Marco Polo: a Sample Return Mission to a Primitive NEO

Total Page:16

File Type:pdf, Size:1020Kb

Marco Polo: a Sample Return Mission to a Primitive NEO Marco Polo: A sample return mission to a primitive NEO Session IX: Sample Return Challenges David Agnolon ESA-ESTEC, Directorate of Science & Robotic Exploration Email: [email protected] P. Coste, R. Drai, D. Escorial, P. Falkner, L. Ferracina, D. Koschny, H. Ritter, J. Romstedt (ESA-ESTEC) M. Khan (ESA-ESOC) A. Barucci (Observatory Of Paris) 6th International Planetary Probe Workshop ; 21-06-2008 1 Outline Cosmic-Vision context Marco Polo science requirements Scope of the CDF study NEO target selection and baseline mission profile Sampling strategy, sample acquisition and transfer system Orbiting, descent and landing on a NEO High-speed Earth re-entry Overall spacecraft design Technology development approach 6th International Planetary Probe Workshop ; 21-06-2008 2 ESA Cosmic-Vision Future of the ESA Scientific programme 2017-202X Cosmic Vision Call for Proposals in April 2007 for: • 1 “medium M” class mission for launch in 2017 • 1 “large L” class mission for launch in 2018 50 proposals receivedNEO Sample return mission Æ 9 proposals selected (i.e. 7 missions) by ESA advisory structures assessment phaseEuropean for 1st cycle Japanese of Cosmic-Vision team (950 M€ budget) Cross-Scale Lead proposers: Spica • A. Barucci (LESIA, Paris Euclid Laplace Observatory) Marco Polo Tandem • M. Yoshikawa (JSPEC/JAXA) Plato XEUS Down selection of 2 M missions to enter definition phase ~ mid-2009 Final M mission selected in 2011 for implementation 6th International Planetary Probe Workshop ; 21-06-2008 3 Requirements and payload Defined by US, European and Japanese scientists Go to a D, T, C or B type NEO (most primitive) Return > 30 g sample (goal 100 g) Place sample in their global/local context Provide complementary info not available from the samples Multiple sampling locations (non-uniform composition) Maximum sample temperature: + 40oC (organics) Sample composition (cm-sized pebbles + small particles) Avoid contamination of the Spatial resolution Spatial Spatial sample for imaging in the resolution for resolution for visual VIS/IR mid-IR Instruments: wide & narrow spectrometer instrument angle camera, Vis-NIR & Global Order of dm Order of m Order of mid-IR spectrometer, laser characterisation 10 m altimeter, neutral particle Local x 5 Order of mm Order of dm Order of dm characterisation analyzer, radio science Context Tens of μm - - experiment measurements 6th International Planetary Probe Workshop ; 21-06-2008 4 Scope of the ESA CDF Study Internal ESA pre-assessment study (similar to NASA JPL Team X) Objectives: • Critical assessment of initial Marco Polo proposal • Establish a feasible & cost-efficient mission profile option • Fulfil science objectives & requirements • Feed forward upcoming industry studies • Help define required technology development Discussions with JAXA ongoing Æ As a starting point CDF study focuses on European expertise : NOT meant to be representative of selected Phase A scenario M-mission Cosmic-Vision technology constraints: • No major development can be undertaken until definition phase unless strong generic interest • TRL 5/6 by 2011 Æ build on ongoing development and off-the-shelf equipment 6th International Planetary Probe Workshop ; 21-06-2008 5 NEO selection D (km) Provisional q assumes Preliminary global screening designation Number Type (AU) Q (AU) i (deg) HV p=0.06 Prot (hrs) 1989 UQ 65679 C 0.67 1.16 1.3 19.28 0.76 7.733 (> 5000 known NEO!) 1999 JU3 162173 Cg 0.96 1.42 5.9 19.2 0.78 7.5 2001 SK162 162998 T 1.01 2.84 1.7 17.77 1.52 68 Global optimization algorithms 2001 SG286 D 0.89 1.83 7.8 20.93 0.35 ? 1999 RQ36 101955 B or C1 0.9 1.36 6 20.81 0.37 2.146 run over ~ 15 targets based on 1996 FG3 C 0.69 1.42 2 18.22 1.23 3.5942 2001 AE2 NEW138911 T 1.24TARGET 1.46 1.66 19 0.86 ? specific optimization criteria 2001 FC7 68278 Cg1 1.27 1.6 2.6 18.17 1.26 ? 