Seroprevalence of Selected Zoonotic Viruses in Rodents and Humans

Total Page:16

File Type:pdf, Size:1020Kb

Seroprevalence of Selected Zoonotic Viruses in Rodents and Humans VECTOR-BORNE AND ZOONOTIC DISEASES Volume 15, Number 1, 2015 ª Mary Ann Liebert, Inc. DOI: 10.1089/vbz.2014.1603 Rodents and Risk in the Mekong Delta of Vietnam: Seroprevalence of Selected Zoonotic Viruses in Rodents and Humans Nguyen Van Cuong,1 Juan Carrique-Mas,1 Hien Vo Be,2 Nguyen Ngoc An,3 Ngo Tri Tue,1 Nguyet Lam Anh,1 Pham Hong Anh,1 Nguyen The Phuc,1 Stephen Baker,1 Liina Voutilainen,4 Anne Ja¨a¨skela¨inen,5,6 Eili Huhtamo,5 Mira Utriainen,5 Tarja Sironen,5 Antti Vaheri,5,6 Heikki Henttonen,4 Olli Vapalahti,5–7 Yannick Chaval,8 Serge Morand,8 and Juliet E. Bryant1,9 Abstract In the Mekong Delta in southern Vietnam, rats are commonly traded in wet markets and sold live for food consumption. We investigated seroprevalence to selected groups of rodent-borne viruses among human pop- ulations with high levels of animal exposure and among co-located rodent populations. The indirect fluores- cence antibody test (IFAT) was used to determine seropositivity to representative reference strains of hantaviruses (Dobrava virus [DOBV], Seoul virus [SEOV]), cowpox virus, arenaviruses (lymphocytic chor- iomeningitis virus [LCMV]), flaviviruses (tick-borne encephalitis virus [TBEV]), and rodent parechoviruses (Ljungan virus), using sera from 245 humans living in Dong Thap Province and 275 rodents representing the five common rodent species sold in wet markets and present in peridomestic and farm settings. Combined seropositivity to DOBV and SEOV among the rodents and humans was 6.9% (19/275) and 3.7% (9/245), respectively; 1.1% (3/275) and 4.5% (11/245) to cowpox virus; 5.4% (15/275) and 47.3% (116/245) for TBEV; and exposure to Ljungan virus was 18.8% (46/245) in humans, but 0% in rodents. Very little seroreactivity was observed to LCMV in either rodents (1/275, 0.4%) or humans (2/245, 0.8%). Molecular screening of rodent liver tissues using consensus primers for flaviviruses did not yield any amplicons, whereas molecular screening of rodent lung tissues for hantavirus yielded one hantavirus sequence (SEOV). In summary, these results indicate low to moderate levels of endemic hantavirus circulation, possible circulation of a flavivirus in rodent reservoirs, and the first available data on human exposures to parechoviruses in Vietnam. Although the current evidence suggests only limited exposure of humans to known rodent-borne diseases, further research is war- ranted to assess public health implications of the rodent trade. Key Words: Vietnam—Rodents—Flavivirus—Hantavirus—Cowpox virus–Arenavirus—Ljungan virus. Introduction (Khiem et al. 2003). Rat infestations in rice fields cause enormous crop damage, and trapping provides a means of n the Mekong Delta of Vietnam, rats are commonly pest control as well as augmenting local dietary sources of Itrapped in rice fields before and after harvesting and animal protein. Rodent parts (heads, tails, and innards) are sold live for food consumption. The rat trade is vigorous, also often fed to domestic livestock or reptiles reared in ca- involving up to 3300–3600 tonnes of meat sold per year pitivity (frogs, snakes, crocodiles). Rodents are well-recognized 1Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam. 2Sub-Department of Animal Health and 3Department of Preventive Medicine, Dong Thap Province, Cao Lanh, Vietnam. 4Finnish Forest Research Institute, Vantaa, Finland. 5Haartman Institute, University of Helsinki, Helsinki, Finland. 6HUSLAB, Department of Virology and Immunology, Helsinki University Central Hospital, Helsinki, Finland. 7Faculty of Veterinary Medicine, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland. 8Universite´ Montpellier, Montpellier, France. 9Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom. 65 66 CUONG ET AL. vectors of a range of zoonotic viruses transmitted via close technique by a study nurse. After collection, all specimens contact with saliva, urine, or feces (Meerburg 2010). were aliquotted and preserved at - 80°C. Information was Given the frequency and intensity of human and livestock collected on sociodemographic factors, occupation, house contact with rodents, we aimed to explore potential risks structure, hygiene, water source, food consumption, house- associated with these exposures through seroprevelance hold animals, detailed animal contact histories, vaccination, studies. We determined seroprevalence to five groups of and admission to hospital in the 12 months prior to the survey. known zoonotic viruses in rodents representing the common species sold in wet markets and present in peridomestic and Serological screening farm settings. In parallel, we determined seroprevalence to the same set of viruses in a cohort of individuals with high Human and rodent sera, and rodent dried blood spots on levels of occupational and residential exposure to rodents and filter papers were screened using an indirect immunofluo- domestic livestock. The viruses of interest (namely flavi- rescence antibody test (IFAT) for antibodies against Seoul viruses, hantaviruses, poxviruses, arenaviruses, and rodent (SEOV) and Dobrava (DOBV) hantaviruses (representatives parechoviruses) were selected on the basis of their known of rat and mouse type host lineages, respectively); flavi- or probable endemicity, their documented associations with viruses (tick-borne encephalitis [TBEV] serocomplex); are- rodent-borne disease, and considerations of feasibility and naviruses (lymphocytic choriomeningitis virus [LCMV]); resources (i.e., access to reference strains and well-established poxviruses (cowpox virus); and parechoviruses (Ljungan diagnostic protocols). In addition to serological screening, virus). IFAT spotslides and the assay procedures were con- we tested rodent liver and lung tissues by RT-PCR using ducted as previously described (Kallio-Kokko et al. 2006, generic primers for flaviviruses and hantaviruses). Ja¨a¨skela¨inen et al. 2013) using Vero E6 cells for SEOV, DOBV, TBEV, LCMV, and Vero cells for cowpox and Methods Ljungan viruses. Viral reference strains were 80-39 for SEOV (Antic et al. 1991), Ano-Poroia for DOBV (Nemirov Rodents et al. 1999), Armstrong for LCMV (Kallio-Kokko et al. Rodent surveys were conducted as described by Hoang 2006), Kumlinge A52 for TBEV (Brummer-Korvenkontio et al. (2014). Briefly, rats were purchased from markets in et al. 1973; Whitby et al. 1993), CPXV/FIN/T2000 for five provinces of the Mekong Delta (Dong Thap, Tien Giang, cowpox virus (Pelkonen et al. 2003), and LV 145 SLG for An Giang, Vinh Long, and Can Tho) during October of 2012, Ljungan (Tolf et al. 2009). Sera were diluted 1:20 in phos- and field trapping was conducted in peridomestic and forest phate-buffered saline (PBS) for initial screening, and repeat habitats in Dong Thap province during March of 2013. testing with three-fold serial dilutions was performed on all human putative seropositives. Whole blood collected in filter Specimens used in this investigation comprised sera or whole 2 blood and tissues from 275 individual rats (150 purchased papers was eluted in PBS (*1cm of filter paper in 1 mL of in wet markets, 125 field trapped). Five rodent species were PBS). For rodent sera, the secondary antibody was polyclonal represented: Rattus argentiventer (n = 104) Bandicota indica rabbit anti-mouse fluorescein isothiocyanate (FITC) conju- (n = 65), R. tanezumi (n = 61), R. norvegicus (n = 29), and gate diluted 1:30 (Dako A/S, Copenhagen, Denmark); for R. exulans (n = 16) (Table 1). human sera, the secondary antibody was anti-human immu- noglobulin G (IgG) FITC conjugate diluted 1:100 (Jackson Human sera and data collection Immuno Research Laboratories, West Grove, PA). Each slide was examined independently by two researchers using an Sera were obtained from a cohort of 245 people living in Olympus BX51 microscope. Human sera with evidence of farming communities in Dong