Sedimentation Velocity and Potential in a Concentrated Colloidal Suspension Effect of a Dynamic Stern Layer

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentation Velocity and Potential in a Concentrated Colloidal Suspension Effect of a Dynamic Stern Layer Colloids and Surfaces A: Physicochemical and Engineering Aspects 195 (2001) 157–169 www.elsevier.com/locate/colsurfa Sedimentation velocity and potential in a concentrated colloidal suspension Effect of a dynamic Stern layer F. Carrique a,*, F.J. Arroyo b, A.V. Delgado b a Dpto. Fı´sica Aplicada I, Facultad de Ciencias, Uni6ersidad de Ma´laga, 29071 Ma´laga, Spain b Dpto. Fı´sica Aplicada, Facultad de Ciencias, Uni6ersidad de Granada, 18071 Granada, Spain Abstract The standard theory of the sedimentation velocity and potential of a concentrated suspension of charged spherical colloidal particles, developed by H. Ohshima on the basis of the Kuwabara cell model (J. Colloid Interf. Sci. 208 (1998) 295), has been numerically solved for the case of non-overlapping double layers and different conditions concerning volume fraction, and n-potential of the particles. The Onsager relation between the sedimentation potential and the electrophoretic mobility of spherical colloidal particles in concentrated suspensions, derived by Ohshima for low n-potentials, is also analyzed as well as its appropriate range of validity. On the other hand, the above-mentioned Ohshima’s theory has also been modified to include the presence of a dynamic Stern layer (DSL) on the particles’ surface. The starting point has been the theory that Mangelsdorf and White (J. Chem. Soc. Faraday Trans. 86 (1990) 2859) developed to calculate the electrophoretic mobility of a colloidal particle, allowing for the lateral motion of ions in the inner region of the double layer (DSL). The role of different Stern layer parameters on the sedimentation velocity and potential are discussed and compared with the case of no Stern layer present. For every volume fraction, the results show that the sedimentation velocity is lower when a Stern layer is present than that of Ohshima’s prediction. Likewise, it is worth pointing out that the sedimentation field always decreases when a Stern layer is present, undergoing large changes in magnitude upon varying the different Stern layer parameters. In conclusion, the presence of a DSL causes the sedimentation velocity to increase and the sedimentation potential to decrease, in comparison with the standard case, for every volume fraction. Reasons for these behaviors are given in terms of the decrease in the magnitude of the induced electric dipole moment on the particles, and therefore on the relaxation effect, when a DSL is present. Finally, we have modified Ohshima’s model of electrophoresis in concentrated suspensions, to fulfill the requirements of Shilov–Zharkhik’s cell model. In doing so, the well-known Onsager reciprocal relation between sedimentation and electrophoresis previously obtained for the dilute case is again recovered but now for concentrated suspensions, being valid for every n-potential and volume fraction. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Sedimentation velocity; Sedimentation potential; Concentrated suspensions; Onsager reciprocal relation * Corresponding author. 0927-7757/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0927-7757(01)00839-1 158 F. Carrique et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 195 (2001) 157–169 1. Introduction More recently, the theory of Stern layer trans- port has been applied to the study of the low It is well-known that when a colloidal suspen- frequency dielectric response of colloidal suspen- sion of charged particles is settling steadily in a sions by Kijlstra et al. [14], incorporating a sur- gravitational field, the electrical double layer sur- face conductance layer to the thin double layer rounding each particle is distorted because of the theory of Fixman [15,16]. Likewise, Rosen et al. fluid motion, giving rise to a microscopic electric [17] generalized the standard theory of the con- field (the relaxation effect). As a consequence, the ductivity and dielectric response of a colloidal falling velocity of the particle, i.e. the sedimenta- suspension in AC fields of DeLacey and White tion velocity, is lower in comparison with that of [18], assuming the model of Stern layer developed an uncharged particle. On the other hand, these by Zukoski and Saville [11]. Very recently, Man- electric fields superimpose to yield a macroscopic gelsdorf and White presented a rigorous mathe- electric field in the suspension, i.e. the sedimenta- matical study for a general DSL model applicable tion field or sedimentation potential gradient to time dependent electrophoresis and dielectric (usually called sedimentation potential). response [19,20]. In general, the theoretical predic- A general sedimentation theory for dilute col- tions of the DSL models improve the comparison loidal suspensions, valid for non-conducting between theory and experiment [14,17,21,22], al- spherical particles with arbitrary double layer though there are still important discrepancies. thickness and n-potential, was developed by Returning to the sedimentation phenomena in Ohshima [1] on