Black Tourmaline This Silicate Mineral Is Found in Countries Like Brazil, China, and India

Total Page:16

File Type:pdf, Size:1020Kb

Black Tourmaline This Silicate Mineral Is Found in Countries Like Brazil, China, and India Black Tourmaline This silicate mineral is found in countries like Brazil, China, and India. It’s comprised of aluminum borosilicates and a mix of magnesium, iron, and other metals. The black crystal’s name originates from turmali, an ancient Sinhalese word. Interestingly, each stone differs because the core varies depending on its balance of components. Crystal healers use it for helping with physical ailments like chemotherapy side effects, addiction treatment, and arthritis. This grounding stone promotes a connection between an individual’s physical and spiritual self. Additionally, many believe it has value in helping people with issues like anxiety and high-stress levels. Black Tourmaline doesn’t function as a traditional EMF blocker. It enhances the body’s electrical field, boosting protection against potential harmful EMF radiation. Elite Shungite The rarity of Elite Shungite makes it harder for the average person to track down. It is silver in color, with a glassy smooth surface capable of reflecting daylight. Elite Shungite differs from the classic form of Black Shungite. Elite is comprised of 98 percent allotropic carbon and black is 30 percent. Tracking down the origins of Elite Shungite has proven difficult. Some theories speculate it arrived on earth in the region of Russia by way of a meteorite. The fragility of Elite Shungite makes it difficult to form the metal into geometric shapes. It is possible to find pendants with chunks of the stone. The purest forms of Elite Shungite contain natural fullerenes, said to act as absorbents and fillers. Keep in mind that only the rarest form of Elite Shungite contains enough of these particles to make a difference. Orgonite Orgonite is a mix of resin, metal shavings, and quartz crystals. It got its name from Wilhelm Reich, a noted psychoanalyst, and medical doctor. He coined the term to refer to the energy that is everywhere in nature in varying forms. The idea behind the use of Orgonite is that the quartz portion of the stone absorbs out-of-balance energies, placing you back into a healthy state by the quartz portion of the stone. Many reiki specialists use Orgonite to decrease an individual’s sensitivity to EMFs around them. Other uses for Orgonite include sleep improvement, balancing mood, and helping you feel more energetic. In addition to helping with EMF emissions, Orgonite can also help deepen meditation periods and help with visualizations. Lepidolite Lepidolite is a mica mineral full of lithium. It is infused with quartz to form a gemstone. The most common colors for lepidolite are red, pink, and purple. You can only find lepidolite in places that have high concentrations of lithium. This makes the mineral very rare. Uses for Lepidolite in the world of alternative healing include helping you focus energy in your chakras. Many healers rely on lepidolite as a mood stabilizer. They rely on the lithium the stones contain to infuse people with a sense of calm when they are feeling stressed or surrounded by chaos. It works well in combination with Fluorite in protecting people against EMF coming from computers. Fulgurite Fulgurite is formed by the fusion of silica (quartz) sand or rock from a lightning strike. Many healers believe the stones help create powerful flows within the heart, throat, and Third Eye Chakra. They believe the stone’s high vibration frequency helps with hearing and allow people to manifest their deepest desires as they pray. The most popular places for Fulgurite discovery are in deserts. It has been located in places like the Gobi Desert and the Sahara Desert. They typically come in places from one to three inches long and vary in color depending on where the lightning struck. Fulgurite helps with EMFs by aiding those sensitive to electricity. Healers believe the stone balances out your body’s electrical activity and returns it to a normal state, lowering your vulnerability to EMFs. Flint Flint is another popular protection stone. It combats EMFs in the surrounding air. Flint is a type of quartz that usually forms in sedimentary rocks like marly limestone or chalk. One of the biggest repositories of flint in North America lies in Flint Ridge, in Eastern Ohio. Flint artifacts have also been found in the Gulf of Mexico and the Rocky Mountains. Flint is also known as jasper or agate. Black Moonstone Ancient Roman literature refers to black moonstone. The Romans believed the goddess Diana’s reflection could be seen in the glow of the stone. The wearer would be capable of making better and wiser choices in