Predicting Ground Motion from Induced Earthquakes In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guideline for Extraction of Ground Motion Parameters for Scientific Hydraulic Fracturing Review Panel
Guideline for Extraction of Ground Motion Parameters for Scientific Hydraulic Fracturing Review Panel Alireza Babaie Mahani Ph.D. P.Geo. Mahan Geophysical Consulting Inc. Victoria, BC Email: [email protected] Website: www.mahangeo.com Executive Summary The Scientific Review of Hydraulic Fracturing in British Columbia (2019) provides the key findings of a scientific panel on the topic of hydraulic fracturing in British Columbia and the associated environmental risks. As indicated in the report, the panel recommends preparation of guidelines for standard calculation of earthquake magnitude and ground motion parameters. Since Babaie Mahani and Kao (2019 and 2020) have addressed the methodology for calculation of local magnitude in two publications, this report deals with standard methodologies for extraction of ground motion parameters from recorded earthquake waveforms. The guidelines include data from both types of seismic sensors that are used for induced seismicity monitoring; seismometers that record ground motion velocities and accelerometers that are designed to record strong ground accelerations at short distances. Waveforms from the November 30, 2018 induced earthquake with moment magnitude (Mw) of 4.6 that occurred in northeast British Columbia within the Montney unconventional resource play are presented for better understanding of the processing steps. Data Formats The standard format that is used to archive earthquake data is called the SEED format (Standard for the Exchange of Earthquake Data; https://ds.iris.edu/ds/nodes/dmc/data/formats/seed/). When both the time series data and metadata are archived in one file, the name full-SEED is also used. miniSEED is the stripped down version of SEED that only includes waveform data (https://ds.iris.edu/ds/nodes/dmc/data/formats/miniseed/). -
A Review of the Seismic Hazard Zonation in National Building Codes in the Context of Eurocode 8
A REVIEW OF THE SEISMIC HAZARD ZONATION IN NATIONAL BUILDING CODES IN THE CONTEXT OF EUROCODE 8 Support to the implementation, harmonization and further development of the Eurocodes G. Solomos, A. Pinto, S. Dimova EUR 23563 EN - 2008 A REVIEW OF THE SEISMIC HAZARD ZONATION IN NATIONAL BUILDING CODES IN THE CONTEXT OF EUROCODE 8 Support to the implementation, harmonization and further development of the Eurocodes G. Solomos, A. Pinto, S. Dimova EUR 23563 EN - 2008 The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national. European Commission Joint Research Centre Contact information Address: JRC, ELSA Unit, TP 480, I-21020, Ispra(VA), Italy E-mail: [email protected] Tel.: +39-0332-789989 Fax: +39-0332-789049 http://www.jrc.ec.europa.eu Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 48352 EUR 23563 EN ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Executive Summary The Eurocodes are envisaged to form the basis for structural design in the European Union and they should enable engineering services to be used across borders for the design of construction works. -
USGS Open File Report 2007-1365
Investigation of the M6.6 Niigata-Chuetsu Oki, Japan, Earthquake of July 16, 2007 Robert Kayen, Brian Collins, Norm Abrahamson, Scott Ashford, Scott J. Brandenberg, Lloyd Cluff, Stephen Dickenson, Laurie Johnson, Yasuo Tanaka, Kohji Tokimatsu, Toshimi Kabeyasawa, Yohsuke Kawamata, Hidetaka Koumoto, Nanako Marubashi, Santiago Pujol, Clint Steele, Joseph I. Sun, Ben Tsai, Peter Yanev, Mark Yashinsky, Kim Yousok Open File Report 2007–1365 2007 U.S. Department of the Interior U.S. Geological Survey 1 U.S. Department of the Interior Dirk Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Kayen, R., Collins, B.D., Abrahamson, N., Ashford, S., Brandenberg, S.J., Cluff, L., Dickenson, S., Johnson, L., Kabeyasawa, T., Kawamata, Y., Koumoto, H., Marubashi, N., Pujol, S., Steele, C., Sun, J., Tanaka, Y., Tokimatsu, K., Tsai, B., Yanev, P., Yashinsky , M., and Yousok, K., 2007. Investigation of the M6.6 Niigata-Chuetsu Oki, Japan, Earthquake of July 16, 2007: U.S. Geological Survey, Open File Report 2007-1365, 230pg; [available on the World Wide Web at URL http://pubs.usgs.gov/of/2007/1365/]. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. -
GEOTECHNICAL RECONNAISSANCE of the 2011 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE Version 1: 15 August 2011
