The Leuctridae of Eastern Canada (Insecta; Plecoptera)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 PBRIA a Newsletter for Plecopterologists
No. 10 1990/1991 Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 PBRIA A Newsletter for Plecopterologists EDITORS: Richard W, Baumann Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 Peter Zwick Limnologische Flußstation Max-Planck-Institut für Limnologie, Postfach 260, D-6407, Schlitz, West Germany EDITORIAL ASSISTANT: Bonnie Snow REPORT 3rd N orth A merican Stonefly S ymposium Boris Kondratieff hosted an enthusiastic group of plecopterologists in Fort Collins, Colorado during May 17-19, 1991. More than 30 papers and posters were presented and much fruitful discussion occurred. An enjoyable field trip to the Colorado Rockies took place on Sunday, May 19th, and the weather was excellent. Boris was such a good host that it was difficult to leave, but many participants traveled to Santa Fe, New Mexico to attend the annual meetings of the North American Benthological Society. Bill Stark gave us a way to remember this meeting by producing a T-shirt with a unique “Spirit Fly” design. ANNOUNCEMENT 11th International Stonefly Symposium Stan Szczytko has planned and organized an excellent symposium that will be held at the Tree Haven Biological Station, University of Wisconsin in Tomahawk, Wisconsin, USA. The registration cost of $300 includes lodging, meals, field trip and a T- Shirt. This is a real bargain so hopefully many colleagues and friends will come and participate in the symposium August 17-20, 1992. Stan has promised good weather and good friends even though he will not guarantee that stonefly adults will be collected during the field trip. Printed August 1992 1 OBITUARIES RODNEY L. -
Far Eastern Entomologist Number 417: 17-24 October 2020
Far Eastern Entomologist ISSN 1026-051X (print edition) Number 417: 17-24 ISSN 2713-2196 (online edition) October 2020 https://doi.org/10.25221/fee.417.3 http://zoobank.org/References/55C17BCB-CA08-4FA8-AC46-10C19524D817 FIRST REPORT OF VIVIPARITY OF THE STONEFLIES CAPNIA KHINGANA (PLECOPTERA: CAPNIIDAE) IN THE LOW AMUR RIVER BASIN V. A. Teslenko1), N. M. Yavorskaya2) 1) Federal Scientific Center of the East Asia terrestrial biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia. *Corresponding author, E-mail: [email protected] 2) Institute of Water and Ecological Problems, Far Eastern Branch of Russian Academy of Sciences, Khabarovsk, 680000, Russia. E-mail: [email protected] Summary. For the first time on the south of the Russian Far East, in small cool spring- like streams of the Low Amur River Basin, viviparity or live-bearing reproduction of stone- flies Capnia khingana (Plecoptera: Capniidae) was recorded. Apparently, the development of nymphs in eggs takes more than two months. Mature embryos were found throughout the abdomen, thorax, and head of C. khingana females, their number varied from 178 to 124. The first-instar nymphs hatched inside female body and exiting under the genital plate had head capsule with apparent eyespots, thorax, abdomen, legs, cerci and antennae. The lengths of the firs-instar nymphs varied from 910.33 to 920.35 μm, and the width of the head capsule, from 161.85 to 171.13 μm. Key words: stoneflies, viviparity, oviparity, first instar nymphs, streams, Russian Far East. В. А. Тесленко, Н. М. Яворская. Первое сообщение о живорождении у веснянки Capnia khingana (Plecoptera: Capniidae) в бассейне Нижнего Амура // Дальневосточный энтомолог. -
Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al. -
In Baltic Amber 85
Overview and descriptions of fossil stoneflies (Plecoptera) in Baltic amber 85 Entomologie heute 22 (2010): 85-97 Overview and Descriptions of Fossil Stoneflies (Plecoptera) in Baltic Amber Übersicht und Beschreibungen von fossilen Steinfliegen (Plecoptera) im Baltischen Bernstein CELESTINE CARUSO & WILFRIED WICHARD Summary: Three new fossil species of stoneflies (Plecoptera: Nemouridae and Leuctridae) from Eocene Baltic amber are being described: Zealeuctra cornuta n. sp., Lednia zilli n. sp., and Podmosta attenuata n. sp.. Extant species of these three genera are found in Eastern Asia and in the Nearctic region. It is very probably that the genera must have been widely spread across the northern hemisphere in the Cretaceous period, before Europe was an archipelago in Eocene. The current state of knowledge about the seventeen Plecoptera species of Baltic amber is shortly presented. Due to discovered homonymies, the following nomenclatural corrections are proposed: Leuctra fusca Pictet, 1856 in Leuctra electrofusca Caruso & Wichard, 2010 and Nemoura affinis Berendt, 1856 in Nemoura electroaffinis Caruso & Wichard, 