New IMS President Welcomed
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AMSTATNEWS the Membership Magazine of the American Statistical Association •
May 2021 • Issue #527 AMSTATNEWS The Membership Magazine of the American Statistical Association • http://magazine.amstat.org 2021 COPSS AWARD WINNERS ALSO: ASA, International Community Continue to Decry Georgiou Persecution Birth of an ASA Outreach Group: The Origins of JEDI AMSTATNEWS MAY 2021 • ISSUE #527 Executive Director Ron Wasserstein: [email protected] Associate Executive Director and Director of Operations Stephen Porzio: [email protected] features Senior Advisor for Statistics Communication and Media Innovation 3 President’s Corner Regina Nuzzo: [email protected] 5 ASA, International Community Continue to Decry Director of Science Policy Georgiou Persecution Steve Pierson: [email protected] Director of Strategic Initiatives and Outreach 8 What a Year! Practical Significance Celebrates Resilient Donna LaLonde: [email protected] Class of 2021 Director of Education 9 Significance Launches Data Economy Series with April Issue Rebecca Nichols: [email protected] 10 CHANCE Highlights: Spring Issue Features Economic Managing Editor Impact of COVID-19, Kullback’s Career, Sharing Data Megan Murphy: [email protected] 11 Forget March Madness! Students Test Probability Skills Editor and Content Strategist with March Randomness Val Nirala: [email protected] 12 My ASA Story: James Cochran Advertising Manager Joyce Narine: [email protected] 14 StatFest Back for 21st Year in 2021 Production Coordinators/Graphic Designers 15 Birth of an ASA Outreach Group: The Origins of JEDI Olivia Brown: [email protected] Megan Ruyle: [email protected] 18 2021 COPSS Award Winners Contributing Staff Members 23 A Story of COVID-19, Mentoring, and West Virginia Kim Gilliam Amstat News welcomes news items and letters from readers on matters of interest to the association and the profession. -
An Analog of the Minimax Theorem for Vector Payoffs
Pacific Journal of Mathematics AN ANALOG OF THE MINIMAX THEOREM FOR VECTOR PAYOFFS DAVID BLACKWELL Vol. 6, No. 1 November 1956 AN ANALOG OF THE MINIMAX THEOREM FOR VECTOR PAYOFFS DAVID BLACKWELL 1. Introduction* The von Neumann minimax theorem [2] for finite games asserts that for every rxs matrix M=\\m(i, j)\\ with real elements there exist a number v and vectors P=(Pi, •••, Pr)f Q={QU •••> Qs)f Pi, Qj>β, such that i> 3) for all i, j. Thus in the (two-person, zero-sum) game with matrix Λf, player I has a strategy insuring an expected gain of at least v, and player II has a strategy insuring an expected loss of at most v. An alternative statement, which follows from the von Neumann theorem and an appropriate law of large numbers is that, for any ε>0, I can, in a long series of plays of the game with matrix M, guarantee, with probability approaching 1 as the number of plays becomes infinite, that his average actual gain per play exceeds v — ε and that II can similarly restrict his average actual loss to v-he. These facts are assertions about the extent to which each player can control the center of gravity of the actual payoffs in a long series of plays. In this paper we investigate the extent to which this center of gravity can be controlled by the players for the case of matrices M whose elements m(i9 j) are points of ΛΓ-space. Roughly, we seek to answer the following question. -
Higher-Order Asymptotics
Higher-Order Asymptotics Todd Kuffner Washington University in St. Louis WHOA-PSI 2016 1 / 113 First- and Higher-Order Asymptotics Classical Asymptotics in Statistics: available sample size n ! 1 First-Order Asymptotic Theory: asymptotic statements that are correct to order O(n−1=2) Higher-Order Asymptotics: refinements to first-order results 1st order 2nd order 3rd order kth order error O(n−1=2) O(n−1) O(n−3=2) O(n−k=2) or or or or o(1) o(n−1=2) o(n−1) o(n−(k−1)=2) Why would anyone care? deeper understanding more accurate inference compare different approaches (which agree to first order) 2 / 113 Points of Emphasis Convergence pointwise or uniform? Error absolute or relative? Deviation region moderate or large? 3 / 113 Common Goals Refinements for better small-sample performance Example Edgeworth expansion (absolute error) Example Barndorff-Nielsen’s R∗ Accurate Approximation Example saddlepoint methods (relative error) Example Laplace approximation Comparative Asymptotics Example probability matching priors Example conditional vs. unconditional frequentist inference Example comparing analytic and bootstrap procedures Deeper Understanding Example sources of inaccuracy in first-order theory Example nuisance parameter effects 4 / 113 Is this relevant for high-dimensional statistical models? The Classical asymptotic regime is when the parameter dimension p is fixed and the available sample size n ! 1. What if p < n or p is close to n? 1. Find a meaningful non-asymptotic analysis of the statistical procedure which works for any n or p (concentration inequalities) 2. Allow both n ! 1 and p ! 1. 5 / 113 Some First-Order Theory Univariate (classical) CLT: Assume X1;X2;::: are i.i.d. -