Thap Province. Ethical ap- TBEV reactivity were further examined using differential proval was obtained by the Oxford Tropical Research Ethics IFAT screening in parallel for dengue (DENV) and Japanese Committee and the People’s Committee of Dong Thap Pro- encephalitis virus (JEV), as previously described (Tonteri vince, and the study was implemented by the provincial et al. 2011). Preventive Medicine Center (PMC). Participants were eligi- ble if they gave informed consent and were involved in Molecular screening raising, slaughtering, or processing livestock or wildlife, with a minimum of 10 h exposure per week. Family members with Virological screening for flaviviruses and hantaviruses residential exposures to livestock were also recruited (mini- was performed on all rodent liver and lung samples. Briefly, mum 1 year of age). Phlebotomy was performed using sterile 1-cm2 tissue samples were homogenized using a bead mill Table 1. Rodent Species Purchased and Trapped in the Mekong Delta, November, 2012, to March, 2013 Rattus Bandicota Rattus Rattus Rattus argentiventer indica tanezumi norvegicus exulans Total All 104 65 61 29 16 275 Male/female 52/52 19/46 43/18 15/14 9/7 138/137 No. purchased rats 88 44 9 9 0 150 Total rodents trapped 16 21 52 20 16 125 No. trapped in farms 14 10 19 18 15 76 No. trapped in forest/fields 2 11 33 2 1 49 RODENT-BORNE VIRUSES IN VIETNAM 67 (TissueLyser II, QIAGEN), and nucleic acid extracted using Overall seropositivity to hantaviruses was 6.9% (19/275). MagNA Pure 96 Viral NA Small Volume Kit (Roche) on an In spite of the supposed cross-reactivity among murine automated extractor (Roche). Following extraction, nucleic hantaviruses, only three individuals were positive for both acid samples were pooled by species (five samples per pool). hantaviral antigens (six positive for DOBV only, 10 positive cDNA from lung samples was screened for hantavirus with for SEOV only). This differential reactivity may indicate the conventional PCR (L segment) (Klempa et al. 2006). cDNA presence of several hantaviruses. Seropositive host species from liver tissues was screened for flaviviruses using con- included R. norvegicus, R. argentiventer, R. tanezumi, and B. sensus NS5 primers (Kuno et al. 1998). When pools tested indica. None of the R.
Recommended publications
  • Characterizing and Evaluating the Zoonotic Potential of Novel Viruses Discovered in Vampire Bats
    viruses Article Characterizing and Evaluating the Zoonotic Potential of Novel Viruses Discovered in Vampire Bats Laura M. Bergner 1,2,* , Nardus Mollentze 1,2 , Richard J. Orton 2 , Carlos Tello 3,4, Alice Broos 2, Roman Biek 1 and Daniel G. Streicker 1,2 1 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; [email protected] (N.M.); [email protected] (R.B.); [email protected] (D.G.S.) 2 MRC–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; [email protected] (R.J.O.); [email protected] (A.B.) 3 Association for the Conservation and Development of Natural Resources, Lima 15037, Peru; [email protected] 4 Yunkawasi, Lima 15049, Peru * Correspondence: [email protected] Abstract: The contemporary surge in metagenomic sequencing has transformed knowledge of viral diversity in wildlife. However, evaluating which newly discovered viruses pose sufficient risk of infecting humans to merit detailed laboratory characterization and surveillance remains largely speculative. Machine learning algorithms have been developed to address this imbalance by ranking the relative likelihood of human infection based on viral genome sequences, but are not yet routinely Citation: Bergner, L.M.; Mollentze, applied to viruses at the time of their discovery. Here, we characterized viral genomes detected N.; Orton, R.J.; Tello, C.; Broos, A.; through metagenomic sequencing of feces and saliva from common vampire bats (Desmodus rotundus) Biek, R.; Streicker, D.G. and used these data as a case study in evaluating zoonotic potential using molecular sequencing Characterizing and Evaluating the data.