1977 VA 136564 C or Xc1 1.13 2.6 3 19.06 0.84 ? More in-depth mission analysis + 1998 KU2 152679PROPOSALS Cb 1.01 3.5 4.9 16.47 2.76 ? 1960 UA = design iterations for 4 targets Anza 2061 TCG 1.05 3.48 3.8 16.56 2.65 5.75, 11.5 1979 VA = Wilson- WELCOMEDormant !!! Harrington 4015 comet 0.99 4.28 2.8 15.99 3.44 3.56, 6.1 1991 DB 14402 C 1.03 2.41 11.4 18.4 1.13 2.266 2000 RW37 162567 C 0.94 1.56 13.7 19.74 0.61 ? V1 +Δ 2× Δ 2 + ΔVV i 1998 UT18 85774 C 0.94 1.87 13.6 19.07 0.83 34 1 To be confirmed by observations ΔV2 ΔV1 NEO LAUNCH CRUISE ARRIVAL SCI DEPARTURE CRUISE ENTRY TOTAL name escape V-inf dec swb1 swb2 swb3 date kg yea date swb date V-ent kg m/s years 19/11/30 4.000 -10 20/12/04 22/01/20 1550 1.5 23/07/18 24/12/03 12.13 1303 2665 5.0 1999 JU3 17/12/28 3.466 10 20/08/17 20/12/05 22/04/28 1759 1.2 23/07/18 24/12/04 12.13 1471 2288 6.9 18/08/27 3.394 -45 19/02/13 20/12/10 23/03/07 1294 0.8 23/12/06 26/01/08 12.75 1188 2951 7.4 2001 SK162 17/08/25 3.396 0 18/08/25 19/02/12 20/12/09 23/04/04 1444 0.7 23/12/06 26/01/08 12.75 1324 2615 8.4 18/09/19 3.490 -30 19/03/05 20/12/07 1610 1.7 22/08/04 23/06/24 23/11/16 11.83 1366 2517 5.2 1989 UQ 17/09/20 3.492 0 18/09/20 19/03/05 20/12/20 1702 1.6 22/08/04 23/06/24 23/11/16 11.83 1444 2345 6.2 18/01/28 3.889 6 19/03/27 20/12/25 22/07/19 1041 1.3 23/10/24 25/05/22 15.13 903 3803 7.3 2001 SG286 18/03/24 3.553 0 19/04/14 20/05/21 22/03/22 1380 1.6 23/10/24 25/05/22 15.13 1195 2932 7.2 Venus Earth Mars 6th International Planetary Probe Workshop ; 21-06-2008 6 Baseline mission analysis Launch by Soyuz-Fregat 2-1b from Kourou on direct escape (V = 3.49 km.s-1, Dec=0o) inf 10 months waiting September March 1566 kg launch mass 2019 period Æ 2018 October capability 2021 Total mission Arrival: December -1 ΔV ~ 1143 m.s 2020 Oct. 2021 Æ Re-entry velocity July 2022 = -1 September 9 months ~ 11.8 km.s 2017 science and sampling Mission duration 6.2 November operations years, incl. 1.6 years at 2023 NEO June 2023 Departure: July 2022 6th International Planetary Probe Workshop ; 21-06-2008 7 Proximity operations Both uncontrolled (for radio science) and controlled orbits have been analyzed assuming: • 1989 UQ physical properties (tumbling, 4:2:1 shape, ~ 760 m diameter, 7.7 h rotation, 1300 kg/m 3, etc. ) • Solar radiation pressure • Sun’s gravity influence (influence of planets’ negligible) 1 month 7 months 6th International Planetary Probe Workshop ; 21-06-2008 8 Sampling strategy, sample acquisition and transfer system Possible strategies: • Hover & go • Touch & go • Short-term landing • Long-term landing 1m Rotating corer used as Image courtesy: JAXA sample vessel Mounted at the tip of telescopic boom Inserted into rotating corer holder (ERC backcover) further transferred Elevator to ERC via elevator Corer holder 20 N down-thrust during sampling operations Corer 20-30 minutes operations Telescopic Arm Æ Sampling Debris Smooth landing hatch Cover 6th International Planetary Probe Workshop ; 21-06-2008 9 Descent and landing Navigation strategy (vision-based) • Get a good shape/gravity model and map hazards from orbit • Descent down to 150 m • “Go” decision Æ Autonomous + 90o slew • Controlled descent (lateral) -1 • Landing conditions: VV < 20 cm.s , VH < 5 cm.s -1, θ < 10o • Landing accuracy < 5 m Æ safe site • Autonomous battery-powered descent, landing, sampling and ascent operations ( ~ Image courtesy: Astrium Ltd 2 hours) Landing structure/mechanism • Philae damping system or multistage crushable • Much higher clearance requirement • No anchoring 6th International Planetary Probe Workshop ; 21-06-2008 10 High-speed Earth re-entry 11.8 km.s-1, FPA~-12o Landing load on the sample: 800 g Peak heat flux: 11.3 MW.m-2 Heat load: 209 MJ.m-2 Entry duration: 484 s Sample container Rear TPS (Norcoat Liege) -3 Outer sphere PICA-like (260 kg.m ) front (FRP-Kevlar) Sample containment structure TPS, Norcoat-Liege rear TPS (FRP-Kevlar) 45o half-cone angle Shape foam 1.1 m base diameter Main structure (CFRP) 200 mm RVC foam Damping foam (RVC) 76 kg capsule Front TPS (PICA type carbon phenolic ablator) 6th International Planetary Probe Workshop ; 21-06-2008 11 Spacecraft design Outbound Descent Sampling Earth Return Earth Re- propulsion Orbiter Module Module Vehicle entry Capsule Module Body-mounted solar arrays (485 W) Low-thrust dual mode propulsion system 3-axis controlled 3 landing legs Central SATS accommodation Surface thermal control to be further analyzed Mass (i.e. keep sample Orbiter-lander dry mass incl. system margin 646 kg cold & high Orbiter-lander wet mass 1191 kg ERC 76 kg temperature Orbiter-lander propellant mass 545 kg mechanisms) Launch mass 1267 kg Launch mass incl.
Recommended publications
  • ESA Technology Programmes A
    ESA Technology Programmes A. Tobias European Space Agency Directorate of Technical and Quality Management January 2013 1. Strategic objectives and Technology The strategic objectives in the DG’s proposal to the 2012 Council at Ministerial level •Pushing the frontiers of knowledge Top class Science of space, in space and from Space •Enabling Services Earth observation, meteorology and environmental monitoring, navigation, telecommunications, space situation awareness, integrated applications •Supporting an innovative and competitive Europe 35 % of the satcom market, 50 % of launches to GTO, high multiplicative effort downstream, a sector of high gross added value, with high spin factor The keys: sustaining innovation, strengthening competitiveness and assuring a robust supply chain, and it all •Enabled by technology •Made possible by a competitive industry built during decades of technology and industrial policies and public investments in shared assets 1 • • • • The domains when theytakeoveratTRL5/6fromtechnologypreparation lines Investments intechnologydevelopmentsarefurther continuedinprojects for industry’scompetitivenessintheworldmarket investments inmissions/launchersspaceinfrastructures developmentsand 350 Exploration (Exomars),EarthObservation(MTG,MetOpSG,GSC) areas, orstabilizationinareaswithmajormissionprogrammes,e.g.Robotic Funding fortechnologydevelopmentwithanincreasingtrendinnearlyall Successful CM12,10B The programmes 2. ESATechnologyProgrammes 2. ESATechnologyProgrammes – 400 M € / yearintechnologydevelopmentlinesprepare3B
    [Show full text]
  • Space Situational Awareness
    → SPACE SITUATIONAL AWARENESS OUTLINE - Background - Purpose - Aims - Composition - Space Surveillance (SST) - Space Weather (SWE) - Near-Earth Objects (NEO) - Summary 2 BACKGROUND Image: Dan Durda – FIAAA 3 INTRODUCTION PURPOSE OF THE SSA PROGRAMME “The objective of the Space Situational Awareness (SSA) programme is to support the European independent utilisation of, and access to, space for research or services, through the provision of timely and quality data, information, services and knowledge regarding the space environment, the threats and the sustainable exploitation of the outer space surrounding our planet Earth.” - ESA Ministerial Council November 2008 4 INTRODUCTION AIMS OF THE SSA PROGRAMME • Independent utilisation of Space – Space assets are critical assets • Guarantee access to Space – Diplomatic, – Political – Regulatory – Technical • Serve EU “Lisbon Objectives” – New Applications – New Jobs – New Markets 5 INTRODUCTION CUSTOMERS FOR SSA SERVICES • European Governments • Space Insurance • United Nations – EU • Space Industry • Defence – National • Energy • Civil Protection – Regional – Surveying • European Space Agencies – Electrical Grid – ESA – Power Supply – National • Network Operations • Spacecraft Operators • Telecommunications – Commercial • Air Traffic Control – Academic • Search and Rescue Entities – Governmental 6 INTRODUCTION Current Objectives 2009 – 2012 • Preparatory Programme – Governance Definition – Data Policy – Architecture – Federation – Precursor Services – Radar Breadboard – Pilot Data Centres 2012