their life. Moonstone was even considered sacred in India. It regained popularity during the Art Nouveau period because master goldsmiths like Rene Lalique used moonstone to create fabulous pieces of jewelry. Also, the stone is the official gem for the state of Florida. Healers like Black Moonstone for its perceived ability to focus New Moon energy. That is, black moonstone keeps negative energy like EMFs away and pulls in positive vibrations instead. Rainbow Fluorite This stabilizing, protective stone grounds and harmonizes spiritual energy. For example, rainbow fluorite increases a person’s intuitive abilities when working with the upper Chakras. Rainbow fluorite also anchors thoughts and facilitating better coordination between an individual’s mental and physical state. Rainbow fluorite combines all the properties found in other fluorite crystals like blue, purple, green, clear, and yellow. Some believe it works best acting as a barrier against EMFs emitted from computers. Many people wear it in the form of a bracelet or necklace. Green Aventurine Aventurine is another stone containing a large amount of quartz. The balance of those additional materials gives green aventurine its color. The abundance of quartz found in green aventurine makes causes many healers to consider it an excellent stone for use in amplifying positive energy. Green aventurine is found in Italy, China, Brazil, Nepal, and Russia. Healers often focus their use of the stone on the heart chakra. Many have found them helpful in removing EMFs emitted from the electronic equipment that surrounds them at their job. The stones absorb any environmental pollution and leave you in a healthier state. Aegirine Hans Morten Thrane Esmark, a Norwegian mineralogist, named Aegirine after the Norse sea god Aegir. It belongs to the Pyroxene group of crystals along with Augite. Aegirine’s distinct shape is long, prismatic and crystals attach to a solid center. Aegirine can also be found in Greenland, Canada, Scotland, and Kenya. Other uses for Aegirine include: Strengthening the immune system Improving cellular memory Promoting the body’s self-healing properties Healers also promote Aegirine by those recovering from an injury or illness. They believe it helps protect against potential EMF damage by helping the body process and eliminate toxins from a person’s physical and energy levels. Smokey Quartz Smokey quartz is popular among those interested in reaching an elevated state of consciousness. The thought process behind its effectiveness is that the stone’s vibrations help us reach our full potential. Smokey quartz helps people release negativity from their inner selves, including feelings of envy, anger, and jealousy. The smoky quartz represents a tie to Mother nature. It comes into existence when crystalline quartz becomes exposed to natural radiation from surrounding rocks, similar to the creation of amethyst. Smokey quartz is used for jewelry like necklaces, rings, and brooches. Smokey quartz is not a traditional protection crystal. Many healers believe its inherent qualities are likely to boost EMF if used near an EMF-emitting device. However, it promotes healing in the body once you are some distance away. .
Recommended publications
  • A Vibrational Spectroscopic Study of the Silicate Mineral Harmotome Â
    Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137 (2015) 70–74 Contents lists available at ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa A vibrational spectroscopic study of the silicate mineral harmotome – (Ba,Na,K)1-2(Si,Al)8O16Á6H2O – A natural zeolite ⇑ Ray L. Frost a, , Andrés López a, Lina Wang a,b, Antônio Wilson Romano c, Ricardo Scholz d a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia b School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391, Bin Shui West Road, Xi Qing District, Tianjin, PR China c Geology Department, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil d Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-00, Brazil highlights graphical abstract We have studied the mineral harmotome (Ba,Na,K)1- 2(Si,Al)8O16Á6H2O. It is a natural zeolite. Raman and infrared bands are attributed to siloxane stretching and bending vibrations. A sharp infrared band at 3731 cmÀ1 is assigned to the OH stretching vibration of SiOH units. article info abstract Article history: The mineral harmotome (Ba,Na,K)1-2(Si,Al)8O16Á6H2O is a crystalline sodium calcium silicate which has Received 31 March 2014 the potential to be used in plaster boards and other industrial applications. It is a natural zeolite with cat- Received in revised form 7 July 2014 alytic potential. Raman bands at 1020 and 1102 cmÀ1 are assigned to the SiO stretching vibrations of Accepted 28 July 2014 three dimensional siloxane units.