    [Show full text]
  • Intestinal Virome Changes Precede Autoimmunity in Type I Diabetes-Susceptible Children,” by Guoyan Zhao, Tommi Vatanen, Lindsay Droit, Arnold Park, Aleksandar D
    Correction MEDICAL SCIENCES Correction for “Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children,” by Guoyan Zhao, Tommi Vatanen, Lindsay Droit, Arnold Park, Aleksandar D. Kostic, Tiffany W. Poon, Hera Vlamakis, Heli Siljander, Taina Härkönen, Anu-Maaria Hämäläinen, Aleksandr Peet, Vallo Tillmann, Jorma Ilonen, David Wang, Mikael Knip, Ramnik J. Xavier, and Herbert W. Virgin, which was first published July 10, 2017; 10.1073/pnas.1706359114 (Proc Natl Acad Sci USA 114: E6166–E6175). The authors wish to note the following: “After publication, we discovered that certain patient-related information in the spreadsheets placed online had information that could conceiv- ably be used to identify, or at least narrow down, the identity of children whose fecal samples were studied. The article has been updated online to remove these potential privacy concerns. These changes do not alter the conclusions of the paper.” Published under the PNAS license. Published online November 19, 2018. www.pnas.org/cgi/doi/10.1073/pnas.1817913115 E11426 | PNAS | November 27, 2018 | vol. 115 | no. 48 www.pnas.org Downloaded by guest on September 26, 2021 Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children Guoyan Zhaoa,1, Tommi Vatanenb,c, Lindsay Droita, Arnold Parka, Aleksandar D. Kosticb,2, Tiffany W. Poonb, Hera Vlamakisb, Heli Siljanderd,e, Taina Härkönend,e, Anu-Maaria Hämäläinenf, Aleksandr Peetg,h, Vallo Tillmanng,h, Jorma Iloneni, David Wanga,j, Mikael Knipd,e,k,l, Ramnik J. Xavierb,m, and
    [Show full text]
  • Arenaviridae Astroviridae Filoviridae Flaviviridae Hantaviridae
    Hantaviridae 0.7 Filoviridae 0.6 Picornaviridae 0.3 Wenling red spikefish hantavirus Rhinovirus C Ahab virus * Possum enterovirus * Aronnax virus * * Wenling minipizza batfish hantavirus Wenling filefish filovirus Norway rat hunnivirus * Wenling yellow goosefish hantavirus Starbuck virus * * Porcine teschovirus European mole nova virus Human Marburg marburgvirus Mosavirus Asturias virus * * * Tortoise picornavirus Egyptian fruit bat Marburg marburgvirus Banded bullfrog picornavirus * Spanish mole uluguru virus Human Sudan ebolavirus * Black spectacled toad picornavirus * Kilimanjaro virus * * * Crab-eating macaque reston ebolavirus Equine rhinitis A virus Imjin virus * Foot and mouth disease virus Dode virus * Angolan free-tailed bat bombali ebolavirus * * Human cosavirus E Seoul orthohantavirus Little free-tailed bat bombali ebolavirus * African bat icavirus A Tigray hantavirus Human Zaire ebolavirus * Saffold virus * Human choclo virus *Little collared fruit bat ebolavirus Peleg virus * Eastern red scorpionfish picornavirus * Reed vole hantavirus Human bundibugyo ebolavirus * * Isla vista hantavirus * Seal picornavirus Human Tai forest ebolavirus Chicken orivirus Paramyxoviridae 0.4 * Duck picornavirus Hepadnaviridae 0.4 Bildad virus Ned virus Tiger rockfish hepatitis B virus Western African lungfish picornavirus * Pacific spadenose shark paramyxovirus * European eel hepatitis B virus Bluegill picornavirus Nemo virus * Carp picornavirus * African cichlid hepatitis B virus Triplecross lizardfish paramyxovirus * * Fathead minnow picornavirus