    [Show full text]
  • DLR Developments and Application Ideas for Interplanetary Cubesats
    DLR developments and application ideas for interplanetary cubesats iCubeSat, Milano 2019 Jens Biele1, Michael Maibaum1, Caroline Lange2, Thimo Grundmann2, Stephan Ulamec1, Marcus Thomas Knopp3, Frank-Cyrus Roshani3 1DLR German Aerospace Center, RB-MUSC, Cologne, Germany 2DLR German Aerospace Center, Bremen, Germany 3DLR German Aerospace Center, GSOC, Munich, Germany www.DLR.de • Chart 3 > Lecture > Author • Document > Date SKAD-Study [FRANK, MARCUS] • Orbiter as relais station for Mars-Rover • ………. Designs flown or studied (DLR) Hopper(10-25 kg) MASCOT (30, 70 kg) Philae (100 kg) Leonard MASCOT (10 kg) Folie 4 > Vortrag > Autor Folie 5 > Vortrag > Autor Study Flow of MASCOT („how to shrink a lander..“) • December 2008 – September 2009: feasibility study, with CNES, in context of Marco Polo and Hayabusa-2, with common requirements: • 3 iterations of different mass (95kg, 35kg & 10kg) and P/L • Settled on 10 kg lander package including 3 kg of P/L • Ho, T.-M., et al. (2016). "MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission." Space Science Reviews 208(1-4): 339– 374. • ➔ Design of MASCOT 10 kg: a nanosat (30x30*20 cm³) . Could be a 18 U cubesat! Large ~ 95 kg, Philae hertitage Middle ~ 35 kg, Xtra Small ~ 10 kg, No post-landing Up-righting + mobility mobility MASCOT Payload (25% of total mass!) Instrument Science Goals Heritage Institute; PI/IM Mass [kg] MAG magnetization of the NEA MAG of ROMAP on Rosetta TU Braunschweig Lander (Philae), ESA VEX, 0,15 → formation history Themis K.H. Glassmeier / U. Auster mineralogical composition ESA ExoMars, Russia and characterize grains Phobos GRUNT, ESA size and structure of Rosetta, ESA ExoMars IAS Paris µOmega surface soil samples at μ- rover 2018, Rosetta / Philae J.P.
    [Show full text]
  • The Hera Mission
    Dr. Patrick Michel Hera Investigation Team PI Université Côte d’Azur Observatoire de la Côte d’Azur CNRS, Lagrange Laboratory Nice, France The Hera Mission ESA UNCLASSIFIED - For Official Use Hera main aspects Role of space missions at ESA in NEO hazard mitigation • Understanding the problem (deflection modeling and simulations) 2001 • Ground versus space solutions analyses • Assessment of space component options 2002- • 6 parallel phase-0 studies (3 space telescopes, 3 rendezvous) Euneos Nero Earthguard 1 2004 • ESA’s NEO Mission Advisory Panel (NEOMAP) established • Kinetic impactor validation ranked highest importance 2004- • Don Quijote mission selected and studied up to phase-A level 2006 • SANCHO / Proba-IP orbiter up to phase A level studies, small deep-space Don Quijote Ishtar Simone 2008- mission to investigate impactor’s result 2009 • AIDA proposed by NASA: USA/impactor + ESA/impact assessment • ESA phase 0 and phase A studies on the observer spacecraft "AIM” (GSP) 2011- Proba-IP 2016 • Phase B1 study and “consolidation phase” for mission definition (GSTP) • HERA: impact observer spacecraft reformulation and optimization AIM 2017- • Phase B1 implementation + payload + technology breadboards (GSTP+SSA) Several concepts 2019 • DART phase-C kick-off on 15 May 2018 Hera iterated AIDA: An International Planetary Defense Mission U.S. National Research Council Committee “Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies” Recommendation: “If [U.S.] Congress chooses to fund mitigation research at an appropriately high level, the first priority for a space mission in the mitigation area is an experimental test of a kinetic impactor along with a characterization, monitoring, and verification system, such as the Don Quixote mission that was previously considered, but not funded, by the European Space Agency.
