Potential Injection-Induced Seismicity Associated with Oil & Gas

Total Page:16

File Type:pdf, Size:1020Kb

Potential Injection-Induced Seismicity Associated with Oil & Gas Potential Injection-Induced Seismicity Associated with Oil & Gas Development: A Primer on Technical and Regulatory Considerations Informing Risk Management and Mitigation Potential Injection-Induced Seismicity Associated with Oil & Gas Development: A Primer on Technical and Regulatory Considerations Informing Risk Management and Mitigation Second Edition, 2017 Potential Injection-Induced Seismicity Associated with Oil & Gas Development: A Primer on Technical and Regulatory Considerations Informing Risk Management and Mitigation This report is developed by the StatesFirst Induced Seismicity by Injection Work Group (ISWG) members (the State agencies) with input and support from the ISWG technical advisors (subject matter experts from academia, industry, federal agencies, and environmental organizations) to help better inform all stakeholders and the public on technical and regulatory considerations associated with evaluation and response, seismic monitoring systems, information sharing, and the use of ground motion metrics. It also is intended to summarize the range of approaches that have been used or are currently being used by states to manage and mitigate the risks associated with seismicity that may be induced by injection. StatesFirst is an initiative of the Interstate Oil and Gas Compact Commission and the Ground Water Protection Council. Disclaimer This is an informational document, and is not intended to offer recommended rules or regulations. The ISWG recognizes that management and mitigation of the risks associated with induced seismicity are best considered at the state level with specific considerations at local, regional, or cross-state levels, due to significant variability in local geology and surface conditions (e.g., population, building conditions, infrastructure, critical facilities, seismic monitoring capabilities, etc.). Neither the Ground Water Protection Council, the Interstate Oil and Gas Compact Commission, the ISWG (collectively the Group) nor any person acting on their behalf makes any warranty, express or implied; or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or reliance on any information, apparatus, product, or process disclosed; or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favor by the Group nor any person acting on their behalf. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Group. Recommended citation: Ground Water Protection Council and Interstate Oil and Gas Compact Commission. Potential Injection-Induced Seismicity Associated with Oil & Gas Development: A Primer on Technical and Regulatory Considerations Informing Risk Management and Mitigation. Second Edition, 2017, 181 pages Page 2 Potential Injection-Induced Seismicity Associated with Oil & Gas Development: A Primer on Technical and Regulatory Considerations Informing Risk Management and Mitigation Second Edition, 2017 Preface Although induced seismicity related to underground injection activities was first observed in the 1960s at the Rocky Mountain Arsenal near Denver, the dramatic increase in earthquake activity in the midcontinent since 2009 has focused attention on the potential hazard posed by earthquakes induced by injection. The science required to understand the process and predict its impacts is still undergoing significant change. This document is designed to provide state regulatory agencies with an overview of current technical and scientific information, along with considerations associated with evaluating seismic events, managing the risks of induced seismicity, and developing response strategies. It is not intended to offer specific regulatory recommendations to agencies but is intended to serve as a resource. Also, unlike prior studies by the National Research Council, U.S. Environmental Protection Agency, Stanford University, and others, this document is not intended to provide a broad literature review. This report was developed by StatesFirst, an initiative of the Interstate Oil and Gas Compact Commission (IOGCC) and the Ground Water Protection Council (GWPC). The effort was led by the Induced Seismicity by Injection Work Group (ISWG), composed of representatives of state oil and gas regulatory agencies and geological surveys with support from subject matter experts from academia, industry, federal agencies, and environmental organizations. The focus of this document is induced seismicity associated with underground disposal of oilfield-produced fluids in Class II wells. Appendix B provides background on Class II wells. Although far less likely to occur, the potential for felt induced seismicity related to hydraulic fracturing is discussed briefly in Chapter 1 and more extensively in Appendix I. Management and mitigation of the risks associated with induced seismicity are best considered at the state level, with specific considerations at local or regional levels. A one-size-fits-all approach is infeasible, due to significant variability in local geology and surface conditions, including such factors as population, building conditions, infrastructure, critical facilities, and seismic monitoring capabilities. Appendix C includes summaries of approaches that various states have taken to address risk management and mitigation. Although important, the issues of insurance and liability are not addressed in this report because each state has unique laws that render general consideration of these topics impractical. This report uses the term “earthquake” to refer to a seismic event other than a microseismic event and “induced seismicity” to refer to earthquakes triggered by human activity. The term “potentially induced seismicity” is used to refer to specific seismic events that may be related to human activity, but where such activity has not been established definitively as a contributing factor. Throughout this document moment magnitude (M) is used to denote the size of an earthquake unless otherwise noted. For a more complete description of moment magnitude and its relevance to the size of earthquakes, see Earthquake Magnitude in Appendix A. Page 3 Potential Injection-Induced Seismicity Associated with Oil & Gas Development: A Primer on Technical and Regulatory Considerations Informing Risk Management and Mitigation Second Edition, 2017 Table of Contents Preface .................................................................................................................................................. 