    [Show full text]
  • The Good Germans the Hemmerles, Munich’S First Family of Jewelry, Design Baubles That Are Truly One of a Kind
    Clockwise from left: Chris- tian and Stefan Hemmerle at home; Hemmerle’s 18k white gold, black iron and aquamarine ring, 18k red gold, moonstone, amethyst and sapphire brooch, and 18k white gold, red patinated copper, spinel and amethyst earrings, prices available upon request, at Hemmerle, 011.800.2422.6000. ccessories ∂lash ccessories a W The Good Germans The Hemmerles, Munich’s first family of jewelry, design baubles that are truly one of a kind. Photographs by S t e f a n K o r t e t’s not every client request that 230 pieces of haute joaillerie each year in its inspires a designer to branch off into a 12-artisan Munich workshop, is renowned direction he never before imagined— for its austere architectural settings ren- I and subsequently to develop an entirely dered in unorthodox materials including new style in doing so. But that’s exactly how copper, stainless steel, brass, aluminum and the German jewelry house Hemmerle came rare woods, and for its use of exquisitely to enjoy its current status as one of today’s cut colored gemstones. The heaviness of most inventive and sought-after jewelers. a masculine charcoal-hued iron band, for It all began in 1995, when a prominent instance, only enhances the sharp angles of Munich art collector commissioned Ste- an emerald-cut 40-carat electric blue aqua- fan Hemmerle, a third-generation jeweler, marine ring, while the warm hues of orange to create a birthday present for his wife, a and red patinated copper perfectly com- woman who detested flashy gems.
    [Show full text]
  • Carbonation and Decarbonation Reactions: Implications for Planetary Habitability K
    American Mineralogist, Volume 104, pages 1369–1380, 2019 Carbonation and decarbonation reactions: Implications for planetary habitability k E.M. STEWART1,*,†, JAY J. AGUE1, JOHN M. FERRY2, CRAIG M. SCHIFFRIES3, REN-BIAO TAO4, TERRY T. ISSON1,5, AND NOAH J. PLANAVSKY1 1Department of Geology & Geophysics, Yale University, P.O. Box 208109, New Haven, Connecticut 06520-8109, U.S.A. 2Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, U.S.A. 3Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 4School of Earth and Space Sciences, MOE Key Laboratory of Orogenic Belt and Crustal Evolution, Peking University, Beijing 100871, China 5School of Science, University of Waikato, 101-121 Durham Street, Tauranga 3110, New Zealand ABSTRACT The geologic carbon cycle plays a fundamental role in controlling Earth’s climate and habitability. For billions of years, stabilizing feedbacks inherent in the cycle have maintained a surface environ- ment that could sustain life. Carbonation/decarbonation reactions are the primary mechanisms for transferring carbon between the solid Earth and the ocean–atmosphere system. These processes can be broadly represented by the reaction: CaSiO3 (wollastonite) + CO2 (gas) ↔ CaCO3 (calcite) + SiO2 (quartz). This class of reactions is therefore critical to Earth’s past and future habitability. Here, we summarize their significance as part of the Deep Carbon Obsevatory’s “Earth in Five Reactions” project. In the forward direction, carbonation reactions like the one above describe silicate weathering and carbonate formation on Earth’s surface. Recent work aims to resolve the balance between silicate weathering in terrestrial and marine settings both in the modern Earth system and through Earth’s history.