GEOTECHNICAL RECONNAISSANCE OF THE 2011 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE Version 1: 15 August 2011 (photograph by Gillian Needham) EDITORS Misko Cubrinovski – NZ Lead (University of Canterbury, Christchurch, New Zealand) Russell A. Green – US Lead (Virginia Tech, Blacksburg, VA, USA) Liam Wotherspoon (University of Auckland, Auckland, New Zealand) CONTRIBUTING AUTHORS (alphabetical order) John Allen – (TRI/Environmental, Inc., Austin, TX, USA) Brendon Bradley – (University of Canterbury, Christchurch, New Zealand) Aaron Bradshaw – (University of Rhode Island, Kingston, RI, USA) Jonathan Bray – (UC Berkeley, Berkeley, CA, USA) Misko Cubrinovski – (University of Canterbury, Christchurch, New Zealand) Greg DePascale – (Fugro/WLA, Christchurch, New Zealand) Russell A. Green – (Virginia Tech, Blacksburg, VA, USA) Rolando Orense – (University of Auckland, Auckland, New Zealand) Thomas O’Rourke – (Cornell University, Ithaca, NY, USA) Michael Pender – (University of Auckland, Auckland, New Zealand) Glenn Rix – (Georgia Tech, Atlanta, GA, USA) Donald Wells – (AMEC Geomatrix, Oakland, CA, USA) Clint Wood – (University of Arkansas, Fayetteville, AR, USA) Liam Wotherspoon – (University of Auckland, Auckland, New Zealand) OTHER CONTRIBUTORS (alphabetical order) Brady Cox – (University of Arkansas, Fayetteville, AR, USA) Duncan Henderson – (University of Canterbury, Christchurch, New Zealand) Lucas Hogan – (University of Auckland, Auckland, New Zealand) Patrick Kailey – (University of Canterbury, Christchurch, New Zealand) Sam Lasley – (Virginia Tech, Blacksburg, VA, USA) Kelly Robinson – (University of Canterbury, Christchurch, New Zealand) Merrick Taylor – (University of Canterbury, Christchurch, New Zealand) Anna Winkley – (University of Canterbury, Christchurch, New Zealand) Josh Zupan – (University of California at Berkeley, Berkeley, CA, USA) TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 SEISMOLOGICAL ASPECTS 3.0 GEOLOGICAL ASPECTS 4.0 LIQUEFACTION AND LATERAL SPREADING 5.0 IMPROVED GROUND 6.0 STOPBANKS 7.0 BRIDGES 8.0 LIFELINES 9.0 LANDSLIDES AND ROCKFALLS 1. -
U. S. Department of the Interior Geological Survey
U. S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY USGS SPECTRAL RESPONSE MAPS AND THEIR RELATIONSHIP WITH SEISMIC DESIGN FORCES IN BUILDING CODES OPEN-FILE REPORT 95-596 1995 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. COVER: The zone type map is based on the 0.3 sec spectral response acceleration with a 10 percent chance of being exceeded in 50 year. Contours are based on Figure B1 in this report. Each zonal increase in darkness indicates a factor two increase in earthquake demand. The lightest shade indicates a demand < 5% g. The next shade is for demand > 10% g. Subsequent shades are for > 20% g, > 40% g, and > 80% g respectively. U. S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY USGS SPECTRAL RESPONSE MAPS AND THEIR RELATIONSHIP WITH SEISMIC DESIGN FORCES IN BUILDING CODES by E. V. Leyendecker1 , D. M. Perkins2, S. T. Algermissen3, P. C. Thenhaus4, and S. L. Hanson5 OPEN-FILE REPORT 95-596 1995 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 Research Civil Engineer, U.S. Geological Survey, MS 966, Box 25046, DFC, Denver, CO, 80225 2 Geophysicist, U.S. Geological Survey, MS 966, Box 25046, DFC, Denver, CO, 80225 3 Associate and Senior Consultant, EQE International, 2942 Evergreen Parkway, Suite 302, Evergreen, CO, 80439 (with the U. -
Incorporating Induced Seismicity Source Models and Ground Motion Predictions to Forecast Dynamic Regional Risk
Incorporating induced seismicity source models and ground motion predictions to forecast dynamic regional risk Jack W. Baker, Ph.D., M.ASCE,1 and Abhineet Gupta, Ph.D. 2 1 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305; e-mail: [email protected] 2 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305; e-mail: [email protected] ABSTRACT Decision-making regarding induced seismicity benefits greatly from quantitative risk assessment. While seismic hazard and risk analysis is widely used for natural seismicity, unique aspects of induced earthquakes require new tools to estimate occurrence rates of future earthquakes, to understand unique features of resulting ground motions, and to understand potential consequences at a regional scale. In this paper, we highlight recent work in dynamic source characterization and induced seismicity ground motion prediction to determine the hazard in the area, followed by prediction of regional scale risk. Results can be used to forecast risk under potential future earthquake activity, to predict benefits of potential interventions, and to quantify important uncertainties in the model that could be refined with further study. Example results for the State of Oklahoma are used to illustrate the potential insights from this analysis approach. INTRODUCTION Risk analysis is a well-established framework for assessing potential impacts of a range of human activities, evaluating the acceptability of those impacts, and taking actions to manage risks. For natural seismicity, risk assessment and hazard assessment are widely used and well established (e.g., McGuire 2004; Petersen et al. 2014). As induced seismicity has emerged as an important issue in a number of regions of the world, adoption of these approaches has naturally arisen as a potentially important tool to support decision-making (e.g., Bommer et al. -