the basis of previous theoretical colloidal suspensions, a DSL extension of Ohshi- ma’s theory of the sedimentation velocity and approaches [2–9]. In his paper Ohshima removed potential in dilute suspensions, has been recently the shortcomings and deficiencies already re- published [23]. The results show that whatever the ported by Saville [10] concerning Booth’s method chosen set of Stern layer parameters or n-poten- of calculation of the sedimentation potential. Fur- tial may be, the presence of a DSL causes the thermore, he presented a direct proof of the On- sedimentation velocity to increase and the sedi- sager reciprocal relation that holds between mentation potential to decrease, in comparison sedimentation and electrophoresis. with the standard prediction (no Stern layer On the other hand, a great effort is being present). addressed to improve the theoretical results pre- On the other hand, the theory of sedimentation dicted by the standard electrokinetic theories deal- in a concentrated suspension of spherical colloidal ing with different electrokinetic phenomena in particles, proposed by Levine et al. [9] on the colloidal suspensions. One of the most relevant basis of the Kuwabara cell model [24], has been extensions of these electrokinetic models has been further developed by Ohshima [25]. In that paper, the inclusion of a dynamic Stern layer (DSL) onto Ohshima derived a simple expression for the sedi- the surface of the colloidal particles. Thus, mentation potential applicable to the case of low Zukoski and Saville [11] developed a DSL model n-potential and non-overlapping of the electric to reconcile the differences observed between n- double layers. He also presented an Onsager re- potentials derived from static electrophoretic mo- ciprocal relation between sedimentation and elec- bility and conductivity measurements. trophoresis, valid for the same latter conditions, Mangelsdorf and White [12], using the techniques using an expression for the electrophoretic mobil- developed by O’Brien and White for the study of ity of a spherical particle previously derived in his the electrophoretic mobility of a colloidal particle theory of electrophoresis in concentrated suspen- [13], presented in 1990 a rigorous mathematical sions [26]. This theory is also based on the treatment for a general DSL model. They ana- Kuwabara cell model in order to account for the lyzed the effects of different Stern layer adsorp- hydrodynamic particle–particle interactions, and tion isotherms on the static field electrophoretic uses the same boundary condition on the electric mobility and suspension conductivity. potential at the outer surface of the cell, as that of F. Carrique et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 195 (2001) 157–169 159 Levine et al.’s theory of the electrophoresis in interactions (see Fig. 1). According to this model, concentrated suspensions [27]. each spherical particle of radius a is surrounded Recalling the attention on the DSL correction by a concentric virtual shell of an electrolyte to the electrokinetic theories, it seemed of interest solution, having an outer radius of b such that the to explore the effects of extending the standard particle/cell volume ratio in the unit cell is equal Ohshima’s theory of the sedimentation velocity to the particle volume fraction throughout the and potential in a concentrated suspension of entire suspension, i.e. charged spherical colloidal particles [25], to in- a3 clude a DSL model. Thus, the chosen starting = . (1) point has been the method proposed by Mangels- b dorf and White in their theory of the elec- In fact, a is the radius of the ‘hydrodynamic trophoretic mobility of a colloidal particle, to unit’, i.e. a rigid particle plus a thin layer of allow for the adsorption and lateral motion of solution linked to its surface moving with it as a ions in the inner region of the double layer (DSL) whole. The surface r=a is usually called ‘slipping [12]. plane’. This is the plane outside which the contin- Finally, the aims of this paper can be described uum equations of hydrodynamics are assumed to as follows. First, we have obtained a numerical hold. As usual, we will make no distinction be- solution of the standard Ohshima’s theory of tween the terms particle surface and slipping sedimentation in concentrated suspensions, for plane. the whole range of n-potential and volume frac- Before proceeding with the analysis of the mod- tion, and non-overlapping double layers. Further- ifications arising from the DSL correction to the more, we have extended the latter standard theory standard model, it will be useful to briefly review to include a DSL on the surface of the particles, the basic standard equations and boundary condi- and analyzed the effects of its inclusion on the tions. Concerned readers are referred to Ohshi- sedimentation velocity and potential. And then, ma’s paper for a more extensive treatment. we have analyzed the Onsager reciprocal relation Consider a charged spherical particle of radius that holds between sedimentation and elec- a and mass density z immersed in an electrolyte trophoresis in concentrated suspensions, for both p solution composed of N ionic species of valencies standard and DSL cases.
