Attachment A

Total Page:16

File Type:pdf, Size:1020Kb

Attachment A Board of Governors, State University System of Florida Request to Offer a New Degree Program (Please do not revise this proposal format without prior approval from Board staff) University of West Florida Fall 2018 University Submitting Proposal Proposed Implementation Term Hal Marcus College of Science and Engineering Computer Science Name of College(s) or School(s) Name of Department(s)/ Division(s) Bachelor of Science in Computer Computer Science Science Academic Specialty or Field Complete Name of Degree 11.0701 Proposed CIP Code The submission of this proposal constitutes a commitment by the university that, if the proposal is approved, the necessary financial resources and the criteria for establishing new programs have been met prior to the initiation of the program. Date Approved by the University Board of President Date Trustees Signature of Chair, Board of Date Provost and Senior Vice Date Trustees President Provide headcount (HC) and full-time equivalent (FTE) student estimates of majors for Years 1 through 5. HC and FTE estimates should be identical to those in Table 1 in Appendix A. Indicate the program costs for the first and the fifth years of implementation as shown in the appropriate columns in Table 2 in Appendix A. Calculate an Educational and General (E&G) cost per FTE for Years 1 and 5 (Total E&G divided by FTE). Projected Implementation Projected Program Costs Enrollment Timeframe (From Table 2) (From Table 1) E&G Contract E&G Auxiliary Total HC FTE Cost per & Grants Funds Funds Cost FTE Funds Year 1 150 96.87 3,241 313,960 0 0 313,960 Year 2 150 96.87 Year 3 160 103.33 Year 4 160 103.33 Year 5 170 109.79 3,426 376,087 0 0 376,087 1 Note: This outline and the questions pertaining to each section must be reproduced within the body of the proposal to ensure that all sections have been satisfactorily addressed. Tables 1 through 4 are to be included as Appendix A and not reproduced within the body of the proposals because this often causes errors in the automatic calculations. 2 INTRODUCTION I. Program Description and Relationship to System-Level Goals A. Briefly describe within a few paragraphs the degree program under consideration, including (a) level; (b) emphases, including concentrations, tracks, or specializations; (c) total number of credit hours; and (d) overall purpose, including examples of employment or education opportunities that may be available to program graduates. The University of West Florida (UWF) seeks to offer a stand-alone Bachelor of Science in Computer Science degree program (BSCS). The undergraduate degree program of 120 semester credit hours will be delivered in traditional, face-to-face format on the main Pensacola campus. The BSCS degree program will have two concentrations, one in artificial intelligence and one in software engineering. The Computer Science Department at UWF currently offers a specialization in Computer Science in the Computing and Information Sciences degree program. The stand-alone BSCS degree program will replace in purpose and resource use the current Computer Science specialization. The BSCS degree program is broadly designed to prepare students who seek entry-level work in the rapidly expanding field of Computer Science and Information Technology. The stand-alone BSCS degree program results from a departmental reorganization of degree programs. The change from a Computer Science specialization in the Computing and Infromation Systems degree program (CIP code 11.0101) to a stand-alone Computer Science degree program (CIP code 11.0701) is proposed for the following reasons: 1. Making the BSCS a stand-alone degree program allows the department to pursue accreditation with the Accreditation Board for Engineering and Technology, Incorporated (ABET). 2. Students and employers are often confused by specializations. A stand-alone BSCS degree program is well understood and well respected by students and employers. 3. There is high demand by the public and private sector for graduates with a BSCS degree with universities not producing enough graduates to meet demand. The Florida Board of Governors has recognized the need to expand Computer Science education and research within the state and in response, established the concept of Programs of Strategic Emphasis. The BSCS degree program meets all criteria pertaining to Programs of Strategic Emphasis. B. Please provide the date when the pre-proposal was presented to CAVP (Council of Academic Vice Presidents) Academic Program Coordination review group. Identify any concerns that the CAVP review group raised with the pre-proposed program and provide a brief narrative explaining how each of these concerns has been or is being addressed. During its October 5, 2017, conference call, the CAVP workgroup expressed no concerns with the BSCS degree program in Computer Science, 11.0701. 