    [Show full text]
  • Phenomenal Gemstones Possess Striking Optical Effects, Making Them Truly a Sight for Sore Eyes
    THE PHENOMENAL PROPERTIES OF GEMS Phenomenal gemstones possess striking optical effects, making them truly a sight for sore eyes. Here is GIA’s guide to understanding what makes each phenomenon so uniquely brilliant. ASTERISM CROSSING BANDS OF REFLECTED LIGHT CREATE A SIX-RAYED STAR-LIKE APPEARANCE. ASTERISM OCCURS IN THE DOME OF A CABOCHON, AND CAN BE SEEN IN GEMS LIKE RUBIES AND SAPPHIRES. ADULARESCENCE THE SAME SCATTERING OF LIGHT THAT MAKES THE SKY BLUE CREATES A MILKY, BLUISH-WHITE GLOW, LIKE MOONLIGHT SHINING THROUGH A VEIL OF CLOUDS. MOONSTONE IS THE ONLY GEM THAT DISPLAYS IT. AVENTURESCENCE FOUND IN NATURAL GEMS LIKE SUNSTONE FELDSPAR AND AVENTURINE QUARTZ, IT DISPLAYS A GLITTERY EFFECT CAUSED BY LIGHT REFLECTING FROM SMALL, FLAT INCLUSIONS. CHATOYANCY OTHERWISE KNOWN AS THE “CAT’S EYE” EFFECT, BANDS OF LIGHT ARE CAUSED BY THE REFLECTION OF LIGHT FROM MANY PARALLEL, NEEDLE-LIKE INCLUSIONS INSIDE A CABOCHON. NOTABLE GEMS THAT DISPLAY CHATOYANCY INCLUDE CAT’S EYE TOURMALINE AND CAT’S EYE CHRYSOBERYL. IRIDESCENCE ALSO SEEN IN SOAP BUBBLES AND OIL SLICKS, IT’S A RAINBOW EFFECT THAT IS CREATED WHEN LIGHT IS BROKEN UP INTO DIFFERENT COLORS. LOOK FOR IT IN FIRE AGATE AND OPAL AMMONITE (KNOWN BY THE TRADE AS AMMOLITE). LABR ADORESCENCE A BROAD FLASH OF COLOR THAT APPEARS IN LABRADORITE FELDSPAR, IT’S CAUSED BY LIGHT INTERACTING WITH THIN LAYERS IN THE STONE, AND DISAPPEARS WHEN THE GEM IS MOVED. INSIDER’S TIP: THE MOST COMMON PHENOMENAL COLOR IN LABRADORITE IS BLUE. PLAY OF COLOR THE FLASHING RAINBOW-LIKE COLORS IN OPAL THAT FLASH AT YOU AS YOU TURN THE STONE OR MOVE AROUND IT.
    [Show full text]
  • Carbonation and Decarbonation Reactions: Implications for Planetary Habitability K
    American Mineralogist, Volume 104, pages 1369–1380, 2019 Carbonation and decarbonation reactions: Implications for planetary habitability k E.M. STEWART1,*,†, JAY J. AGUE1, JOHN M. FERRY2, CRAIG M. SCHIFFRIES3, REN-BIAO TAO4, TERRY T. ISSON1,5, AND NOAH J. PLANAVSKY1 1Department of Geology & Geophysics, Yale University, P.O. Box 208109, New Haven, Connecticut 06520-8109, U.S.A. 2Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, U.S.A. 3Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 4School of Earth and Space Sciences, MOE Key Laboratory of Orogenic Belt and Crustal Evolution, Peking University, Beijing 100871, China 5School of Science, University of Waikato, 101-121 Durham Street, Tauranga 3110, New Zealand ABSTRACT The geologic carbon cycle plays a fundamental role in controlling Earth’s climate and habitability. For billions of years, stabilizing feedbacks inherent in the cycle have maintained a surface environ- ment that could sustain life. Carbonation/decarbonation reactions are the primary mechanisms for transferring carbon between the solid Earth and the ocean–atmosphere system. These processes can be broadly represented by the reaction: CaSiO3 (wollastonite) + CO2 (gas) ↔ CaCO3 (calcite) + SiO2 (quartz). This class of reactions is therefore critical to Earth’s past and future habitability. Here, we summarize their signifcance as part of the Deep Carbon Obsevatory’s “Earth in Five Reactions” project. In the forward direction, carbonation reactions like the one above describe silicate weathering and carbonate formation on Earth’s surface. Recent work aims to resolve the balance between silicate weathering in terrestrial and marine settings both in the modern Earth system and through Earth’s history.