Blackwell, David; Diaconis, Persi a Non-Measurable Tail Set
Blackwell, David; Diaconis, Persi A non-measurable tail set. Statistics, probability and game theory, 1--5, IMS Lecture Notes Monogr. Ser., 30, Inst. Math. Statist., Hayward, CA, 1996. Blackwell, David Operator solution of infinite $G\sb \delta$ games of imperfect information. Probability, statistics, and mathematics, 83--87, Academic Press, Boston, MA, 1989. 60040 Blackwell, David; Mauldin, R. Daniel Ulam's redistribution of energy problem: collision transformations. Lett. Math. Phys. 10 (1985), no. 2-3, 149--153. Blackwell, David; Dubins, Lester E. An extension of Skorohod's almost sure representation theorem. Proc. Amer. Math. Soc. 89 (1983), no. 4, 691--692. 60B10 Blackwell, David; Maitra, Ashok Factorization of probability measures and absolutely measurable sets. Proc. Amer. Math. Soc. 92 (1984), no. 2, 251--254. Blackwell, David; Girshick, M. A. Theory of games and statistical decisions. Reprint of the 1954 edition. Dover Publications, Inc., New York, 1979. xi+355 pp. ISBN: 0-486-63831-6 90D35 (62Cxx) Blackwell, David On stationary policies. With discussion. J. Roy. Statist. Soc. Ser. 133 (1970), no. 1, 33--37. 90C40 Blackwell, David The stochastic processes of Borel gambling and dynamic programming. Ann. Statist. 4 (1976), no. 2, 370--374. Blackwell, David; Dubins, Lester E. On existence and non-existence of proper, regular, conditional distributions. Ann. Probability 3 (1975), no. 5, 741--752. Blackwell, David; MacQueen, James B. Ferguson distributions via Pólya urn schemes. Ann. Statist. 1 (1973), 353--355. Blackwell, David; Freedman, David On the amount of variance needed to escape from a strip. Ann. Probability 1 (1973), 772--787. Blackwell, David Discreteness of Ferguson selections. -
June 2014 Society Meetings Society and Events SHEPHARD PRIZE: NEW PRIZE Meetings for MATHEMATICS 2014 and Events Following a Very Generous Tions Open in Late 2014
LONDONLONDON MATHEMATICALMATHEMATICAL SOCIETYSOCIETY NEWSLETTER No. 437 June 2014 Society Meetings Society and Events SHEPHARD PRIZE: NEW PRIZE Meetings FOR MATHEMATICS 2014 and Events Following a very generous tions open in late 2014. The prize Monday 16 June donation made by Professor may be awarded to either a single Midlands Regional Meeting, Loughborough Geoffrey Shephard, the London winner or jointly to collaborators. page 11 Mathematical Society will, in 2015, The mathematical contribution Friday 4 July introduce a new prize. The prize, to which an award will be made Graduate Student to be known as the Shephard must be published, though there Meeting, Prize will be awarded bienni- is no requirement that the pub- London ally. The award will be made to lication be in an LMS-published page 8 a mathematician (or mathemati- journal. Friday 4 July cians) based in the UK in recog- Professor Shephard himself is 1 Society Meeting nition of a specific contribution Professor of Mathematics at the Hardy Lecture to mathematics with a strong University of East Anglia whose London intuitive component which can be main fields of interest are in page 9 explained to those with little or convex geometry and tessella- Wednesday 9 July no knowledge of university math- tions. Professor Shephard is one LMS Popular Lectures ematics, though the work itself of the longest-standing members London may involve more advanced ideas. of the LMS, having given more page 17 The Society now actively en- than sixty years of membership. Tuesday 19 August courages members to consider The Society wishes to place on LMS Meeting and Reception nominees who could be put record its thanks for his support ICM 2014, Seoul forward for the award of a in the establishment of the new page 11 Shephard Prize when nomina- prize. -
John Ashworth Nelder: 8 October 1924 – 7 August 2010