Recommended publications
  • Electrokinetic Soil Processing in Waste Remediation and Treatment: Synthesis of Available Data
    TRANSPORTATION RESEARCH RECORD 1312 153 Electrokinetic Soil Processing in Waste Remediation and Treatment: Synthesis of Available Data YALCIN B. AcAR AND JIHAD HAMED Electrokinetic soil processing is an innovative in situ technique cantly affect the flow, the flow efficiency, and the extent of to remove contaminants from soils and groundwater. The process ion migration and removal in electrokinetic soil processing. is an alternative to conventional processes, with significant eco­ nomic and technical advantages. This paper provides a compre­ hensive review of the literature on electrokinetic soil processing. ELECTROKINETIC PHENOMENA IN SOILS The fundamentals of electrokinetic phenomena in soils and their potential use in waste management are presented. A synthesis of Coupling between electrical, chemical, and hydraulic gra­ available data on the technique is presented. Engineering impli­ dients is responsible for different types of electrokinetic phe­ cations regarding the current-voltage regime, duration energy nomena in soils. These phenomena include electroosmosis, requirements, and soil contaminant characteristics are provided. This review indicates that the process can be used efficiently to electrophoresis, streaming potential, and sedimentation po­ remove ions from saturated soil deposits. tential, as shown in Figure 1. Electroosmosis and electropho­ resis are the movement of water and particles, respectively, caused by application of a small direct current. Streaming The need to remove contaminants from soil and groundwater, potential and sedimentation potential are the generation of a the high cost of current remediation techniques ($50 to $1,500 current by the movement of water under hydraulic potential per cubic yard of soil), and limited resources lead to an ev­ and movement of particles under gravitational forces, re­ erlasting strife to find new, innovative, and cost-effective in spectively.
    [Show full text]
  • Streaming Potential Analysis
    ABSTRACT WANG, YUN. Colloidal Behavior of Polyampholytes. (Under the direction of Dr. M. A. Hubbe). Polyampholytes are polymers that have both positively and negatively charged groups in the same chain. In recent years polyampholytes have started to be used in papermaking applications, as well as in sludge treatment processes. Benefits, in the case of papermaking, have included increased dry-strength and faster removal of water. But the molecular mechanisms by which such benefits are achieved have not been fully understood. This thesis project focused on effects related to polyampholyte charge density. A series of polyampholytes with a fixed charge ratio but different charge density was used for the experiments. Analysis methods included pH titrations, streaming current titrations, and adsorption isotherms. From pH titrations the charge density of cationic and anionic groups under different pH were calculated. From streaming current tests the net apparent charge density under different pH was calculated. And from adsorption tests it was found that the highest adsorbed amounts were achieved in certain cases corresponding to the highest content of ionic groups on the polyampholytes. Adsorption depended strongly on pH. Substantial differences were observed when comparing results obtained with polyampholyte samples versus ordinary polyelectrolyte samples with same charge density of cationic or anionic groups. Colloidal Behavior of Polyampholytes by YUN WANG A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science PULP AND PAPER SCIENCE Raleigh 2006 APPROVED BY: ________________________ _________________________ _________________________ Chair of Advisory Committee BIOGRAPHY The author was born on November 10, 1981 in Changzhou, Jiangsu province, People’s Republic of China.