2010. Keywords: Fossil insects, fossil Plecoptera, Eocene, paleobiogeography Zusammenfassung: In dieser Arbeit werden drei neue fossile Steinfliegen-Arten (Plecoptera: Nemouridae und Leuctridae) des Baltischen Bernsteins beschrieben: Zealeuctra cornuta n. sp., Lednia zilli n. sp., Podmosta attenuata n. sp.. Rezente Arten der drei Gattungen sind in Ostasien und in der nearktischen Region nachgewiesen. Sehr wahrscheinlich breiteten sich die Gattungen in der Krei- dezeit über die nördliche Hemisphäre aus, noch bevor Europa im Eozän ein Archipel war. Der gegenwärtige Kenntnisstand über die siebzehn Plecoptera Arten des Baltischen Bernsteins wird kurz dargelegt. Wegen bestehender Homonymien werden folgende nomenklatorische Korrekturen vorgenommen: Leuctra fusca Pictet, 1856 in Leuctra electrofusca Caruso & Wichard, 2010 und Nemoura affinis Berendt, 1856 in Nemoura electroaffinis Caruso & Wichard, 2010. -
Phenology and Diversity of Adult Stoneflies (Plecoptera) of a Small Coastal Stream, California
Bottorff, Richard L., Loren D. Bottorff, 2007. Phenology and diversity of adult stoneflies (Plecoptera) of a small coastal stream, California. Illiesia, 3(1):1‐9. Available online: http://www2.pms‐lj.si/illiesia/Illiesia03‐01.pdf PHENOLOGY AND DIVERSITY OF ADULT STONEFLIES (PLECOPTERA) OF A SMALL COASTAL STREAM, CALIFORNIA Richard L. Bottorff1 and Loren D. Bottorff 2 11963 Toppewetah Street, South Lake Tahoe, CA 96150, E‐mail: [email protected] 23265 Sandhurst Court, Cameron Park, CA 95682, E‐mail: [email protected] ABSTRACT Collections of adult stoneflies over a full year at Irish Gulch Creek, Mendocino Co., California, revealed 23 species. Adults were present at all times of the year. Species number varied from an autumnal low of 2 to a spring peak of 13. Adults of most species were present for less than 3 months, but Malenka depressa adults were present year‐round. Hesperoperla hoguei was the only strictly autumnal‐emerging species. The report of Suwallia dubia from Irish Gulch Creek represents a new California record. The stonefly faunas of Irish Gulch Creek (low coastal) and Sagehen Creek (high Sierra Nevada) were compared. Both creeks had similar numbers of species, but the species composition differed greatly, reflecting dissimilar environments (elevation, water temperature, thermal accumulation, and discharge). Irish Gulch Creek had uniform warmer temperatures; Sagehen Creek had variable colder temperatures. Peak emergence at Irish Gulch Creek occurred 2 months earlier than at Sagehen Creek. Keywords: Plecoptera, seasonal flight period, biodiversity, thermal stability, North Coast bioregion INTRODUCTION we studied these aspects for a small stream on the As might be expected from its varied topography, north coast of California. -
Ancient Rapid Radiations of Insects: Challenges for Phylogenetic Analysis
ANRV330-EN53-23 ARI 2 November 2007 18:40 Ancient Rapid Radiations of Insects: Challenges for Phylogenetic Analysis James B. Whitfield1 and Karl M. Kjer2 1Department of Entomology, University of Illinois, Urbana, Illinois 61821; email: jwhitfi[email protected] 2Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901; email: [email protected] Annu. Rev. Entomol. 2008. 53:449–72 Key Words First published online as a Review in Advance on diversification, molecular evolution, Palaeoptera, Orthopteroidea, September 17, 2007 fossils The Annual Review of Entomology is online at ento.annualreviews.org Abstract by UNIVERSITY OF ILLINOIS on 12/18/07. For personal use only. This article’s doi: Phylogenies of major groups of insects based on both morphological 10.1146/annurev.ento.53.103106.093304 and molecular data have sometimes been contentious, often lacking Copyright c 2008 by Annual Reviews. the data to distinguish between alternative views of relationships. Annu. Rev. Entomol. 2008.53:449-472. Downloaded from arjournals.annualreviews.org All rights reserved This paucity of data is often due to real biological and historical 0066-4170/08/0107-0449$20.00 causes, such as shortness of time spans between divergences for evo- lution to occur and long time spans after divergences for subsequent evolutionary changes to obscure the earlier ones. Another reason for difficulty in resolving some of the relationships using molecu- lar data is the limited spectrum of genes so far developed for phy- logeny estimation. For this latter issue, there is cause for current optimism owing to rapid increases in our knowledge of comparative genomics. -
Spatial and Phylogenetic Structure of DNA-Species of Alpine Stonefly