3 Executive Summary ................................................................................................................................ 8 Introduction ................................................................................................................................................. 8 Understanding Induced Seismicity ............................................................................................................... 8 Assessing Potentially Injection-Induced Seismicity ...................................................................................... 9 Risk Management and Mitigation Strategies ............................................................................................. 10 Considerations for External Communication and Engagement.................................................................. 11 Key Message .............................................................................................................................................. 13 Chapter 1: Understanding Induced Seismicity ....................................................................................... 14 Chapter Highlights ..................................................................................................................................... 14 Introduction—Key Concepts and Earthquake Basics ................................................................................. 14 Magnitude and Depth of Induced Earthquakes ......................................................................................... 17 Hazards and Risks of Induced Seismicity .................................................................................................... 18 Ground-Motion Models for Induced Seismicity ......................................................................................... 19 Examples of Current Models ...................................................................................................................... 20 USGS Hazard Maps .................................................................................................................................... 21 Estimated Number of Induced Seismicity Locations .................................................................................. 23 How Fluid Injection May Induce Seismic Events ........................................................................................ 24 Potential for Seismicity Related to Hydraulic Fracturing ............................................................................ 25 Future Research ......................................................................................................................................... 26 Chapter 2: Assessing Potentially Injection-Induced Seismicity ..............................................................
Recommended publications
  • Earthquake Measurements
    EARTHQUAKE MEASUREMENTS The vibrations produced by earthquakes are detected, recorded, and measured by instruments call seismographs1. The zig-zag line made by a seismograph, called a "seismogram," reflects the changing intensity of the vibrations by responding to the motion of the ground surface beneath the instrument. From the data expressed in seismograms, scientists can determine the time, the epicenter, the focal depth, and the type of faulting of an earthquake and can estimate how much energy was released. Seismograph/Seismometer Earthquake recording instrument, seismograph has a base that sets firmly in the ground, and a heavy weight that hangs free2. When an earthquake causes the ground to shake, the base of the seismograph shakes too, but the hanging weight does not. Instead the spring or string that it is hanging from absorbs all the movement. The difference in position between the shaking part of the seismograph and the motionless part is Seismograph what is recorded. Measuring Size of Earthquakes The size of an earthquake depends on the size of the fault and the amount of slip on the fault, but that’s not something scientists can simply measure with a measuring tape since faults are many kilometers deep beneath the earth’s surface. They use the seismogram recordings made on the seismographs at the surface of the earth to determine how large the earthquake was. A short wiggly line that doesn’t wiggle very much means a small earthquake, and a long wiggly line that wiggles a lot means a large earthquake2. The length of the wiggle depends on the size of the fault, and the size of the wiggle depends on the amount of slip.
    [Show full text]
  • Energy and Magnitude: a Historical Perspective
    Pure Appl. Geophys. 176 (2019), 3815–3849 Ó 2018 Springer Nature Switzerland AG https://doi.org/10.1007/s00024-018-1994-7 Pure and Applied Geophysics Energy and Magnitude: A Historical Perspective 1 EMILE A. OKAL Abstract—We present a detailed historical review of early referred to as ‘‘Gutenberg [and Richter]’s energy– attempts to quantify seismic sources through a measure of the magnitude relation’’ features a slope of 1.5 which is energy radiated into seismic waves, in connection with the parallel development of the concept of magnitude. In particular, we explore not predicted a priori by simple physical arguments. the derivation of the widely quoted ‘‘Gutenberg–Richter energy– We will use Gutenberg and Richter’s (1956a) nota- magnitude relationship’’ tion, Q [their Eq. (16) p. 133], for the slope of log10 E versus magnitude [1.5 in (1)]. log10 E ¼ 1:5Ms þ 11:8 ð1Þ We are motivated by the fact that Eq. (1)istobe (E in ergs), and especially the origin of the value 1.5 for the slope. found nowhere in this exact form in any of the tra- By examining all of the relevant papers by Gutenberg and Richter, we note that estimates of this slope kept decreasing for more than ditional references in its support, which incidentally 20 years before Gutenberg’s sudden death, and that the value 1.5 were most probably copied from one referring pub- was obtained through the complex computation of an estimate of lication to the next. They consist of Gutenberg and the energy flux above the hypocenter, based on a number of assumptions and models lacking robustness in the context of Richter (1954)(Seismicity of the Earth), Gutenberg modern seismological theory.
