Puget Soundkeeper Alliance, the Idaho Conservation League, Pacific Coast Federation of Fishermen’s Associations, Institute for Fisheries Resources, Tucson Audubon Society, the National Association for the Advancement of Colored People (“NAACP”), and Southeast Alaska Conservation Council (collectively “Clean Water Groups”).1 We rely on clean water for drinking, to irrigate crops, for swimming and fishing, and as habitat for wildlife. Wetlands and other waters also reduce flooding and filter pollution. Since 1972, the Clean Water Act, one of our earliest and most important environmental laws, has helped restore and protect our Nation’s waters. The Clean Water Groups are opposed to the Dirty Water Rule as contrary to law, contrary to science, and contrary to the overwhelming evidence in the record that this rule will leave America’s waters unprotected from pollution, and subject to destruction and degradation.
    [Show full text]
  • Significance of Ephemeral and Intermittent Streams in the Arid and Semi-Arid American Southwest
    The Ecological and Hydrological Significance of Ephemeral and Intermittent Streams in the Arid and Semi-arid American Southwest R E S E A R C H A N D D E V E L O P M E N T EPA/600/R-08/134 ARS/233046 November 2008 www.epa.gov The Ecological and Hydrological Significance of Ephemeral and Intermittent Streams in the Arid and Semi-arid American Southwest by Lainie R. Levick, David C. Goodrich, Mariano Hernandez USDA-ARS Southwest Watershed Research Center Tucson, Arizona Julia Fonseca Pima County Office of Conservation Science and Environmental Policy Tucson, Arizona Darius J. Semmens USGS – Rocky Mountain Geographic Science Center Denver, Colorado Juliet Stromberg, Melanie Tluczek Arizona State University Tempe, Arizona Robert A. Leidy, Melissa Scianni USEPA, Office of Water, Region IX San Francisco, California D. Phillip Guertin University of Arizona Tucson, Arizona William G. Kepner USEPA, ORD, NERL Las Vegas, Nevada The information in this report has been funded wholly by the United States Environmental Protection Agency under an interagency assistance agreement (DW12922094) to the USDA, Agricultural Research Service, Southwest Watershed Research Center. It has been subjected to both agencies peer and administrative review processes and has been approved for publication. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Mention of trade names and commercial products does not constitute endorsement or recommendation for use. U.S. Environmental Protection Agency Office of Research and Development i Washington, DC 20460 5765leb08 Acknowledgements We gratefully acknowledge the following people for their valuable comments and review that significantly improved the quality, value, and accuracy of this document: Dave Bertelsen (University of Arizona Herbarium), Trevor Hare (Sky Island Alliance), Jim Leenhouts (USGS), Kathleen Lohse (University of Arizona), Waite Osterkamp (USGS), Sam Rector (Arizona Department of Environmental Quality), Phil Rosen (University of Arizona), Marty Tuegel (U.S.
    [Show full text]
  • Relevance of Intermittent Rivers and Streams in Agricultural Landscape and Their Impact on Provided Ecosystem Services—A Mediterranean Case Study
    International Journal of Environmental Research and Public Health Article Relevance of Intermittent Rivers and Streams in Agricultural Landscape and Their Impact on Provided Ecosystem Services—A Mediterranean Case Study Tatiana Kaletová 1, Luis Loures 2,3,4,5,* , Rui Alexandre Castanho 3,4,6,7 , Elena Aydin 1, José Telo da Gama 2,3,8, Ana Loures 2,3 and Amélie Truchy 9 1 Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia 2 Polytechnic Institute of Portalegre (IPP), 7300 Portalegre, Portugal 3 VALORIZA—Research Centre for Endogenous Resource Valorization, 7300 Portalegre, Portugal 4 Research Centre for Tourism, Sustainability and Well-being (CinTurs), University of Algarve, 8005-139 Faro, Portugal 5 Institute of Research on Territorial Governance and Inter-Organizational Cooperation, 41-300 Katowice, Poland 6 Environmental Resources Analysis Research Group (ARAM), University of Extremadura, 06006 Badajoz, Spain 7 Faculty of Applied Sciences, University of D ˛abrowa Górnicza, 41-300 Katowice, Poland 8 Departamento de Edafologia, UNEX—Universidad da Extremadura, 06006 Badajoz, Spain 9 Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden * Correspondence: [email protected]; Tel.: +351-268-528-628 Received: 2 June 2019; Accepted: 22 July 2019; Published: 28 July 2019 Abstract: Ecosystem services (ES), as an interconnection of the landscape mosaic pieces, along with temporal rivers (IRES) are an object of research for environmental planners and ecological economists, among other specialists. This study presents (i) a review on the importance of IRES and the services they can provide to agricultural landscapes; (ii) a classification tool to assess the impact of IRES to provide ES by agricultural landscapes; (iii) the application of the proposed classification to the Caia River in order to identify the importance of this intermittent river for its surrounding agricultural landscape.
    [Show full text]