    [Show full text]
  • Seasonal Dynamics and Relative Persistence Potential of the Enteric Species of Enterovirus in Wastewater
    Seasonal Dynamics and Relative Persistence Potential of the Enteric Species of Enterovirus in Wastewater A dissertation submitted to the Graduate School Of the University of Cincinnati In partial fulfillment of the requirements for the degree of Doctor of Philosophy In the Department of Biological Sciences Of the McMicken College of Arts and Sciences By Nichole E. Brinkman B.S., Biological Sciences Northern Kentucky University, Highland Heights, Kentucky, December 1999 M.S., Biological Sciences University of Cincinnati, Cincinnati, Ohio, March 2007 Committee Chair: Dr. Brian Kinkle ABSTRACT Human enteroviruses (EV) are a large group of enteric pathogens containing approximately 104 serotypes, which cluster into four different species (EV-A-D). They can be transmitted from infected to susceptible individuals via a person-to-person route, contaminated food and water used for recreation, shellfish harvesting, or drinking. Assessments of public health risk due to exposure to waterborne enteroviruses require, in part, an understanding of the levels of these pathogens in water sources. Two key factors in determining their occurrence in water are 1) knowing the extent of the diversity of this group present in a particular water source and 2) the ability of individual members to persist in water. Data published to date regarding presence and persistence potential of enteroviruses has been limited to poliovirus, and members of one of the four enterovirus species, leaving the majority of serotypes uncharacterized. The objectives for this project were to assess the diversity of enteroviruses present in wastewater and evaluate the influence that the persistence potential may have on the diversity profile. Towards this end, a method to concentrate representative enterovirus species was identified and determined to equally recover enterovirus species from primary effluent of wastewater.
    [Show full text]
  • Viruses and Type 1 Diabetes: from Enteroviruses to the Virome
    microorganisms Review Viruses and Type 1 Diabetes: From Enteroviruses to the Virome Sonia R. Isaacs 1,2 , Dylan B. Foskett 1,2 , Anna J. Maxwell 1,2, Emily J. Ward 1,3, Clare L. Faulkner 1,2, Jessica Y. X. Luo 1,2, William D. Rawlinson 1,2,3,4 , Maria E. Craig 1,2,5,6 and Ki Wook Kim 1,2,* 1 Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; [email protected] (S.R.I.); [email protected] (D.B.F.); [email protected] (A.J.M.); [email protected] (E.J.W.); [email protected] (C.L.F.); [email protected] (J.Y.X.L.); [email protected] (W.D.R.); [email protected] (M.E.C.) 2 Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia 3 Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia 4 Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia 5 Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia 6 Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia * Correspondence: [email protected]; Tel.: +61-2-9382-9096 Abstract: For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes.