    [Show full text]
  • On the Effect of Hydrodynamic Slip on the Polarization of a Nonconducting Spherical Particle in an Alternating Electric Field
    Mechanical Engineering Faculty Publications Mechanical Engineering 2010 On the Effect of Hydrodynamic Slip on the Polarization of a Nonconducting Spherical Particle in an Alternating Electric Field Hui Zhao University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/me_fac_articles Part of the Electrical and Computer Engineering Commons, Mechanical Engineering Commons, and the Nanoscience and Nanotechnology Commons Repository Citation Zhao, H. (2010). On the Effect of Hydrodynamic Slip on the Polarization of a Nonconducting Spherical Particle in an Alternating Electric Field. Physics of Fluids, 22(7), 1-15. https://digitalscholarship.unlv.edu/me_fac_articles/557 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Article has been accepted for inclusion in Mechanical Engineering Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. On the effect of hydrodynamic slip on the polarization of a nonconducting spherical particle in an alternating electric field Hui Zhao Citation: Phys. Fluids 22, 072004 (2010); doi: 10.1063/1.3464159 View online: http://dx.doi.org/10.1063/1.3464159 View Table of Contents: http://pof.aip.org/resource/1/PHFLE6/v22/i7 Published by the AIP Publishing LLC.
    [Show full text]
  • Decontamination of Soil Using Electro-Osmosis. Jihad Tawfiq Ah Med Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1990 Decontamination of Soil Using Electro-Osmosis. Jihad Tawfiq aH med Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Hamed, Jihad Tawfiq, "Decontamination of Soil Using Electro-Osmosis." (1990). LSU Historical Dissertations and Theses. 5054. https://digitalcommons.lsu.edu/gradschool_disstheses/5054 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • 5. Chemical Physics of Colloid Systems and Interfaces
    Published as Chapter 5 in "Handbook of Surface and Colloid Chemistry" Second Expanded and Updated Edition; K. S. Birdi, Ed.; CRC Press, New York, 2002. 5. CHEMICAL PHYSICS OF COLLOID SYSTEMS AND INTERFACES Authors: Peter A. Kralchevsky, Krassimir D. Danov, and Nikolai D. Denkov Laboratory of Chemical Physics and Engineering, Faculty of Chemistry, University of Sofia, Sofia 1164, Bulgaria CONTENTS 5.7. MECHANISMS OF ANTIFOAMING……………………………………………………..166 5.7.1 Location of Antifoam Action – Fast and Slow Antifoams 5.7.2 Bridging-Stretching Mechanism 5.7.3 Role of the Entry Barrier 5.7.3.1 Film Trapping Technique 5.7.3.2 Critical Entry Pressure for Foam Film Rupture 5.7.3.3 Optimal Hydrophobicity of Solid Particles 5.7.3.4 Role of the Pre-spread Oil Layer 5.7.4 Mechanisms of Compound Exhaustion and Reactivation 5.8. ELECTROKINETIC PHENOMENA IN COLLOIDS……………………………………...183 5.8.1 Potential Distribution at a Planar Interface and around a Sphere 5.8.2 Electroosmosis 5.8.3 Streaming Potential 5.8.4 Electrophoresis 5.8.5 Sedimentation Potential 5.8.6 Electrokinetic Phenomena and Onzager Reciprocal Relations 5.8.7 Electric Conductivity and Dielectric Response of Dispersions 5.8.7.1 Electric Conductivity 5.8.7.2 Dispersions in Alternating Electrical Field 5.8.8 Anomalous Surface Conductance and Data Interpretation 5.8.9 Electrokinetic Properties of Air-Water and Oil-Water Interfaces 5.9. OPTICAL PROPERTIES OF DISPERSIONS AND MICELLAR SOLUTIONS………….207 5.9.1 Static Light Scattering 5.9.1.1 Rayleigh Scattering 5.9.1.2 Rayleigh-Debye-Gans Theory 5.9.1.3
    [Show full text]
  • Electrokinetic Effects • Colloidal Particles Carry an Electric Charge. • When the Colloidal Particles Are Placed in an Elect