3 C. If this is a doctoral level program please include the external consultant’s report at the end of the proposal as Appendix D. Please provide a few highlights from the report and describe ways in which the report affected the approval process at the university. Not applicable, the BSCS degree program is an undergraduate degree. D. Describe how the proposed program is consistent with the current State University System (SUS) Strategic Planning Goals. Identify which specific goals the program will directly support and which goals the program will indirectly support (see link to the SUS Strategic Plan on the resource page for new program proposal). Specific sections from the SUS Strategic Plan 2012-2025 that apply to the program, and to the reason for the change from a specialization to a stand-alone degree program, include the following: Quality Assurance through Academic Program Review and Accreditation A strategic goal of the Board of Governors is to assure high quality programs through program review and accreditation. On this topic, the Board of Governors’ website (http://www.flbog.edu/board/office/asa/apra.php) reads: “Well aligned with regional and discipline-specific accreditation expectations, program review processes in the State University System must emphasize the assessment of student learning outcomes and continuous program improvement.” This statement is perfectly congruent with the aims of ABET accreditation for the stand-alone degree program. The program’s ultimate attainment of ABET accreditation will formalize ongoing processes of careful assessment of student learning outcomes and continuous program improvements. A curriculum cannot initially become ABET accredited nor can it maintain ABET accreditation without careful assessment and continuous improvement. Teaching and Learning – Increase the Number of Degrees Awarded in STEM: The BSCS degree program is being created from a specialization, and is listed in the State University System of Florida (SUS) Programs of Strategic Emphasis under Science, Technology, Engineering, and Math (STEM). The BSCS degree program is clearly aligned with the SUS Strategic Planning Goals. The program will give students an extensive background in computer science. The BSCS degree program will provide students with preparation for entry into graduate school studies and it will afford substantial employment opportunities in government, industry, and with non-governmental organizations. State universities seek to respond to workforce demands for graduates with specific knowledge and skills. Specifically, university goals are being set to increase the number of graduates with degrees in the STEM fields. The BSCS degree program directly supports this goal. 4 Florida must become more competitive in the national and global economy. To accomplish this goal, the state must increase the educational attainment levels of its citizens and the state universities must respond by awarding more degrees in specific high demand programs, particularly the STEM disciplines. As a STEM discipline, the BSCS degree program helps the state accomplish this goal. Strategic Priorities for a Knowledge Economy As a part of its previous strategic planning activities, the Florida Board of Governors, in conjunction with Florida’s leading economic and workforce councils, approved areas of programmatic strategic emphasis for targeting degree programs in the State University System. This list of programs includes certain Science, Technology, Engineering, and Math (STEM) programs and programs with critical and/or economic development needs or emerging technologies that serve to assist the state universities in planning for a degree program array that addresses both workforce and student demands. E. If the program is to be included in a category within the Programs of Strategic Emphasis as described in the SUS Strategic Plan, please indicate the category and the justification for inclusion. The program provides preparation for entry into Computer Science and Information Technology employment. The BSCS degree program, CIP code 11.0701, is listed in the Programs of Strategic Emphasis (PSE) under: 3 Science, Technology, Engineering, and Math (STEM). Please see the Programs of Strategic Emphasis (PSE) methodology for additional explanations on program inclusion criteria at the resource page for new program proposal. F. Identify any established or planned educational sites at which the program is expected to be offered and indicate whether it will be offered only at sites other than the main campus. The program will be offered in the traditional, face-to face format, on UWF’s main Pensacola campus. INSTITUTIONAL AND STATE LEVEL ACCOUNTABILITY II. Need and Demand A. Need: Describe national, state, and/or local data that support the need for more people to be prepared in this program at this level. Reference national, state, and/or local plans or reports that support the need for this program and requests for the proposed program which have emanated from a perceived need by 5 agencies or industries in your service area. Cite any specific need for research and service that the program would fulfill. As the BSCS degree program is replacing in purpose and resource use an existing undergraduate specialization, it is not addressing a new need and is not a new program beyond those currently being offered.