    [Show full text]
  • Characteristics of Foreshocks and Short Term Deformation in the Source Area of Major Earthquakes
    Characteristics of Foreshocks and Short Term Deformation in the Source Area of Major Earthquakes Peter Molnar Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts 02139 USGS CONTRACT NO. 14-08-0001-17759 Supported by the EARTHQUAKE HAZARDS REDUCTION PROGRAM OPEN-FILE NO.81-287 U.S. Geological Survey OPEN FILE REPORT This report was prepared under contract to the U.S. Geological Survey and has not been reviewed for conformity with USGS editorial standards and stratigraphic nomenclature. Opinions and conclusions expressed herein do not necessarily represent those of the USGS. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. Appendix A A Study of the Haicheng Foreshock Sequence By Lucile Jones, Wang Biquan and Xu Shaoxie (English Translation of a Paper Published in Di Zhen Xue Bao (Journal of Seismology), 1980.) Abstract We have examined the locations and radiation patterns of the foreshocks to the 4 February 1978 Haicheng earthquake. Using four stations, the foreshocks were located relative to a master event. They occurred very close together, no more than 6 kilo­ meters apart. Nevertheless, there appear to have been too clusters of foreshock activity. The majority of events seem to have occurred in a cluster to the east of the master event along a NNE-SSW trend. Moreover, all eight foreshocks that we could locate and with a magnitude greater than 3.0 occurred in this group. The're also "appears to be a second cluster of foresfiocks located to the northwest of the first. Thus it seems possible that the majority of foreshocks did not occur on the rupture plane of the mainshock, which trends WNW, but on another plane nearly perpendicualr to the mainshock.
    [Show full text]
  • Predicting Ground Motion from Induced Earthquakes In
    Bulletin of the Seismological Society of America, Vol. 103, No. 3, pp. 1875–1897, June 2013, doi: 10.1785/0120120197 Ⓔ Predicting Ground Motion from Induced Earthquakes in Geothermal Areas by John Douglas, Benjamin Edwards, Vincenzo Convertito, Nitin Sharma, Anna Tramelli, Dirk Kraaijpoel, Banu Mena Cabrera, Nils Maercklin, and Claudia Troise Abstract Induced seismicity from anthropogenic sources can be a significant nui- sance to a local population and in extreme cases lead to damage to vulnerable struc- tures. One type of induced seismicity of particular recent concern, which, in some cases, can limit development of a potentially important clean energy source, is that associated with geothermal power production. A key requirement for the accurate assessment of seismic hazard (and risk) is a ground-motion prediction equation (GMPE) that predicts the level of earthquake shaking (in terms of, for example, peak ground acceleration) of an earthquake of a certain magnitude at a particular distance. Few such models currently exist in regard to geothermal-related seismicity, and con- sequently the evaluation of seismic hazard in the vicinity of geothermal power plants is associated with high uncertainty. Various ground-motion datasets of induced and natural seismicity (from Basel, Geysers, Hengill, Roswinkel, Soultz, and Voerendaal) were compiled and processed, and moment magnitudes for all events were recomputed homogeneously. These data are used to show that ground motions from induced and natural earthquakes cannot be statistically distinguished. Empirical GMPEs are derived from these data; and, although they have similar characteristics to recent GMPEs for natural and mining- related seismicity, the standard deviations are higher. To account for epistemic uncer- tainties, stochastic models subsequently are developed based on a single corner frequency and with parameters constrained by the available data.