bioRxiv preprint doi: https://doi.org/10.1101/765578; this version posted September 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Spatial and phylogenetic structure of DNA-species of Alpine stonefly community 2 assemblages across seven habitats 3 4 Maribet Gamboa1, Joeselle Serrana1, Yasuhiro Takemon2, Michael T. Monaghan3, Kozo 5 Watanabe1 6 7 8 1Ehime University, Department of Civil and Environmental Engineering, Matsuyama, Japan 9 10 2Water Resources Research Center, Disaster Prevention Research Institute, Kyoto University, 11 6110011 Gokasho, Uji, Japan 12 13 3Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Mueggelseedamm 301, 14 12587 Berlin, Germany 15 16 17 18 19 Correspondence 20 Kozo Watanabe, Ehime University, Department of Civil and Environmental Engineering, 21 Matsuyama, Japan. E-mail: [email protected] 22 bioRxiv preprint doi: https://doi.org/10.1101/765578; this version posted September 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Abstract 24 1. Stream ecosystems are spatially heterogeneous environments due to the habitat diversity 25 that define different microhabitat patches within a single area. Despite the influence of 26 habitat heterogeneity on the biodiversity of insect community, little is known about how 27 habitat heterogeneity governs species coexistence and community assembly. -
Stark Et Al Stonefliy Common Names 1998.Pmd
Ohio Biological Survey Notes 1: 1-18, 1998. © Ohio Biological Survey Common Names of Stoneflies (Plecoptera) from the United States and Canada BILL P. S TARK1, KENNETH W. STEWART2, STANLEY W. SZCZYTKO3, AND RICHARD W. BAUMANN4 1 Dept. of Biology, Mississippi College, Clinton, MS 39058. 2 Dept. of Biological Sciences, Univ. of North Texas, Denton, TX 76203. 3 College of Natural Resources, Univ. of Wisconsin, Stevens Point, WI 54481. 4 Dept. of Zoology, Brigham Young Univ., Provo, UT 84602 Introduction Stoneflies are one of the important and often dominant orders of insects in North American stream ecosystems. They have remained generally poorly known to nonspecialists because of their cryptic habits, and often nocturnal activity. Larger species, or those that are colorful or important to flyfishers, have acquired regional or local names that vary from place to place. Names such as blacks, browns, greens, yellows, rollwings, needleflies, broadbacks, sallies, olives, stones, willowflies, or the generic names Acroneuria, Isoperla, Pteronarcys and others have become firmly established in fly fishing literature, and are used by flyfishers. The following list of recommended common names of Plecoptera species from the United States and Canada was originally formulated by us, acting as a subcommittee of the North American Benthological Society Scientific and Common Names Committee. This committee was charged with producing comprehensive species checklists of North American aquatic invertebrates, including insects with assigned common names. The first of the intended series of special publications by the American Fisheries Society of scientific and common names of U.S. aquatic invertebrates was of mollusks (Turgeon et al., 1988); the volumes on Insecta never followed. -
Patterns of Ecological Performance and Aquatic Insect Diversity in High
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Patterns of Ecological Performance and Aquatic Insect Diversity in High Quality Protected Area Networks Jason Lesley Robinson University of Tennessee Knoxville, [email protected] Recommended Citation Robinson, Jason Lesley, "Patterns of Ecological Performance and Aquatic Insect Diversity in High Quality Protected Area Networks. " PhD diss., University of Tennessee, 2012. http://trace.tennessee.edu/utk_graddiss/1342 This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Jason Lesley Robinson entitled "Patterns of Ecological Performance and Aquatic Insect Diversity in High Quality Protected Area Networks." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. James A. Fordyce, Major Professor We have read this dissertation and recommend its acceptance: J. Kevin Moulton, Nathan J. Sanders, Daniel Simberloff, Charles R. Parker Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records.) Patterns of Ecological Performance and Aquatic Insect Diversity in High Quality Protected Area Networks A Dissertation Presented for The Doctor of Philosophy Degree The University of Tennessee, Knoxville Jason Lesley Robinson May 2012 Copyright © 2012 by Jason Lesley Robinson All rights reserved. -
Dosdall and Lehmkuhl 1979 Qev15n1 3 116 CC Released.Pdf