Induced Seismicity Risk Analysis of the Hydraulic Stimulation of a Geothermal Well on Geldinganes, Iceland
https://doi.org/10.5194/nhess-2019-331 Preprint. Discussion started: 11 November 2019 c Author(s) 2019. CC BY 4.0 License. Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland Marco Broccardo1,4, Arnaud Mignan2,3, Francesco Grigoli1, Dimitrios Karvounis1, Antonio Pio Rinaldi1,2, 5 Laurentiu Danciu1, Hannes Hofmann5, Claus Milkereit5, Torsten Dahm5, Günter Zimmermann5, Vala Hjörleifsdóttir6, Stefan Wiemer1 1 Swiss Seismological Service, ETH Zürich, Switzerland 2 Institute of Geophysics, ETH Zürich, Switzerland 10 3 Institute of Risk Analysis, Prediction and Management, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China 4 Institute of Structural Engineering, ETH Zürich, Switzerland 5 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany 6 Orkuveita Reykjavíkur/Reykjavík Energy, Iceland 15 Correspondence to: Marco Broccardo ([email protected]) Abstract. The rapid increase in energy demand in the city of Reykjavik has posed the need for an additional supply of deep geothermal energy. The deep hydraulic (re-)stimulation of well RV-43 on the peninsula of Geldinganes (north of Reykjavik) is an essential component of the plan implemented by Reykjavik Energy to meet this energy target. Hydraulic stimulation is 20 often associated with fluid-induced seismicity, most of which is not felt on the surface, but which, in rare cases, can cause nuisance to the population and even damage to the nearby building stock. This study presents a first of its kind pre-drilling probabilistic induced-seismic hazard and risk analysis for the site of interest. Specifically, we provide probabilistic estimates of peak ground acceleration, European microseismicity intensity, probability of light damage (damage risk), and individual risk. -
Seismic Hazard Curves and Uniform Hazard Response Spectra for the United States by A
Seismic Hazard Curves and Uniform Hazard Response Spectra for the United States by A. D. Frankel and E. V. Leyendecker A User Guide to Accompany Open-File Report 01-436 2001 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR Gale A. Norton, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director Seismic Hazard Curves and Uniform Hazard Response Spectra for the United States A User Guide to Accompany Open-File Report 01-436 A. D. Frankel1 and E. V. Leyendecker2 ABSTRACT The U.S. Geological Survey (USGS) recently completed new probabilistic seismic hazard maps for the United States. The hazard maps form the basis of the probabilistic component of the design maps used in the 2000 International Building Code (International Code Council, 2000a), 2000 International Residential Code (International Code Council, 2000a), 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings (Building Seismic Safety Council, 1997), and 1997 NEHRP Guidelines for the Seismic Rehabilitation of Buildings (Applied Technology Council, 1997). The probabilistic maps depict peak horizontal ground acceleration and spectral response at 0.2, 0.3, and 1.0 sec periods, with 10%, 5%, and 2% probabilities of exceedance in 50 years, corresponding to return times of about 500, 1000, and 2500 years, respectively. This report is a user guide for a CD-ROM that has been prepared to allow the determination of probabilistic map values by latitude-longitude or zip code. -
Aftershock Deficiency of Induced Earthquake Sequences During Rapid Mitigation Efforts in Oklahoma
Earth and Planetary Science Letters 522 (2019) 135–143 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Aftershock deficiency of induced earthquake sequences during rapid mitigation efforts in Oklahoma ∗ T.H.W. Goebel a, , Z. Rosson b, E.E. Brodsky a, J.I. Walter b a University of California, Santa Cruz, Santa Cruz, CA, USA b Oklahoma Geological Survey, University of Oklahoma, Norman, OK, USA a r t i c l e i n f o a b s t r a c t Article history: Induced seismicity provides a rare opportunity to study earthquake triggering and underlying stress Received 13 March 2019 perturbations. Triggering can be a direct result of induced stress changes or indirect due to elastic stress Received in revised form 18 June 2019 transfer from preceding events leading to aftershocks. Both of these processes are observable in areas Accepted 29 June 2019 with larger magnitude induced events, such as Oklahoma. We study aftershock sequences of M2.5 to Available online xxxx M5.8 earthquakes and examine the impact of targeted injection rate reductions. In comparing aftershock Editor: M. Ishii productivity between California and Oklahoma, we find similar exponential scaling statistics between Keywords: mainshock magnitude and average number of aftershocks. For events with M≥4.5 Oklahoma exhibits aftershock deficiency several mainshocks with total number of aftershocks significantly below the average scaling behavior. induced seismicity mitigation The sequences with deficient aftershock numbers also experienced rapid, strong mitigation and reduced poroelastic stress coupling injection rates, whereas two events with M4.8 and M5.0 with weak mitigation exhibit normal aftershock productivity. -