    [Show full text]
  • PEAT8002 - SEISMOLOGY Lecture 13: Earthquake Magnitudes and Moment
    PEAT8002 - SEISMOLOGY Lecture 13: Earthquake magnitudes and moment Nick Rawlinson Research School of Earth Sciences Australian National University Earthquake magnitudes and moment Introduction In the last two lectures, the effects of the source rupture process on the pattern of radiated seismic energy was discussed. However, even before earthquake mechanisms were studied, the priority of seismologists, after locating an earthquake, was to quantify their size, both for scientific purposes and hazard assessment. The first measure introduced was the magnitude, which is based on the amplitude of the emanating waves recorded on a seismogram. The idea is that the wave amplitude reflects the earthquake size once the amplitudes are corrected for the decrease with distance due to geometric spreading and attenuation. Earthquake magnitudes and moment Introduction Magnitude scales thus have the general form: A M = log + F(h, ∆) + C T where A is the amplitude of the signal, T is its dominant period, F is a correction for the variation of amplitude with the earthquake’s depth h and angular distance ∆ from the seismometer, and C is a regional scaling factor. Magnitude scales are logarithmic, so an increase in one unit e.g. from 5 to 6, indicates a ten-fold increase in seismic wave amplitude. Note that since a log10 scale is used, magnitudes can be negative for very small displacements. For example, a magnitude -1 earthquake might correspond to a hammer blow. Earthquake magnitudes and moment Richter magnitude The concept of earthquake magnitude was introduced by Charles Richter in 1935 for southern California earthquakes. He originally defined earthquake magnitude as the logarithm (to the base 10) of maximum amplitude measured in microns on the record of a standard torsion seismograph with a pendulum period of 0.8 s, magnification of 2800, and damping factor 0.8, located at a distance of 100 km from the epicenter.
    [Show full text]
  • Incorporating Induced Seismicity Source Models and Ground Motion Predictions to Forecast Dynamic Regional Risk
    Incorporating induced seismicity source models and ground motion predictions to forecast dynamic regional risk Jack W. Baker, Ph.D., M.ASCE,1 and Abhineet Gupta, Ph.D. 2 1 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305; e-mail: [email protected] 2 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305; e-mail: [email protected] ABSTRACT Decision-making regarding induced seismicity benefits greatly from quantitative risk assessment. While seismic hazard and risk analysis is widely used for natural seismicity, unique aspects of induced earthquakes require new tools to estimate occurrence rates of future earthquakes, to understand unique features of resulting ground motions, and to understand potential consequences at a regional scale. In this paper, we highlight recent work in dynamic source characterization and induced seismicity ground motion prediction to determine the hazard in the area, followed by prediction of regional scale risk. Results can be used to forecast risk under potential future earthquake activity, to predict benefits of potential interventions, and to quantify important uncertainties in the model that could be refined with further study. Example results for the State of Oklahoma are used to illustrate the potential insights from this analysis approach. INTRODUCTION Risk analysis is a well-established framework for assessing potential impacts of a range of human activities, evaluating the acceptability of those impacts, and taking actions to manage risks. For natural seismicity, risk assessment and hazard assessment are widely used and well established (e.g., McGuire 2004; Petersen et al. 2014). As induced seismicity has emerged as an important issue in a number of regions of the world, adoption of these approaches has naturally arisen as a potentially important tool to support decision-making (e.g., Bommer et al.