John Ashworth Nelder: 8 October 1924 – 7 August 2010. John Nelder died on Saturday 7th August 2010 in Luton & Dunstable Hospital UK, where he was recovering from a fall. John was very active even at the age of 85, and retained the strong interest in our work – and statistics generally – that we will all remember with deep affection. However, he was becoming increasingly frail and it was a shock but perhaps, in retrospect, not a surprise to hear that he had died peacefully in his sleep. John was born on 8th October 1924 in Dulverton, Somerset, UK. He was educated at Blundell's School and at Sidney Sussex College, Cambridge where he read Mathematics (interrupted by war service in the RAF) from 1942-8, and then took the Diploma in Mathematical Statistics. Most of John’s formal career was spent as a statistician in the UK Agricultural Research Service. His first job, from October 1949, was at the newly set-up Vegetable Research Station, Wellesbourne UK (NVRS). Then, in 1968, he became Head of the Statistics Department at Rothamsted, and continued there until his first retirement in 1984. The role of statistician there was very conducive for John, not only because of his strong interests in biology (and especially ornithology), but also because it allowed him to display his outstanding skill of developing new statistical theory to solve real biological problems. At NVRS, John developed the theory of general balance to provide a unifying framework for the wide range of designs that are needed in agricultural research (see Nelder, 1965, Proceedings of the Royal Society, Series A). -
Reminiscences of a Statistician Reminiscences of a Statistician the Company I Kept
Reminiscences of a Statistician Reminiscences of a Statistician The Company I Kept E.L. Lehmann E.L. Lehmann University of California, Berkeley, CA 94704-2864 USA ISBN-13: 978-0-387-71596-4 e-ISBN-13: 978-0-387-71597-1 Library of Congress Control Number: 2007924716 © 2008 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper. 987654321 springer.com To our grandchildren Joanna, Emily, Paul Jacob and Celia Gabe and Tavi and great-granddaughter Audrey Preface It has been my good fortune to meet and get to know many remarkable people, mostly statisticians and mathematicians, and to derive much pleasure and benefit from these contacts. They were teachers, colleagues and students, and the following pages sketch their careers and our interactions. Also included are a few persons with whom I had little or no direct contact but whose ideas had a decisive influence on my work. -
Press Release
Press release 13 August 2014 Two Fields Medals 2014 awarded to ERC laureates The 2014 Fields Medals were awarded today to four outstanding mathematicians, of whom two are grantees of the European Research Council (ERC): Prof. Artur Avila (Brazil-France), an ERC Starting grant holder since 2010, and Prof. Martin Hairer (Austria) has been selected for funding under an ERC Consolidator grant in 2013. They received the prize respectively for their work on dynamical systems and probability, and on stochastic analysis. The other two laureates are Prof. Manjul Barghava (Canada-US) and Prof. Maryam Mirzakhani (Iran). The Medals were announced at the International Congress of Mathematicians (ICM) taking place from 13 – 21 August in Seoul, South Korea. On the occasion of the announcement, ERC President Prof. Jean-Pierre Bourguignon, a mathematician himself, said: “On behalf of the ERC Scientific Council, I would like to congratulate warmly all four Fields Medallists for their outstanding contributions to the field of mathematics. My special congratulations go to Artur Avila and Martin Hairer, who are both brilliant scientists supported by the ERC. We are happy to see that their remarkable talent in the endless frontiers of science has been recognised. The Fields Medals awarded today are also a sign that the ERC continues to identity and fund the most promising researchers across Europe; this is true not only in mathematics but in all scientific disciplines.” EU Commissioner for Research, Innovation and Science, Máire Geoghegan-Quinn, said: “I would like to congratulate the four laureates of the Fields Medal announced today. The Fields Medal, the highest international distinction for young mathematicians, is a well- deserved honour for hardworking and creative young researchers who push the boundaries of knowledge. -
Strength in Numbers: the Rising of Academic Statistics Departments In