Induced Seismicity in the UK and Its Relevance to Hydraulic Stimulation for Exploration for Shale Gas
Briefing Note Induced Seismicity in the UK and its Relevance to Hydraulic Stimulation for Exploration for Shale Gas Professor Peter Styles (Keele University) Dr Brian Baptie (British Geological Survey) The continental crust of the UK has had a long and complex tectonic history, with a more recent phase of loading and unloading superimposed upon it from the advance and retreat of ice sheets during the last 10,000 years or so. It is crisscrossed by networks of faults, some of which move on a reasonably frequent basis with observable and often felt seismicity, such as the bounding faults of the Welsh Marches and others which have not had recorded seismicity in historic times but may be in a quasi-critical state, in which the rocks store energy which can be released by changes in stress or hydrogeological conditions. The crust can respond by failing in an earthquake, a release of elastic stored energy which can be, and often is, NATURAL seismicity; or can sometimes be due to human activities such as mining, deep quarrying, coal mining, hydrogeological extraction or fluid disposal and activities associated with non-conventional hydrocarbon extraction, which is described as INDUCED seismicity. The magnitudes of the induced seismic events which occur in any region are partly due to the size of any applied stimulation, which must be sufficient to take ambient stress within the rocks beyond the point at which the yield point of the rock is exceeded, but are mainly determined by the strength of the rock being stressed. A good analogy is a stretched elastic band. -
Induced Seismicity
Office of Oil and Natural Gas Induced Seismicity Expanded unconventional oil and gas (UOG) development has led to increased seismicity in several areas of the country, including areas where it was previously very uncommon. The primary cause of these earthquakes, which can reach magnitude 3.0 to 6.0, is large-scale wastewater injection from oil and gas production. In order to provide useful information to regulators and those who manage wastewater, the Department of Energy (DOE) is funding collaborative efforts to 1) identify the risks, 2) assess the probability of occurrence and potential impact of each risk, and 3) provide strategies and technologies to help mitigate the risks. Research includes assessing the risks in different oil and gas producing regions; establishing seismic monitoring networks; developing tools for assessing seismic risk; and providing access to wastewater disposal volumes. Results to date show that not all induced seismicity is due to high volume injection wells but varies by region. A University of Texas study, funded by the DOE, found that in the Barnett shale play region, earthquakes occur near high volume injection disposal wells, whereas in the Eagle Ford play region, earthquakes are not near injection wells, but follow increases in extraction of water/petroleum. Goals be managed by simply reducing the amount of water injected and The recent increase in induced seismicity related to UOG operations period of injection. is a relatively new and emerging problem. DOE’s immediate goals are to support R&D efforts to: Induced seismic risk varies tremendously by region, and that has implications for managing waste disposal operations. -
Magnitude Scaling of Induced Earthquakes Benjamin Edwards, John Douglas
Magnitude scaling of induced earthquakes Benjamin Edwards, John Douglas To cite this version: Benjamin Edwards, John Douglas. Magnitude scaling of induced earthquakes. Geothermics, Elsevier, 2014, 52, pp.132-139. 10.1016/j.geothermics.2013.09.012. hal-00863802 HAL Id: hal-00863802 https://hal-brgm.archives-ouvertes.fr/hal-00863802 Submitted on 19 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Magnitude Scaling of Induced Earthquakes Benjamin Edwards 1* and John Douglas 2 1 Swiss Seismological Service, ETH Zürich, Zürich, Switzerland. 2 Seismic and Volcanic Risks Unit (RSV), Risks and Prevention Division (DRP), BRGM, Orléans, France. * Corresponding Author -- email: [email protected]; address: Swiss Seismological Service, ETH Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland; telephone: +41 44 632 8963. Abstract Presented are the results of an earthquake magnitude homogenization exercise for several datasets of induced earthquakes. The result of this exercise is to show that homogeneous computation of earthquake moment- and local-magnitude is useful in hazard assessment of Enhanced Geothermal Systems (EGSs). Data include records from EGSs in Basel (Switzerland), Soultz (France) and Cooper Basin (Australia); natural geothermal fields in Geysers (California) and Hengill (Iceland), and a gas- field in Roswinkel (Netherlands).