    [Show full text]
  • Earthquake Location Accuracy
    Theme IV - Understanding Seismicity Catalogs and their Problems Earthquake Location Accuracy 1 2 Stephan Husen • Jeanne L. Hardebeck 1. Swiss Seismological Service, ETH Zurich 2. United States Geological Survey How to cite this article: Husen, S., and J.L. Hardebeck (2010), Earthquake location accuracy, Community Online Resource for Statistical Seismicity Analysis, doi:10.5078/corssa-55815573. Available at http://www.corssa.org. Document Information: Issue date: 1 September 2010 Version: 1.0 2 www.corssa.org Contents 1 Motivation .................................................................................................................................................. 3 2 Location Techniques ................................................................................................................................... 4 3 Uncertainty and Artifacts .......................................................................................................................... 9 4 Choosing a Catalog, and What to Expect ................................................................................................ 25 5 Summary, Further Reading, Next Steps ................................................................................................... 30 Earthquake Location Accuracy 3 Abstract Earthquake location catalogs are not an exact representation of the true earthquake locations. They contain random error, for example from errors in the arrival time picks, as well as systematic biases. The most important source of systematic
    [Show full text]
  • Induced Seismicity Risk Analysis of the Hydraulic Stimulation of a Geothermal Well on Geldinganes, Iceland
    https://doi.org/10.5194/nhess-2019-331 Preprint. Discussion started: 11 November 2019 c Author(s) 2019. CC BY 4.0 License. Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland Marco Broccardo1,4, Arnaud Mignan2,3, Francesco Grigoli1, Dimitrios Karvounis1, Antonio Pio Rinaldi1,2, 5 Laurentiu Danciu1, Hannes Hofmann5, Claus Milkereit5, Torsten Dahm5, Günter Zimmermann5, Vala Hjörleifsdóttir6, Stefan Wiemer1 1 Swiss Seismological Service, ETH Zürich, Switzerland 2 Institute of Geophysics, ETH Zürich, Switzerland 10 3 Institute of Risk Analysis, Prediction and Management, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China 4 Institute of Structural Engineering, ETH Zürich, Switzerland 5 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany 6 Orkuveita Reykjavíkur/Reykjavík Energy, Iceland 15 Correspondence to: Marco Broccardo ([email protected]) Abstract. The rapid increase in energy demand in the city of Reykjavik has posed the need for an additional supply of deep geothermal energy. The deep hydraulic (re-)stimulation of well RV-43 on the peninsula of Geldinganes (north of Reykjavik) is an essential component of the plan implemented by Reykjavik Energy to meet this energy target. Hydraulic stimulation is 20 often associated with fluid-induced seismicity, most of which is not felt on the surface, but which, in rare cases, can cause nuisance to the population and even damage to the nearby building stock. This study presents a first of its kind pre-drilling probabilistic induced-seismic hazard and risk analysis for the site of interest. Specifically, we provide probabilistic estimates of peak ground acceleration, European microseismicity intensity, probability of light damage (damage risk), and individual risk.
    [Show full text]
  • Beno Gutenberg
    NATIONAL ACADEMY OF SCIENCES B E N O G U T E N B ER G 1889—1960 A Biographical Memoir by L E O N KNOP OFF Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1999 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Courtesy of the California Institute of Technology Archives, Pasadena BENO GUTENBERG June 4, 1889–January 25, 1960 BY LEON KNOPOFF ENO GUTENBERG WAS THE foremost observational seismolo- Bgist of the twentieth century. He combined exquisite analysis of seismic records with powerful analytical, inter- pretive, and modeling skills to contribute many important discoveries of the structure of the solid Earth and its atmo- sphere. Perhaps his best known contribution was the pre- cise location of the core of the Earth and the identification of its elastic properties. Other major contributions include the travel-time curves; the discovery of very long-period seis- mic waves with large amplitudes that circle the Earth; the identification of differences in crustal structure between continents and oceans, including the discovery of a signifi- cantly thin crust in the Pacific; the discovery of a low-veloc- ity layer in the mantle (which he interpreted as the zone of decoupling of horizontal motions of the surficial parts from the deeper parts of the Earth); the creation of the magni- tude scale for earthquakes; the relation between magnitudes and energies for earthquakes; the famous universal magni- tude-frequency relation for earthquake distributions; the first density distribution for the mantle; the study of the tem- perature distribution in the Earth; the understanding of microseisms; and the structure of the atmosphere.