This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. STONEFLIES (PLECOPTERA) OF SASKATCHEWAN LLOYD M. DOSDALL1 Biology Department University of Saskatchewan Saskatoon, Saskatchewan S7N0W0 D.M. LEHMKUHL Biology Department University of Saskatchewan Saskatoon, Saskatchewan Quaestiones Entomologicae S7N0W0 15:3-116 1979 Forty-one species, twenty-nine genera and eight families of Plecoptera are recorded from Saskatche wan. Distinguishing characters are given and keys are provided. Species recorded are: Pteronarcys dorsata (Say), Pteronarcella badia (Hagen), Taeniopteryx nivalis (Fitch), Oemopteryx fosketti (Packer), Capnia coloradensis Claassen, Capnia confusa Claassen, Capnia gracilaria Claassen, Capnia vernalis Newport, Paracapnia angulata Hanson, Isocapnia crinita (Needham and Claassen), Isocapnia missourii Ricker, Utacapnia trava (Nebeker and Gaufin), Nemoura rickeri Jewett, Shipsa rotunda (Claassen), Amphinemura linda (Ricker), Zapada cinctipes (Banks), Malenka californica (Claassenj, Podmosta delicatula (Claassen, Paraleuctra vershina Gaufin and Ricker, Leuctra ferruginea (Walker), Acroneuria abnormis (Newman), Acroneuria lycorias (Newman), Hesperoperla pacifica (Banks), C'laassenia sabulosa (Banks), Paragnetina media (Walker), Perlesta placida (Hagen), Isoperla bilineata (Say), -
Macroinvertebrate Inventory of the Caspar Creek Watershed
FINAL REPORT: Macroinvertebrate Inventory of the Caspar Creek Watershed Kenneth W. Cummins1 and David Malkauskas2 1. California Cooperative Fisheries Research Unit, Humboldt State University 2. Department of Entomology, Michigan State University 1 Introduction A macroinvertebrate assessment was conducted on the Caspar Creek Experimental Watershed in northwestern California using a functional feeding group (FFG) classification. The approach, developed over 30 years ago (Cummins 1973), has been tested, modified, and employed in many studies (e.g. Cummins and Klug 1979, Cummins and Wilzbach 1985), Merritt and Cummins 2006). The approach categorizes macroinvertebrates based on their morphological and behavioral mechanisms by which they acquire one or more of six general food types: coarse particulate organic matter (CPOM), fine particulate organic matter (FPOM), periphytic, non-filamentous algae and associated bio-film, invertebrate prey organisms, and filamentous algae (Table 1). The morpho-behavioral adaptations of stream macroinvertebrates for acquiring food are easily observed in the field on live specimens. An example is the large eyes, bright color patterns, and active movement that characterize the three predaceous stonefly families (setipalpian Plecoptera). The abundance (especially expressed as biomass) of any FFG is an indicator of the relative availability of its food resource category. The method has the advantage that the survey crew leaves the field with the data as well as with preserved samples that can be analyzed in taxonomic data, and measured for biomass conversion calculations in the lab, if (and this is almost always the problem) funds are available for the very time-consuming process of microscope analysis. The point is, that a great deal of information about the status of a stream ecosystem can be obtained in the field using the FFG approach, but it does not for close the ability to analyze the samples in the lab. -
Dimensions of Biodiversity
Dimensions of Biodiversity NATIONAL SCIENCE FOUNDATION CO-FUNDED BY 2010–2015 PROJECTS Introduction 4 Project Abstracts 2015 8 Project Updates 2014 30 Project Updates 2013 42 Project Updates 2012 56 Project Updates 2011 72 Project Updates 2010 88 FRONT COVER IMAGES A B f g h i k j C l m o n q p r D E IMAGE CREDIT THIS PAGE FRONT COVER a MBARI & d Steven Haddock f Steven Haddock k Steven Haddock o Carolyn Wessinger Peter Girguis e Carolyn g Erin Tripp l Lauren Schiebelhut p Steven Litaker b James Lendemer Wessinger h Marty Condon m Lawrence Smart q Sahand Pirbadian & c Matthew L. Lewis i Marty Condon n Verity Salmon Moh El-Naggar j Niklaus Grünwald r Marty Condon FIELD SITES Argentina France Singapore Australia French Guiana South Africa Bahamas French Polynesia Suriname Belize Germany Spain Bermuda Iceland Sweden Bolivia Japan Switzerland Brazil Madagascar Tahiti Canada Malaysia Taiwan China Mexico Thailand Colombia Norway Trinidad Costa Rica Palau United States Czech Republic Panama United Kingdom Dominican Peru Venezuela Republic Philippines Labrador Sea Ecuador Poland North Atlantic Finland Puerto Rico Ocean Russia North Pacific Ocean Saudi Arabia COLLABORATORS Argentina Finland Palau Australia France Panama Brazil Germany Peru Canada Guam Russia INTERNATIONAL PARTNERS Chile India South Africa China Brazil China Indonesia Sri Lanka (NSFC) (FAPESP) Colombia Japan Sweden Costa Rica Kenya United Denmark Malaysia Kingdom Ecuador Mexico ACKNOWLEDGMENTS Many NSF staff members, too numerous to We thank Mina Ta and Matthew Pepper for mention individually, assisted in the development their graphic design contribution to the abstract and implementation of the Dimensions of booklet.