    Electrokinetic Effects • Colloidal particles carry an electric charge. • When the colloidal particles are placed in an electric field certain special effects are observed which are collectively known as electrokinetic effects. • The electrokinetic effects are of four types depending on the movement of different phases. Electrophoresis, Electcro-osmosis Sstreaming potential Sedimentation potential. ELECTROPHORESIS • The movement of colloidal particles in an applied electric field is known as electrophoresis. • Electrophoresis is similar to electrolysis of true solutions. • Electrophoresis can be studied by taking colloidal solution in a U tube in which two platinum electrodes are dipped. On applying a potential difference across the electrode, it is observed that the colloidal particles move to the oppositely charged electrode. Once the charged particles reaches the electrode, it gets neutralized and settle down. • Cataphoresis - Electrophoresis of positively charged particles. • Anaphoresis - Electrophoresis of negatively charged particles. Electrophoretic velocity, ep The velocity with which a solute moves in response to the applied electric field. ep= epE μep is the solute’s electrophoretic mobility & E is the magnitude of the applied electrical field. q = ‘q’ is the solute’s charge, ‘η’ is the buffer viscosity, and ‘r’ is the solute’s radius ep 6r • Electrophoretic mobility and electrophoretic velocity, increases for more highly charged solutes and for solutes of smaller size. • Because q is positive for a cation and negative for an anion, these species migrate in opposite directions. • Neutral species, for which q is zero, have an electrophoretic velocity of zero. Significance of Electrophoretic Phenomena: • Direction of movement of colloidal particles implies the charge on the colloidal particles.
    [Show full text]
  • Measurement and Interpretation of Electrokinetic Phenomena ✩
    Journal of Colloid and Interface Science 309 (2007) 194–224 www.elsevier.com/locate/jcis Feature article International Union of Pure and Applied Chemistry, Physical and Biophysical Chemistry Division IUPAC Technical Report Measurement and interpretation of electrokinetic phenomena ✩ Prepared for publication by A.V. Delgado a, F. González-Caballero a, R.J. Hunter b, L.K. Koopal c, J. Lyklema c,∗ a University of Granada, Granada, Spain b University of Sydney, Sydney, Australia c Wageningen University, Wageningen, The Netherlands With contributions from S. Alkafeef, College of Technological Studies, Hadyia, Kuwait; E. Chibowski, Maria Curie Sklodowska University, Lublin, Poland; C. Grosse, Universidad Nacional de Tucumán, Tucumán, Argentina; A.S. Dukhin, Dispersion Technology, Inc., New York, USA; S.S. Dukhin, Institute of Water Chemistry, National Academy of Science, Kiev, Ukraine; K. Furusawa, University of Tsukuba, Tsukuba, Japan; R. Jack, Malvern Instruments Ltd., Worcestershire, UK; N. Kallay, University of Zagreb, Zagreb, Croatia; M. Kaszuba, Malvern Instruments Ltd., Worcestershire, UK; M. Kosmulski, Technical University of Lublin, Lublin, Poland; R. Nöremberg, BASF AG, Ludwigshafen, Germany; R.W. O’Brien, Colloidal Dynamics Inc., Sydney, Australia; V. Ribitsch, University of Graz, Graz, Austria; V.N. Shilov, Institute of Biocolloid Chemistry, National Academy of Science, Kiev, Ukraine; F. Simon, Institut für Polymerforschung, Dresden, Germany; C. Werner, Institut für Polymerforschung, Dresden, Germany; A. Zhukov, University of St. Petersburg, Russia; R. Zimmermann, Institut für Polymerforschung, Dresden, Germany Received 4 December 2006; accepted 7 December 2006 Available online 21 March 2007 Abstract In this report, the status quo and recent progress in electrokinetics are reviewed. Practical rules are recommended for performing electrokinetic measurements and interpreting their results in terms of well-defined quantities, the most familiar being the ζ -potential or electrokinetic potential.