    [Show full text]
  • Parechovirus B)
    Department of Virology Faculty of Medicine, University of Helsinki Doctoral Program in Biomedicine Doctoral School in Health Sciences DISTRIBUTION AND CLINICAL ASSOCIATIONS OF LJUNGAN VIRUS (PARECHOVIRUS B) CRISTINA FEVOLA ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Medicine, University of Helsinki, in lecture hall LS1, on 11 01 19, at noon Helsinki 2019 Supervisors: Anne J. Jääskeläinen, PhD, Docent, Department of Virology University of Helsinki and Helsinki University Hospital Helsinki, Finland Antti Vaheri, MD, PhD, Professor Department of Virology Faculty of Medicine, University of Helsinki Finland & Heidi C. Hauffe, RhSch, DPhil (Oxon), Researcher Department of Biodiversity and Molecular Ecology Research and Innovation Centre, Fondazione Edmund Mach San Michele all’Adige, TN Italy Reviewers: Laura Kakkola, PhD, Docent Institute of Biomedicine Faculty of Medicine, University of Turku Turku, Finland & Petri Susi, PhD, Docent Institute of Biomedicine Faculty of Medicine, University of Turku Turku, Finland Official opponent: Detlev Krüger, MD, PhD, Professor Institute of Medical Virology Helmut-Ruska-Haus University Hospital Charité Berlin, Germany Cover photo: Cristina Fevola, The Pala group (Italian: Pale di San Martino), a mountain range in the Dolomites, in Trentino Alto Adige, Italy. ISBN 978-951-51-4748-6 (paperback) ISBN 978-951-51-4749-3 (PDF, available at http://ethesis.helsinki.fi) Unigrafia Oy, Helsinki, Finland 2019 To you the reader, for being curious. Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less. Marie Curie TABLE OF CONTENTS LIST OF ORIGINAL PUBLICATIONS ................................................................................................. 5 LIST OF ABBREVIATIONS ...............................................................................................................
    [Show full text]
  • A Potential Drug Target for Inhibiting Virus Replication
    Old Dominion University ODU Digital Commons Chemistry & Biochemistry Theses & Dissertations Chemistry & Biochemistry Winter 2018 Structure of the Picornavirus Replication Platform: A Potential Drug Target for Inhibiting Virus Replication Meghan Suzanne Warden Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/chemistry_etds Part of the Biochemistry Commons, Chemistry Commons, Epidemiology Commons, and the Physiology Commons Recommended Citation Warden, Meghan S.. "Structure of the Picornavirus Replication Platform: A Potential Drug Target for Inhibiting Virus Replication" (2018). Doctor of Philosophy (PhD), Dissertation, Chemistry & Biochemistry, Old Dominion University, DOI: 10.25777/wyvk-8b21 https://digitalcommons.odu.edu/chemistry_etds/22 This Dissertation is brought to you for free and open access by the Chemistry & Biochemistry at ODU Digital Commons. It has been accepted for inclusion in Chemistry & Biochemistry Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. STRUCTURE OF THE PICORNAVIRUS REPLICATION PLATFORM: A POTENTIAL DRUG TARGET FOR INHIBITING VIRUS REPLICATION by Meghan Suzanne Warden B.S. May 2011, Lambuth University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY CHEMISTRY OLD DOMINION UNIVERSITY December 2018 Approved by: Steven M. Pascal (Director) Lesley H. Greene (Member) Hameeda Sultana (Member) James W. Lee (Member) John B. Cooper (Member) ABSTRACT STRUCTURE OF THE PICORNAVIRUS REPLICATION PLATFORM: A POTENTIAL DRUG TARGET FOR INHIBITING VIRUS REPLICATION Meghan Suzanne Warden Old Dominion University, 2018 Director: Dr. Steven M. Pascal Picornaviruses are small, positive-stranded RNA viruses, divided into twelve different genera.