Recommended publications
  • The Circle Meta-Model
    Document:P2062R0 Revises: (original) Date: 01-11-2020 Audience: SG7 Authors: Wyatt Childers ([email protected]) ​ ​ Andrew Sutton ([email protected]) ​ ​ Faisal Vali ([email protected]) Daveed Vandevoorde ([email protected]) The Circle Meta-model Introduction During the November 2019 meeting in Belfast, some of the SG7 participants enthusiastically mentioned Circle1 as providing a more intuitive compile-time programming model and suggested that SG7 investigate overhauling the de-facto SG7 approach (P1240+P17332) to follow Circle's ​ ​ ​ general approach (to reflection and metaprogramming). This paper describes a framework for understanding metaprogramming systems and provides a high-level overview of some of Circle's main characteristics, contrasting them to P1240's ​ ​ approach augmented with an injection mechanism along the lines of P1717. ​ ​ While we appreciate some of Circle’s powerful capabilities, we also raise some concerns with its underlying model and provide arguments in support of P1240’s choices as being a more ​ ​ suitable fit for C++’s evolution. The Dimensions of Reflective Programming In P0633, we identified three “dimensions” of compile-time reflective metaprogramming: ​ ​ 1. Control: How are compile-time computations effected/interpreted? What are metaprograms? 2. Reflection: How are source constructs are made available as data for use in metaprograms? 3. Synthesis: How can “code” be generated from a programmatic representation? 1 https://www.circle-lang.org/ Circle is an impressive project: Sean Baxter developed a brand new ​ ​ C++17-like front end on top of LLVM, incorporating a variety of new compile-time capabilities that align closely with SG7's goals. For Sean’s motivations, see https://github.com/seanbaxter/circle/blob/master/examples/README.md#why-i-wrote-circle.
    [Show full text]
  • Comparative Studies of Programming Languages; Course Lecture Notes
    Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management .
    [Show full text]
  • Sub-Method Structural and Behavioral Reflection Marcus Denker
    Sub-method Structural and Behavioral Reflection Marcus Denker To cite this version: Marcus Denker. Sub-method Structural and Behavioral Reflection. Computer Science [cs]. Universität Bern, 2008. English. tel-00555937 HAL Id: tel-00555937 https://tel.archives-ouvertes.fr/tel-00555937 Submitted on 14 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sub-method Structural and Behavioral Reflection Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Marcus Denker von Deutschland Leiter der Arbeit: Prof. Dr. O. Nierstrasz Institut für Informatik und angewandte Mathematik Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen. Bern, 26.05.2008 Der Dekan: Prof. Dr. P. Messerli This dissertation is available as a free download from http://scg.unibe.ch Copyright © 2008 Marcus Denker. The contents of this dissertation are protected under Creative Commons Attribution-ShareAlike 3.0 Unported license. You are free: to Share — to copy, distribute and transmit the work to Remix — to adapt the work Under the following conditions: Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
    [Show full text]
  • Directly Reflective Meta-Programming
    Directly Reflective Meta-Programming ∗ Aaron Stump Computer Science and Engineering Washington University in St. Louis St. Louis, Missouri, USA [email protected] Abstract Existing meta-programming languages operate on encodings of pro- grams as data. This paper presents a new meta-programming language, based on an untyped lambda calculus, in which structurally reflective pro- gramming is supported directly, without any encoding. The language fea- tures call-by-value and call-by-name lambda abstractions, as well as novel reflective features enabling the intensional manipulation of arbitrary pro- gram terms. The language is scope safe, in the sense that variables can neither be captured nor escape their scopes. The expressiveness of the language is demonstrated by showing how to implement quotation and evaluation operations, as proposed by Wand. The language's utility for meta-programming is further demonstrated through additional represen- tative examples. A prototype implementation is described and evaluated. Keywords: lambda calculus, reflection, meta-programming, Church en- coding, Mogensen-Scott encoding, Wand-style fexprs, alpha equivalence, language implementation. 1 Introduction This paper presents a new meta-programming language called Archon, in which programs can operate directly on other programs as data. Existing meta- programming languages suffer from defects such as encoding programs at too low a level of abstraction, or in a way that bloats the encoded program terms. Other issues include the possibility for variables either to be captured or escape their static scopes. Archon rectifies these defects by trading the complexity of the reflective encoding for additional programming constructs. We adopt ∗This work is supported by funding from the U.S.
    [Show full text]
  • [Lirmm-00862477, V1] Bridging the Gap Between Component-Based Design and Implementation with a Reflective Programming Language
    Design and Implementation of a reflective Component-based programming and modeling language Bridging the Gap between Component-based Design and Implementation with a Reflective Programming Language Petr Spacek Christophe Dony Luc Fabresse Chouki Tibermacine Universite´ Lille Nord de France LIRMM, CNRS and Montpellier II University Ecole des Mines de Douai 161, rue Ada 941 rue Charles Bourseul 34392 Montpellier Cedex 5 France 59508 DOUAI Cedex France spacek,dony,tibermacin @lirmm.fr [email protected] { } Abstract General Terms Languages, Reflection, Metamodeling Component-based Software Engineering studies the design, Keywords Component, Programming, Modeling, Archi- development and maintenance of software constructed upon tecture, Reflection, Reflexive, Meta-model, Constraints, sets of connected components. Existing component-based Transformations models are frequently transformed into non-component- based programs, most of the time object-oriented, for run- time execution and then many component-related concepts, 1. Introduction e.g. explicit architecture, vanish at the implementation stage. Research works on component-based software engineering The main reason why is that with objects the component- (CBSE) have brought many advances on how to achieve related concepts are treated implicitly and therefore the orig- complex software development by reusing and assembling inal intentions and qualities of the component-based design components. The current trend is to explicitly express ar- are hidden. This paper presents a reflective component-based chitectures of software solutions, to reason about them, to programming and modeling language, which proposes the verify them and to transform them. However it appears following original contributions: 1) Components are seen that component-orientation has been more studied at de- as objects in which requirements, architecture descriptions, sign stage, with modeling languages and ADLs [10, 16, 22] connection points, etc.