    [Show full text]
  • Monitoring Electric Field Induced Changes in Biological Tissues and Phantoms Using Ultrasound
    MONITORING ELECTRIC FIELD INDUCED CHANGES IN BIOLOGICAL TISSUES AND PHANTOMS USING ULTRASOUND by Jagdish Bhatt Master of Physics, Tribhuvan University Kathmandu, Nepal, 2004 A thesis presented to Ryerson University in partial fulfillment of the requirements for the degree of Master of Science in the Program of Biomedical Physics Toronto, Ontario, Canada, 2015 © Jagdish Bhatt 2015 Author's Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I understand that my thesis may be made electronically available to the public. ii Monitoring electric field induced changes in biological tissues and phantoms using ultrasound Jagdish Bhatt Master of Science, Biomedical physics Ryerson University, 2015 Abstract An external electric field can induce mechanical changes depending on the amplitude, frequency and duration of the applied electric field. This study is focused on monitoring the electric/electro- kinetic effects of real biological tissues (in vitro) and gelatin phantoms with high spatial resolution. In this study, we investigated the mean of the signal spectrum at the modulation frequency, root-mean-square of the noise in the spectrum, and signal-to-noise ratio (SNR) during the application of low-frequency AC electric field in tissues and phantoms.
    [Show full text]
  • Electrokinetic-Phenomena Frank Simon
    Electrokinetic Phenomena Frank Simon Leibniz Institute of Polymer Research Dresden Hohe Straße 6, D-01069 Dresden, Germany, [email protected] In the year 1803, the German medical doctor and librarian Ferdinand Friedrich von Reuss [a] (1778 [b]-1852) was invited by M.N. Muraviev, the curator of Lomonossow’s Moscow University to hold the chair of chemistry at the Physical-Mathematical Faculty. Inspired by Alessandro Volta's work on electricity, Reuss carried out some electrolysis experiments in a beaker, but also on the banks of the Moscow river. In order to study the influence of barrier layers on electrolysis, he applied an electric voltage (provided by a Volta column) to sand and clay layers and observed the movement of water through the barrier layers. In 1809, Reuss’ studies were published (with the date 1808) in the journal Mémoires de la Société Impériale des Naturalistes de l'Université Impériale de Moscou [1]. The 200 years old publication de- scribes the discovery of the two electrokinetic phenomena electro-osmosis and electrophore- sis. Definition of electrokinetics Electrokinetics are the sciences of the generation of an electric current by moving a non-con- ductor and the movement of non-conductors caused by an electric field. Electrokinetic phenomena are observed on the interface of two interacting phases, such as a solid, which is in contact with a liquid. An essential requirement for the observation of elec- trokinetic phenomena is the formation of an electrochemical double layer at the interface. The electrochemical double layer can be considered as space charge, and external electrical fields cause a movement of the fluid phase(s).