    [Show full text]
  • Emerging Encephalitis ESCMID Online Lecture Library © by Author
    Emerging encephalitis Nipah, Enterovirus 71, West Nile, and others … © by author O. Epaulard Department of Infectious Diseases ESCMID OnlineGrenoble Lecture University HospitalLibrary Unit of Virus - host cell interactions UMI 3265 UJF-EMBL-CNRS Declaration of interest • No contradictory interest © by author ESCMID Online Lecture Library Menu • General considerations • Flaviviruses West Nile virus • Henipaviruses © by author • Enterovirus 71 • ESCMIDHEV Online Lecture Library DNA viruses RNA viruses © by author ESCMID Online Lecture Library Hepeviridae Rubivirus Alphavirus Caliciviridae Flavivirus (HEV) (Rubella) (Chikungunya, O Nyong- (Norwalk) (YF, Dengue, JE, Nyong, Am. Eq. Enc.) WNV, TBE) Togaviridae Hepacivirus Enterovirus (HCV) (Coxsackie, echovirus, …) Flaviviridae Hepatovirus (HAV) picornaviridae Rabies Rhinovirus Rhabdoviridae Parechovirus RNA viruses Coronaviridae Morbillivirus Filoviridae (measles) (Marburg, Ebola) Paramyxoviridae© by author Orthomyxoviridae RubulavirusESCMIDPneumovirus OnlineBunyaviridae Lecture Library (mumps) (RSV) Henipavirus Retroviridae (Nipah, Hendra) Hantaviruses influenza Hepeviridae Rubivirus Alphavirus Flavivirus Caliciviridae (HEV) (Rubella) (Chikungunya, O Nyong- (Y (Norwalk) F, Dengue, JE, Nyong, Am. Eq. Enc.) TBE, WNV) Enterovirus Togaviridae Hepacivirus (Coxsackie, echovirus, …) (HCV) Hepatovirus Flaviviridae (HAV) picornaviridae Rhinovirus Rabies Rhabdoviridae Parechovirus RNA viruses Coronaviridae Morbillivirus Filoviridae (measles) (Marburg, Ebola) Paramyxoviridae© by author Orthomyxoviridae
    [Show full text]
  • Parechovirus Infection: a Rare Cause of Neonatal Encephalitis
    SWISS SOCIETY OF NEONATOLOGY Parechovirus infection: a rare cause of neonatal encephalitis August 2018 Truant AS, Fischer-Fumeaux CJ, Truttmann AC, Heiniger C, Llor J, Rosato L, Faignart N, Asner S, Matthias Roth-Kleiner M, Clinic of Neonatology (TAS, FCJ, TAC, RKM), Pediatric Neurology Unit (FN), Pediatric Infectiology Unit (AS), Department Woman-Mother-Child, University Hospital and University of Lausanne, Lausanne, Switzerland, Department of Pediatrics (HC, RL), Hôpital Neuchâtelois, Neuchâtel, Switzerland, Department of Pediatrics (LJ), Cantonal Hospital of Valais, Sion, Switzerland Title figure: Human parechovirus type 3 (source: www.nature.com). © Swiss Society of Neonatology, Thomas M Berger, Webmaster 3 Human Parechovirus (HPeV) infections show a variety INTRODUCTION of clinical manifestations. Infections in early child- hood are often severe, mostly leading to sepsis and/or meningitis. As Enterovirus (EV), Parechovirus belongs to the family of Picornaviridae. Their clinical and mor- phological properties are similar. However, HPeVs were shown to be distinct from EVs and other Picornavirus groups in several features of their genome organi- zation, structure and replication. While EVs are found in individuals of all ages, HPeVs mainly infect children under 5 years of age, especially young infants. Neonatal presentations are less well described and recognized. We present two patients with neonatal encephalitis. 4 CASE REPORT 1 This female infant was born in a regional hospital at 38 0/7 weeks of gestation after a pregnancy compli- cated by gestational diabetes. She developed respira- tory distress, which resolved after 72 hours of CPAP and was felt to be consistent with transient tachypnea of the newborn and lung immaturity. On day of life 7, her condition again deteriorated with fever (up to 39.1°C), followed by irritability and central apnea with desaturations two days later.