Agresti · Meng Agresti Eds. Alan Agresti · Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics DepartmentsStatistics in the U.S. Rising of Academic The in Numbers: Strength Statistics Departments in the U.S. Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. Alan Agresti • Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. 123 Editors Alan Agresti Xiao-Li Meng Department of Statistics Department of Statistics University of Florida Harvard University Gainesville, FL Cambridge, MA USA USA ISBN 978-1-4614-3648-5 ISBN 978-1-4614-3649-2 (eBook) DOI 10.1007/978-1-4614-3649-2 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012942702 Ó Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
JOHN WILDER TUKEY 16 June 1915 — 26 July 2000
Tukey second proof 7/11/03 2:51 pm Page 1 JOHN WILDER TUKEY 16 June 1915 — 26 July 2000 Biogr. Mems Fell. R. Soc. Lond. 49, 000–000 (2003) Tukey second proof 7/11/03 2:51 pm Page 2 Tukey second proof 7/11/03 2:51 pm Page 3 JOHN WILDER TUKEY 16 June 1915 — 26 July 2000 Elected ForMemRS 1991 BY PETER MCCULLAGH FRS University of Chicago, 5734 University Avenue, Chicago, IL 60637, USA John Wilder Tukey was a scientific generalist, a chemist by undergraduate training, a topolo- gist by graduate training, an environmentalist by his work on Federal Government panels, a consultant to US corporations, a data analyst who revolutionized signal processing in the 1960s, and a statistician who initiated grand programmes whose effects on statistical practice are as much cultural as they are specific. He had a prodigious knowledge of the physical sci- ences, legendary calculating skills, an unusually sharp and creative mind, and enormous energy. He invented neologisms at every opportunity, among which the best known are ‘bit’ for binary digit, and ‘software’ by contrast with hardware, both products of his long associa- tion with Bell Telephone Labs. Among his legacies are the fast Fourier transformation, one degree of freedom for non-additivity, statistical allowances for multiple comparisons, various contributions to exploratory data analysis and graphical presentation of data, and the jack- knife as a general method for variance estimation. He popularized spectrum analysis as a way of studying stationary time series, he promoted exploratory data analysis at a time when the subject was not academically respectable, and he initiated a crusade for robust or outlier-resist- ant methods in statistical computation. -
Obituary Notices Ronald Drayton Brown
Obituary notices Ronald Drayton Brown Died 31 October 2008, elected to Fellowship 1965 Ronald Drayton (Ron) Brown was born in Melbourne on 14 October 1927. He grew up as an only child in modest suburban circumstances in Prahran and did not come from a scientific or academic background. His father had achieved some distinction in amateur athletics. His secondary education was at Wesley College, to which he had won a scholarship. He excelled in mathematics and physics and was an interested reader of astronomy books. He was dux of the school in his final year and was awarded an exhibition in physics in the Victorian matriculation examinations. In his first undergraduate year at the University of Melbourne, he majored in physics and chemistry. In second year he dropped Ron Brown physics, despite scoring better results than in chemistry. While completing a chemistry major he also informally attended the lectures in third year physics and mathematics, without completing the examinations, ending up with an effective triple major for his BSc in 1946. In the days before it was possible to do a PhD anywhere in Australia, Ron began his research career as an MSc student in the Department of Chemistry at the University of Melbourne with Dr Francis Lahey as supervisor. His thesis topic was alkaloid products from Australian plants, particularly Acronychia baueri. He had chosen this project because it would involve some organic chemistry and some spectroscopy. He was attracted by the relationships between the structure of organic compounds and their spectra, and the use of these ideas in deducing the structure of newly isolated compounds. -
Notices: Highlights
------------- ----- Tacoma Meeting (June 18-20)-Page 667 Notices of the American Mathematical Society June 1987, Issue 256 Volume 34, Number 4, Pages 601 - 728 Providence, Rhode Island USA ISSN 0002-9920 Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of Notices was sent to the press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and supplementary announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meeting. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the headquarter's office of the Society. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for abstracts for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information. consult the meeting announcements and the list of organizers of special sessions.