    [Show full text]
  • Nature of Interlayer Material in Silicate Clays of Selected Oregon Soils
    AN ABSTRACT OF THE THESIS OF PAUL C, SINGLETON for the Ph.D. in Soils (Name) (Degree) (Major) Date thesis is presented July 28, 1965 Title NATURE OF INTERLAYER MATERIAL IN SILICATE CLAYS OF SELECTED OREGON SOILS - Redacted for Privacy Abstract approved = ajor professor) Ç A study was conducted to investigate the nature of hydroxy interlayers in the chlorite -like intergrade clays of three Oregon soils with respect to kind, amount, stability, and conditions of formation. The clays of the Hembre, Wren, and Lookout soils, selected to represent weathering products originating from basaltic materials under humid, subhumid, and semi -arid climatic conditions respectively, were subjected to a series of progressive treatments designed to effect a differential dissolution of the materials intimately asso- ciated with them. The treatments, chosen to represent a range of increasing severity of dissolution, were (1) distilled water plus mechanical stirring, (2) boiling 2% sodium carbonate, (3) buffered sodium citrate -dithionite, (4) boiling sodium hydroxide, and (5) preheating to 400 °C for 4 hours plus boiling sodium hydroxide. Extracts from the various steps of the dissolution procedure were chemically analyzed in order to identify the materials removed from the clays. X -ray diffraction analysis and cation exchange capacity determinations were made on the clays after each step, and any differences noted in the measured values were attributed to the removal of hydroxy interlayers from the clays. Hydroxy interlayers were found to occur more in the Hembre and Wren soils than in the Lookout soil, with the most stable interlayers occurring in the Wren. Soil reaction was one of the major differences between these soils.
    [Show full text]
  • Origin and Metal Content of Magmatic Sulfides in Cu-Au Mineralizing Silicic Magmas
    Introduction Based on work by Keith et al. (1997) at the Bingham and Tintic mining districts in Utah, evidence from the Bajo de la Alumbrera complex, and preliminary evidence from other porphyry systems, Halter et al. (2002a) proposed that the destabilization of magmatic sulfides and dissolution temperature of sulfide metals into magmatic ore fluids is responsible for producing the characteristic Au/Cu ratios shared by both the magmatic sulfides and the bulk ore body. This study compares the copper, silver and gold content and ratios of magmatic sulfide inclusions related to the Cu±Mo porphyry system of Yerington, Nevada, USA, and the high-sulfidation epithermal Au- Cu system of Yanacocha, Peru. These two groups of magmatic rocks are compared with one another to test whether or not the metal contents and ratios of magmatic sulfides in each large mining district dictate the average metal content and metal ratios of bulk ores. Samples of volcanic rocks spanning around 4 Ma from pre-ore to syn- ore in the Yanacocha district were chosen to determine the variation of sulfide mineralogy and metal content, and correlate these with mineralizing events. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) and electron microprobe analysis were used to directly determine the metal contents of magmatic sulfide inclusions. A methodology for LA-ICPMS analysis of sulfides was developed for the OSU instrumentation, and included standardization, lab protocols, and estimation of detection limits of relevant trace metals. 2 Geologic Setting and Background Information Where there is sufficient quantity of sulfide sulfur in a silicate melt, sulfide saturation may occur to produce immiscible sulfide and silicate liquids (Ebel and Naldrett, 1997).
    [Show full text]
  • Metamorphism