    [Show full text]
  • Viruses in Food: Scientific Advice to Support Risk Management Activities
    M I C R O B I O L O G I C A L R I S K A S S E S S M E N T S E R I E S ISSN1726-5274 13 VIRUSES IN FOOD: SCIENTIFIC ADVICE TO SUPPORT RISK MANAGEMENT ACTIVITIES MEETING REPORT For further information on the joint FAO/WHO activities on microbiological risk assessment, please contact: Nutrition and Consumer Protection Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00153 Rome, Italy Fax: +39 06 57054593 E-mail: [email protected] Web site: http://www.fao.org/ag/agn or Department of Food Safety, Zoonoses and Foodborne Disease World Health Organization 20, Avenue Appia CH-1211 Geneva 27 Switzerland Fax: +41 22 7914807 E-mail: [email protected] Web site: http://www.who.int/foodsafety The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) or of the World Health Organization (WHO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed herein are those of the authors and do not necessarily represent those of FAO nor of WHO nor of their affiliated organization(s). All reasonable precautions have been taken by FAO and WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied.
    [Show full text]
  • Wastewater Surveillance for Infectious Disease: a Systematic Review
    medRxiv preprint doi: https://doi.org/10.1101/2021.07.26.21261155; this version posted July 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . Title: Wastewater surveillance for infectious disease: a systematic review Authors: Pruthvi Kilaru MPH1, Dustin Hill PhD1,2, Kathryn Anderson MD/PhD3, Mary B. Collins PhD4, Hyatt Green PhD5, Brittany L. Kmush PhD1, David A. Larsen PhD*1 1. Department of Public Health, Syracuse University, Syracuse, NY, USA 2. Graduate Program in Environmental Science, SUNY ESF, Syracuse, NY, USA 3. Department of Medicine, SUNY Upstate, Syracuse, NY, USA 4. Department of Environmental Studies, SUNY ESF, Syracuse, NY, USA 5. Department of Environmental Biology, SUNY ESF, Syracuse, NY, USA * Correspondence to: Dr. David Larsen, Department of Public Health, Syracuse University, Syracuse, NY, 13244, USA Abstract: Wastewater surveillance of SARS-CoV-2 has shown to be a valuable source of information regarding SARS-CoV-2 transmission and COVID-19 cases. Though the method has been used for several decades to track other infectious diseases, there has not been a comprehensive review outlining all of the pathogens surveilled through wastewater. The aim of this study is to identify what infectious diseases have been previously studied via wastewater surveillance prior to the COVID-19 Pandemic and identify common characteristics between the studies, as well as identify current gaps in knowledge. Peer-reviewed articles published as of August 1, 2020 that examined wastewater for communicable and infectious human pathogens on 2 or more occasions were included in the study.
    [Show full text]
  • Genomic Characterization of Sebokele Virus 1 (SEBV1) Reveals a New Candidate Species Among the Genus Parechovirus
    Genomic characterization of Sebokele virus 1 (SEBV1) reveals a new candidate species among the genus Parechovirus. Marie-Line Joffret, Christiane Bouchier, Marc Grandadam, Hervé Zeller, Corinne Maufrais, Hervé Bourhy, Philippe Desprès, Francis Delpeyroux, Laurent Dacheux To cite this version: Marie-Line Joffret, Christiane Bouchier, Marc Grandadam, Hervé Zeller, Corinne Maufrais, etal.. Genomic characterization of Sebokele virus 1 (SEBV1) reveals a new candidate species among the genus Parechovirus.. Journal of General Virology, Microbiology Society, 2013, 94 (Pt_7), pp.1547-53. 10.1099/vir.0.053157-0. pasteur-01435337 HAL Id: pasteur-01435337 https://hal-pasteur.archives-ouvertes.fr/pasteur-01435337 Submitted on 13 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License 1 Title 2 Genomic characterization of Sebokele virus 1 (SEBV1) reveals a new candidate species among the 3 genus Parechovirus 4 5 Running title 6 Molecular characterization of Sebokele virus 1 7 8 Contents category : Short communication 9 10 Authors and affiliations 11 Joffret ML1,2, Bouchier C3, Grandadam M4, Zeller H5, Maufrais C6, Bourhy H7, Despres P8, 12 Delpeyroux F1,2, Dacheux L7*.
    [Show full text]