    [Show full text]
  • Open Programming Language Interpreters
    Open Programming Language Interpreters Walter Cazzolaa and Albert Shaqiria a Università degli Studi di Milano, Italy Abstract Context: This paper presents the concept of open programming language interpreters, a model to support them and a prototype implementation in the Neverlang framework for modular development of programming languages. Inquiry: We address the problem of dynamic interpreter adaptation to tailor the interpreter’s behaviour on the task to be solved and to introduce new features to fulfil unforeseen requirements. Many languages provide a meta-object protocol (MOP) that to some degree supports reflection. However, MOPs are typically language-specific, their reflective functionality is often restricted, and the adaptation and application logic are often mixed which hardens the understanding and maintenance of the source code. Our system overcomes these limitations. Approach: We designed a model and implemented a prototype system to support open programming language interpreters. The implementation is integrated in the Neverlang framework which now exposes the structure, behaviour and the runtime state of any Neverlang-based interpreter with the ability to modify it. Knowledge: Our system provides a complete control over interpreter’s structure, behaviour and its runtime state. The approach is applicable to every Neverlang-based interpreter. Adaptation code can potentially be reused across different language implementations. Grounding: Having a prototype implementation we focused on feasibility evaluation. The paper shows that our approach well addresses problems commonly found in the research literature. We have a demon- strative video and examples that illustrate our approach on dynamic software adaptation, aspect-oriented programming, debugging and context-aware interpreters. Importance: Our paper presents the first reflective approach targeting a general framework for language development.
    [Show full text]
  • 1. with Examples of Different Programming Languages Show How Programming Languages Are Organized Along the Given Rubrics: I
    AGBOOLA ABIOLA CSC302 17/SCI01/007 COMPUTER SCIENCE ASSIGNMENT ​ 1. With examples of different programming languages show how programming languages are organized along the given rubrics: i. Unstructured, structured, modular, object oriented, aspect oriented, activity oriented and event oriented programming requirement. ii. Based on domain requirements. iii. Based on requirements i and ii above. 2. Give brief preview of the evolution of programming languages in a chronological order. 3. Vividly distinguish between modular programming paradigm and object oriented programming paradigm. Answer 1i). UNSTRUCTURED LANGUAGE DEVELOPER DATE Assembly Language 1949 FORTRAN John Backus 1957 COBOL CODASYL, ANSI, ISO 1959 JOSS Cliff Shaw, RAND 1963 BASIC John G. Kemeny, Thomas E. Kurtz 1964 TELCOMP BBN 1965 MUMPS Neil Pappalardo 1966 FOCAL Richard Merrill, DEC 1968 STRUCTURED LANGUAGE DEVELOPER DATE ALGOL 58 Friedrich L. Bauer, and co. 1958 ALGOL 60 Backus, Bauer and co. 1960 ABC CWI 1980 Ada United States Department of Defence 1980 Accent R NIS 1980 Action! Optimized Systems Software 1983 Alef Phil Winterbottom 1992 DASL Sun Micro-systems Laboratories 1999-2003 MODULAR LANGUAGE DEVELOPER DATE ALGOL W Niklaus Wirth, Tony Hoare 1966 APL Larry Breed, Dick Lathwell and co. 1966 ALGOL 68 A. Van Wijngaarden and co. 1968 AMOS BASIC FranÇois Lionet anConstantin Stiropoulos 1990 Alice ML Saarland University 2000 Agda Ulf Norell;Catarina coquand(1.0) 2007 Arc Paul Graham, Robert Morris and co. 2008 Bosque Mark Marron 2019 OBJECT-ORIENTED LANGUAGE DEVELOPER DATE C* Thinking Machine 1987 Actor Charles Duff 1988 Aldor Thomas J. Watson Research Center 1990 Amiga E Wouter van Oortmerssen 1993 Action Script Macromedia 1998 BeanShell JCP 1999 AngelScript Andreas Jönsson 2003 Boo Rodrigo B.