    Title page INTRODUCING METAMORPHISM Ian Sanders DUNEDIN EDINBURGH LONDON Contents Contents v Preface ix Acknowledgements x 1 Introduction 1 1.1 What is metamorphism? 1 1.1.1 Protoliths 1 1.1.2 Changes to the minerals 1 1.1.3 Changes to the texture 3 1.1.4 Naming metamorphic rocks 3 1.2 Metamorphic rocks – made under mountains 3 1.2.1 Mountain building 3 1.2.2 Directed stress, pressure and temperature in a mountain’s roots 4 1.2.3 Exhumation of a mountain’s roots 6 1.3 Metamorphism in local settings 6 1.3.1 Contact metamorphism 7 1.3.2 Hydrothermal metamorphism 7 1.3.3 Dynamic metamorphism 9 1.3.4 Shock metamorphism 9 2 The petrography of metamorphic rocks 11 2.1 Quartzite and metapsammite 11 2.1.1 Quartzite 11 2.1.2 Metapsammite 13 2.2 Metapelite 13 2.2.1 Slate 14 2.2.2 Phyllite and low-grade schist 16 2.2.3 Minerals and textures of medium-grade schist 17 2.2.4 The regional distribution of minerals in low- and medium-grade schist 20 2.2.5 Pelitic gneiss and migmatite 22 2.2.6 Metapelite in a contact aureole 23 2.2.7 The significance of Al2SiO5 for inferring metamorphic conditions 23 2.3 Marble 24 2.3.1 Pure calcite marble 24 2.3.2 Impure marble 26 2.3.3 Metasediments with mixed compositions 29 CONTENTS 2.4 Metabasite 30 2.4.1 Six kinds of metabasite from regional metamorphic belts 31 2.4.2 The ACF triangle for minerals in metabasites 36 2.4.3 P–T stability of metabasites, and metamorphic facies 38 vi 2.4.4 A metabasite made by contact metamorphism 40 2.5 Metagranite 41 2.5.1 Granitic gneiss and orthogneiss 41 2.5.2 Dynamic metamorphism
    [Show full text]
  • JEWELS of the EDWARDIANS by Elise B
    JEWELS OF THE EDWARDIANS By Elise B. Misiorowski and Nancy K. Hays Although the reign of King Edward VII of ver the last decade, interest in antique and period jew- Great Britain was relatively short (1902- elry has grown dramatically. Not only have auction 1910), the age that bears his name produced 0 houses seen a tremendous surge in both volume of goods distinctive jewelry and ushered in several sold and prices paid, but antique dealers and jewelry retail- new designs and manufacturing techniques. ers alikereportthat sales inthis area of the industry are During this period, women from the upper- excellent and should continue to be strong (Harlaess et al., most echelons of society wore a profusion of 1992). As a result, it has become even more important for extravagant jewelry as a way of demon- strating their wealth and rank. The almost- jewelers and independent appraisers to understand-and exclusive use of platinum, the greater use of know how to differentiate between-the many styles of pearls, and the sleady supply of South period jewelry on the market. African diamonds created a combination Although a number of excellent books have been writ- that will forever characterize Edwardian ten recently on various aspects of period jewelry, there are jewels. The Edwardian age, truly the last so many that the search for information is daunting. The era of the ruling classes, ended dramatically purpose of this article is to provide an overview of one type with the onset of World War I. of period jewelry, that of the Edwardian era, an age of pros- perity for the power elite at the turn of the 19th century.
    [Show full text]
  • The Journal of Gemmology Editor: Dr R.R
    he Journa TGemmolog Volume 25 No. 8 October 1997 The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London Eel N SSU Tel: 0171 404 1134 Fax: 0171 404 8843 e-mail: [email protected] Website: www.gagtl.ac.uklgagtl President: Professor R.A. Howie Vice-Presidents: LM. Bruton, Af'. ram, D.C. Kent, R.K. Mitchell Honorary Fellows: R.A. Howie, R.T. Liddicoat Inr, K. Nassau Honorary Life Members: D.). Callaghan, LA. lobbins, H. Tillander Council of Management: C.R. Cavey, T.]. Davidson, N.W. Decks, R.R. Harding, I. Thomson, V.P. Watson Members' Council: Aj. Allnutt, P. Dwyer-Hickey, R. fuller, l. Greatwood. B. jackson, J. Kessler, j. Monnickendam, L. Music, l.B. Nelson, P.G. Read, R. Shepherd, C.H. VVinter Branch Chairmen: Midlands - C.M. Green, North West - I. Knight, Scottish - B. jackson Examiners: A.j. Allnutt, M.Sc., Ph.D., leA, S.M. Anderson, B.Se. (Hons), I-CA, L. Bartlett, 13.Se, .'vI.phil., I-G/\' DCi\, E.M. Bruton, FGA, DC/\, c.~. Cavey, FGA, S. Coelho, B.Se, I-G,\' DGt\, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, f1GA, Cj.E. Halt B.Sc. (Hons), FGr\, G.M. Howe, FG,'\, oo-, G.H. jones, B.Se, PhD., FCA, M. Newton, B.Se, D.PhiL, H.L. Plumb, B.Sc., ICA, DCA, R.D. Ross, B.5e, I-GA, DGA, P..A.. Sadler, 13.5c., IGA, DCA, E. Stern, I'GA, DC/\, Prof. I.