    [Show full text]
  • Open 2017 05 23 Asthagarg Phdthesis Final.Pdf
    The Pennsylvania State University The Graduate School Department of Chemical Engineering ZETA POTENTIALS AND MINERAL REPLACEMENT AT SURFACES IN SATURATED SALT SOLUTIONS A Dissertation in Chemical Engineering by Astha Garg 2017 Astha Garg Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 ii The dissertation of Astha Garg was reviewed and approved* by the following: Darrell Velegol Distinguished Professor of Chemical Engineering Dissertation Advisor Chair of Committee Ali Borhan Professor of Chemical Engineering Manish Kumar Assistant Professor of Chemical Engineering Ayusman Sen Distinguished Professor of Chemistry James H. Adair Professor of Materials Science and Engineering, Biomedical Engineering and Pharmacology Janna Maranas Professor of Chemical Engineering and Materials Science and Engineering Graduate Program Coordinator of Chemical Engineering *Signatures are on file in the Graduate School iii ABSTRACT Surfaces, fixed or mobile, exposed to salt solutions interact with the solution and with other surfaces through physical interactions, chemical reactions and transport. Understanding these phenomena is key to discerning the system behavior and subsequently manipulating it. A good handle on saturated salt systems can be of immense benefit to modern science and industry. However, their behavior is not adequately understood, especially from a colloidal and surface chemistry perspective. The complexity of interactions under saturated salt conditions and experimental difficulties in carrying out certain measurements have contributed to our limited understanding in this regard. The subject of this thesis is to characterize and transform the nature of surfaces exposed to saturated salt solutions through an in-depth understanding of the surface charge, fluid transport and dissolution- precipitation phenomena in these systems.
    [Show full text]
  • Electrokinetic Phenomena
    3.3 Electrokinetic phenomena 3.3.1 Introduction see wide application in the selective separation of different components present in a colloidal dispersion, as well as be In 1808, the Russian chemist Ferdinand Fiodorovich Reuss, studied in all its different aspects. a colloid scientist, investigated the behaviour of wet clay. He Based on the consideration that a flux of water is usually observed that the application of a potential difference not produced by a hydrostatic head, Reuss also performed an only caused a flow of electric current, but also a remarkable ingenious experiment, ‘opposite’ of the first of the two movement of water towards the negative pole. The transport previously mentioned experiments. As illustrated in Fig. 1 A, of a liquid through a porous medium soaked with the liquid he measured the electrical potential difference displayed at itself, with a potential difference applied to the boundaries the boundary of a porous bed through which a fluid was was subsequently called electroosmosis. In general, this term flowing. In this way, he discovered that a flux of water indicates the movement of a liquid, with respect to a though a porous membrane or a capillary generated a stationary surface, that takes place inside porous media or potential difference called the streaming potential. within capillaries as an effect of an applied electrical field. A fourth phenomenon, the opposite of electrophoresis, The pressure necessary to counterbalance the osmotic flux is was later discovered by Friedrich Ernst Dorn. If quartz referred to as electroosmotic. particles are permitted to fall in water, as shown in Fig.
    [Show full text]
  • Electrostatic Charging Due to Separation of Ions at Interfaces: Contact Electrification of Ionic Electrets Logan S
    Reviews G. M. Whitesides and L. S. McCarty DOI: 10.1002/anie.200701812 Ionic Electrets Electrostatic Charging Due to Separation of Ions at Interfaces: Contact Electrification of Ionic Electrets Logan S. McCarty and George M. Whitesides* Keywords: charge transfer · electron transfer · electrostatic interactions · interfaces · polymers Angewandte Chemie 2188 www.angewandte.org 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2008, 47, 2188 – 2207 Angewandte Ionic Electrets Chemie This Review discusses ionic electrets: their preparation, their mecha- From the Contents nisms of formation, tools for their characterization, and their appli- cations. An electret is a material that has a permanent, macroscopic 1. Introduction 2189 electric field at its surface; this field can arise from a net orientation of 2. Background 2189 polar groups in the material, or from a net, macroscopic electrostatic charge on the material. An ionic electret is a material that has a net 3. The Contact Electrification of electrostatic charge due to a difference in the number of cationic and Materials Containing Mobile anionic charges in the material. Any material that has ions at its Ions 2194 surface, or accessible in its interior, has the potential to become an 4. The Role of Water in Contact ionic electret. When such a material is brought into contact with some Electrification 2199 other material, ions can transfer between them. If the anions and cat- ions have different propensities to transfer, the unequal transfer of 5. Summaryand Outlook 2205 these ions can result in a net transfer of charge between the two materials. This Review focuses on the experimental evidence and theoretical models for the formation of ionic electrets through this ion- 2.
    [Show full text]