    [Show full text]
  • Programação Reflexiva Sobre O Protocolo De Meta-Objetos Guaraná
    Programação Reflexiva sobre o Protocolo de Meta-Objetos Guaraná Rodrigo Dias Arruda Senra Dissertação de Mestrado Instituto de Computação Universidade Estadual de Campinas Programação Reflexiva sobre o Protocolo de Meta-Objetos Guaraná Rodrigo Dias Arruda Senra 17 de dezembro de 2001 Banca Examinadora: • Prof. Dr. Luiz Eduardo Buzato IC-UNICAMP (Orientador) • Prof~ Dr~ Ana Maria de Alencar Price II-DFRGS • Profª Drª Cecília Mary Fisher Rubira IC-DNICAMP • Prof. Dr. Hans Kurt Edmund Liesenberg (Suplente) IC-UNICAMP ii UN!CAMP FICHA CATALOGRÁFICA ELABORADA PELA BffiLIOTECA DO IMECC DA UNICAMP Senra, Rodrígo Dias Arruda Se99p Programação reflexiva sobre o protocolo de meta-<Jbjetos Guaraná I Rodrígo Dias Arruda Senra- Campinas, [S.P. :s.n.], 2001. Orientador : Luiz Eduardo Buzato Dissertação (mestrado)- Universidade Estadual de Campinas, Instituto de Computação. I. Linguagem de programação (Computadores). 2. Framework (Programa de computador). 3. Programação orientada a objetos (Computador). L Buzato, Luiz Eduardo. li. Universidade Estadual de Campinas. Instituto de Computação. Ili. Título. i ia TERMO DE APROVAÇÃO Te se defendida e aprovada em 17 de dezembro de 2001 , pela Banca Examinadora composta pelos Professores Doutores: Pí'6M. Dra. Ana Maria ~lencar Pri~e UFRGS Prof. Dr. Luiz Edu IC- UNICAMP MP iii Programação Reflexiva sobre o Protocolo de Meta-Objetos Guaraná Este exemplar corresponde à redação final da Dissertação devidamente corrigida e defendida por Rodrigo Dias Arruda Senra e aprovada pela Banca Examinadora. Campinas, 17 de dezembro de 2001. Prof. Dr. Luiz IC-U:'-JICAM Dissertação apresentada ao Instituto de Com­ putação, Cl\"ICAMP, como requisito parcial para a obtenção do título de :V1estre em Ciência da Computação.
    [Show full text]
  • Reflective Designs
    Electronic Notes in Theoretical Computer Science 127 (2005) 55–58 www.elsevier.com/locate/entcs Reflective Designs — An Overview Robert Hirschfeld1 DoCoMo Communications Laboratories Europe Munich, Germany Ralf L¨ammel2 Vrije Universiteit & Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands Abstract We render runtime system adaptations by design-level concepts such that running systems can be adapted and examined at a higher level of abstraction. The overall idea is to express design decisions as applications of design operators to be carried out at runtime. Design operators can implement design patterns for use at runtime. Applications of design operators are made explicit as design elements in the running system such that they can be traced, reconfigured, and made undone. Our approach enables Reflective Designs: on one side, design operators employ reflection to perform runtime adaptations; on the other side, design elements provide an additional reflection protocol to examine and configure performed adaptations. Our approach helps understanding the development and the maintenance of the class of software systems that cannot tolerate downtime or frequent shutdown-revise-startup cycles. We have accumulated a class library for programming with Reflective Designs in Squeak/Smalltalk. This library employs reflection and dynamic aspect-oriented programming. We have also implemented tool support for navigating in a system that is adapted continuously at runtime. Note: This extended abstract summarises our full paper [7]. Keywords: Reflective Designs, Runtime Adaptation, Design Elements, Design Operators, Design Patterns, Reflection, Method-Call Interception, Meta-Programming, Aspect-Oriented Programming, Dynamic Weaving, Dynamic Composition, AspectS, Squeak, Smalltalk, Metaobject Protocol 1 Email: [email protected] 2 Email: [email protected] 1571-0661/$ – see front matter © 2005 Published by Elsevier B.V.