    [Show full text]
  • Calc-Silicate Rocks and Marbles from Lu¨Tzow-Holm Complex, East
    Polar Geosci., +3, -1ῌ0+, ,**0 ῍ ,**0 National Institute of Polar Research Calc-silicate rocks and marbles from Lu¨tzow-Holm Complex, East Antarctica, with special reference to the mineralogy and geochemical characteristics of calc-silicate mega-boudins from Rundva˚gshetta M. Satish-Kumar+ῌ, Yoichi Motoyoshi,, Yoshimitsu Suda,, Yoshikuni Hiroi- and Shin-ichi Kagashima. + Institute of Geosciences, Shizuoka University, Oya 2-0, Suruga-ku, Shizuoka, .,,-2/,3 , National Institute of Polar Research, Kaga +-come, Itabashi-ku, Tokyo +1--2/+/ - Department of Earth Sciences, Chiba University, Yayoi-cho +ῌ--, Inage-ku, Chiba ,0--2/,, . Department of Earth and Environmental Sciences, Faculty of Science, Yamagata University, Kojirakawa-machi +ῌ.ῌ+,, Yamagata 33*-2/0* ῌCorresponding author. E-mail: [email protected] (Received April 0, ,**0; Accepted July 0, ,**0) Abstract: We report here the mode of occurrence of calc-silicate rocks and marbles from the Lu¨tzow-Holm Complex, East Antarctica, and a worked example from Rundva˚gshetta. Calc-silicate boudins were observed in Cape Hinode, Akarui Point, Byoˆbu Rock, Skarvsnes, Skallevikshalsen and Rundva˚gshetta, whereas they were reported earlier from Sinnan Rock, Cape Ryuˆgˆ,Akebono u Rock, Cape Hinode, Niban Rock, Kasumi Rock, Daruma Rock, Cape Omega, Langhovde, Ytrehovdeholmen and Skarvsnes. They vary in size from decimeters to few meters and are commonly enclosed within pelitic or psammitic gneisses. In addition, extensive layers of marbles and calc-silicate rocks are distributed in Skallevikshalsen. The calc-silicate mega- boudins within the layered pyroxene-gneiss from Rundva˚gshetta, up to / m long and , m thick, comprises of coarse to medium grained assemblage of scapoliteῌanorthiteῌ garnet ῌ clinopyroxene ῌ calcite ῌ quartz ῌ titanite ῍ wollastonite.
    [Show full text]
  • Reflective Index Reference Chart
    REFLECTIVE INDEX REFERENCE CHART FOR PRESIDIUM DUO TESTER (PDT) Reflective Index Refractive Reflective Index Refractive Reflective Index Refractive Gemstone on PDT/PRM Index Gemstone on PDT/PRM Index Gemstone on PDT/PRM Index Fluorite 16 - 18 1.434 - 1.434 Emerald 26 - 29 1.580 - 1.580 Corundum 34 - 43 1.762 - 1.770 Opal 17 - 19 1.450 - 1.450 Verdite 26 - 29 1.580 - 1.580 Idocrase 35 - 39 1.713 - 1.718 ? Glass 17 - 54 1.440 - 1.900 Brazilianite 27 - 32 1.602 - 1.621 Spinel 36 - 39 1.718 - 1.718 How does your Presidium tester Plastic 18 - 38 1.460 - 1.700 Rhodochrosite 27 - 48 1.597 - 1.817 TL Grossularite Garnet 36 - 40 1.720 - 1.720 Sodalite 19 - 21 1.483 - 1.483 Actinolite 28 - 33 1.614 - 1.642 Kyanite 36 - 41 1.716 - 1.731 work to get R.I. values? Lapis-lazuli 20 - 23 1.500 - 1.500 Nephrite 28 - 33 1.606 - 1.632 Rhodonite 37 - 41 1.730 - 1.740 Reflective indices developed by Presidium can Moldavite 20 - 23 1.500 - 1.500 Turquoise 28 - 34 1.610 - 1.650 TP Grossularite Garnet (Hessonite) 37 - 41 1.740 - 1.740 be matched in this table to the corresponding Obsidian 20 - 23 1.500 - 1.500 Topaz (Blue, White) 29 - 32 1.619 - 1.627 Chrysoberyl (Alexandrite) 38 - 42 1.746 - 1.755 common Refractive Index values to get the Calcite 20 - 35 1.486 - 1.658 Danburite 29 - 33 1.630 - 1.636 Pyrope Garnet 38 - 42 1.746 - 1.746 R.I value of the gemstone.
    [Show full text]