    [Show full text]
  • Aftershock Deficiency of Induced Earthquake Sequences During Rapid Mitigation Efforts in Oklahoma
    Earth and Planetary Science Letters 522 (2019) 135–143 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Aftershock deficiency of induced earthquake sequences during rapid mitigation efforts in Oklahoma ∗ T.H.W. Goebel a, , Z. Rosson b, E.E. Brodsky a, J.I. Walter b a University of California, Santa Cruz, Santa Cruz, CA, USA b Oklahoma Geological Survey, University of Oklahoma, Norman, OK, USA a r t i c l e i n f o a b s t r a c t Article history: Induced seismicity provides a rare opportunity to study earthquake triggering and underlying stress Received 13 March 2019 perturbations. Triggering can be a direct result of induced stress changes or indirect due to elastic stress Received in revised form 18 June 2019 transfer from preceding events leading to aftershocks. Both of these processes are observable in areas Accepted 29 June 2019 with larger magnitude induced events, such as Oklahoma. We study aftershock sequences of M2.5 to Available online xxxx M5.8 earthquakes and examine the impact of targeted injection rate reductions. In comparing aftershock Editor: M. Ishii productivity between California and Oklahoma, we find similar exponential scaling statistics between Keywords: mainshock magnitude and average number of aftershocks. For events with M≥4.5 Oklahoma exhibits aftershock deficiency several mainshocks with total number of aftershocks significantly below the average scaling behavior. induced seismicity mitigation The sequences with deficient aftershock numbers also experienced rapid, strong mitigation and reduced poroelastic stress coupling injection rates, whereas two events with M4.8 and M5.0 with weak mitigation exhibit normal aftershock productivity.
    [Show full text]
  • Induced Seismicity in the UK and Its Relevance to Hydraulic Stimulation for Exploration for Shale Gas
    Briefing Note Induced Seismicity in the UK and its Relevance to Hydraulic Stimulation for Exploration for Shale Gas Professor Peter Styles (Keele University) Dr Brian Baptie (British Geological Survey) The continental crust of the UK has had a long and complex tectonic history, with a more recent phase of loading and unloading superimposed upon it from the advance and retreat of ice sheets during the last 10,000 years or so. It is crisscrossed by networks of faults, some of which move on a reasonably frequent basis with observable and often felt seismicity, such as the bounding faults of the Welsh Marches and others which have not had recorded seismicity in historic times but may be in a quasi-critical state, in which the rocks store energy which can be released by changes in stress or hydrogeological conditions. The crust can respond by failing in an earthquake, a release of elastic stored energy which can be, and often is, NATURAL seismicity; or can sometimes be due to human activities such as mining, deep quarrying, coal mining, hydrogeological extraction or fluid disposal and activities associated with non-conventional hydrocarbon extraction, which is described as INDUCED seismicity. The magnitudes of the induced seismic events which occur in any region are partly due to the size of any applied stimulation, which must be sufficient to take ambient stress within the rocks beyond the point at which the yield point of the rock is exceeded, but are mainly determined by the strength of the rock being stressed. A good analogy is a stretched elastic band.
    [Show full text]
  • Earthquake Basics
    RESEARCH DELAWARE State of Delaware DELAWARE GEOLOGICAL SURVEY SERVICEGEOLOGICAL Robert R. Jordan, State Geologist SURVEY EXPLORATION SPECIAL PUBLICATION NO. 23 EARTHQUAKE BASICS by Stefanie J. Baxter University of Delaware Newark, Delaware 2000 CONTENTS Page INTRODUCTION . 1 EARTHQUAKE BASICS What Causes Earthquakes? . 1 Seismic Waves . 2 Faults . 4 Measuring Earthquakes-Magnitude and Intensity . 4 Recording Earthquakes . 8 REFERENCES CITED . 10 GLOSSARY . 11 ILLUSTRATIONS Figure Page 1. Major tectonic plates, midocean ridges, and trenches . 2 2. Ground motion near the surface of the earth produced by four types of earthquake waves . 3 3. Three primary types of fault motion . 4 4. Duration Magnitude for Delaware Geological Survey seismic station (NED) located near Newark, Delaware . 6 5. Contoured intensity map of felt reports received after February 1973 earthquake in northern Delaware . 8 6. Model of earliest seismoscope invented in 132 A. D. 9 TABLES Table Page 1. The 15 largest earthquakes in the United States . 5 2. The 15 largest earthquakes in the contiguous United States . 5 3. Comparison of magnitude, intensity, and energy equivalent for earthquakes . 7 NOTE: Definition of words in italics are found in the glossary. EARTHQUAKE BASICS Stefanie J. Baxter INTRODUCTION Every year approximately 3,000,000 earthquakes occur worldwide. Ninety eight percent of them are less than a mag- nitude 3. Fewer than 20 earthquakes occur each year, on average, that are considered major (magnitude 7.0 – 7.9) or great (magnitude 8 and greater). During the 1990s the United States experienced approximately 28,000 earthquakes; nine were con- sidered major and occurred in either Alaska or California (Source: U.S.
    [Show full text]