    [Show full text]
  • Static Reflection
    N3996- Static reflection Document number: N3996 Date: 2014-05-26 Project: Programming Language C++, SG7, Reflection Reply-to: Mat´uˇsChochl´ık([email protected]) Static reflection How to read this document The first two sections are devoted to the introduction to reflection and reflective programming, they contain some motivational examples and some experiences with usage of a library-based reflection utility. These can be skipped if you are knowledgeable about reflection. Section3 contains the rationale for the design decisions. The most important part is the technical specification in section4, the impact on the standard is discussed in section5, the issues that need to be resolved are listed in section7, and section6 mentions some implementation hints. Contents 1. Introduction4 2. Motivation and Scope6 2.1. Usefullness of reflection............................6 2.2. Motivational examples.............................7 2.2.1. Factory generator............................7 3. Design Decisions 11 3.1. Desired features................................. 11 3.2. Layered approach and extensibility...................... 11 3.2.1. Basic metaobjects........................... 12 3.2.2. Mirror.................................. 12 3.2.3. Puddle.................................. 12 3.2.4. Rubber................................. 13 3.2.5. Lagoon................................. 13 3.3. Class generators................................ 14 3.4. Compile-time vs. Run-time reflection..................... 16 4. Technical Specifications 16 4.1. Metaobject Concepts.............................
    [Show full text]
  • Problems and Alternative Approaches Expanding the Scope of Software
    Expanding the Scope of Software Product Families: Problems and Alternative Approaches Jan Bosch VP, Head of Software and Application Technologies Laboratory Nokia Research Center Helsinki, Finland [email protected] © 2006 Nokia QoSA/CBSE 2006/ June 2006 Some background • Nokia Research Center since fall 2004 • Professor and Head of Software Engineering group at University of Groningen, The Netherlands - earlier head of RISE research group @ Blekinge Institute of Technology, Sweden. • Collaboration through research and consulting with, among others, Philips, Bosch, Thales, Baan, Avaya, Ericsson, etc. • Working IEEE/IFIP Conference on Software Architecture series, programme chair (2002), general chair (2004), steering committee member • Software Product Line Conference series • EU and ITEA projects, e.g. SeCSE (Service Centric Software Engineering) © 2006 Nokia QoSA/CBSE 2006/ June 2006 Overview • Introduction • Nokia and Nokia Research Center • Trends in Software • Platforms for Nokia Mobile Devices • Problems and Challenges • Alternative approaches • Conclusions © 2006 Nokia QoSA/CBSE 2006/ June 2006 R&D in Nokia • Global network with R&D centers in 11 countries • Over 20,882 people in R&D at the end of 2005 • R&D personnel represents 36% of Nokia’s total workforce • Nokia’s R&D expenditure totaled EUR 3,825 million in 2005 (11.2% of net sales) All figures are from Dec, 2005 © 2006 Nokia QoSA/CBSE 2006/ June 2006 Nokia Research Center – world-class expertise • Founded in 1986 • 1,097 employees at the end of 2005, or 5% of Nokia’s R&D
    [Show full text]
  • Pweb Peer-To-Peer Web Hosting Communication System and Dynamic Web Hosting
    pWeb Peer-to-Peer Web Hosting Communication System and Dynamic Web Hosting Alexander Pokluda1, Abdalla Aartail2, Md. Faizul Bari1, Reaz Ahmed1, and Raouf Boutaba1 1David R. Cheriton School of Computer Science University of Waterloo [apokluda | mfbari | r5ahmed | rboutaba]@uwaterloo.ca 2American University of Beirut [email protected] University of Waterloo Technical Report: CS-2013-15∗ ∗This report is a modified version of an internal technical report produced for Orange Labs, the project's sponsor. The original technical report was submitted to Orange Labs in August 2013. Abstract During the main phase of this project we identified and provided solution for the major challenges related to peer-to-peer (P2P) web hosting. More specifically, our solutions for naming, availability, ranking, indexing and dynamic web-hosting have been provided in previous reports. In this report we present a more concrete view of the pWeb infrastructure and address the issues related to a real-life deployment of the system. First we provide an overview of the light-weight P2P communication protocol between pWeb clients for signaling and media streaming in Part I. In Part II we provide an architectural overview of pWeb system and show the mapping of the abstract components in pWeb architec- ture to real life devices and technologies. In order to make pWeb compatible with the existing Web technology we have developed a DNS gateway. In Part II Section 3, we provide the design and implementation of this DNS gateway. For efficient indexing and fast discovery of end-user devices and multimedia content, we have developed a cloud-based solution for crawling, indexing and searching.
    [Show full text]