    [Show full text]
  • Living Waters: an Interfaith Conference
    Living Waters: An Interfaith Conference November 19, 2013 Lewis Ginter Botanical Garden Richmond, Virginia Sponsored by the Chesapeake Bay Foundation Facilitated by the University of Virginia Institute for Environmental Negotiation PLANNING TEAM, SPONSORS, and ACKNOWLEDGEMENTS Planning/Steering Committee • Craig Anderson, Randolph-Macon College and affiliated with the Episcopal Diocese of Virginia and the Church of the Holy Comforter • Karl Bren, Green Visions Consultation and Chair of the Stewardship of God’s Creation Committee • Martha Burford, Director of Church Music, Church of the Holy Comforter, and Committee member of Stewardship of Creation for the Episcopalian Diocese of Virginia • Aimee Bushman, Chesapeake Bay Foundation • Nina Beth Cardin, Rabbi and Chair of the Chesapeake Covenant Community • Nissa Dean, Alliance for the Chesapeake Bay • Tanya Denckla Cobb, Institute for Environmental Negotiation • Frank Dukes, Institute for Environmental Negotiation • Ann Jurczyk, Chesapeake Bay Foundation • The Honorable Tayloe Murphy, Former Delegate to the Virginia General Assembly, former Virginia Secretary of Natural Resources, Board Member of the Chesapeake Bay Foundation • Jacob Powell, Virginia Conservation Network • Katie Preston, Former Executive Director of Interfaith Power and Light • Justin Reilly, Catholic Archdiocese of Richmond • Ephraim Seidman, Chair, Social Action- Tikkun Olam Committee, Temple Beth-El • Deborah Usry, Chairwoman, Board of Directors for the James River Association • Pat Watkins, Executive Director of Caretakers
    [Show full text]
  • Asteroid Retrieval Feasibility Study
    Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society [email protected] Mike Brown Caltech [email protected] Michael Busch UCLA [email protected] John Casani NASA JPL [email protected] Marcello Coradini ESA [email protected] John Dankanich NASA GRC [email protected] Paul Dimotakis Caltech [email protected] Harvard -Smithsonian Center for Martin Elvis [email protected] Astrophysics Ian Garrick-Bethel UCSC [email protected] Bob Gershman NASA JPL [email protected] Florida Institute for Human and Tom Jones [email protected] Machine Cognition Damon Landau NASA JPL [email protected] Chris Lewicki Arkyd Astronautics [email protected] John Lewis University of Arizona [email protected] Pedro Llanos USC [email protected] Mark Lupisella NASA GSFC [email protected] Dan Mazanek NASA LaRC [email protected] Prakhar Mehrotra Caltech [email protected]
    [Show full text]
  • WV Graded Music List 2011
    2011 WV Graded Music List, p. 1 2011 West Virginia Graded Music List Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 Grade Artist Arranger Title Publisher 1 - Higgins, John Suo Gan HL 1 - McGinty Japanese Folk Trilogy QU 1 - McGinty, Anne Elizabethan Songbook, An KJ 1 - Navarre, Randy Ngiele, Ngiele NMP 1 - Ployhar Along the Western Trail BE 1 - Ployhar Minka BE 1 - Ployhar Volga Boat Song BE 1 - Smith, R.W. Appalachian Overture BE Variant on an Old English 1 - Smith, R.W. BE Carol 1 - Story A Jubilant Carol BE 1 - Story Classic Bits and Pieces BE 1 - Story Patriotic Bits and Pieces BE 1 - Swearingen Three Chorales for Band BE 1 - Sweeney Shenandoah HL 1 Adams Valse Petite SP 1 Akers Berkshire Hills BO 1 Akers Little Classic Suite CF 1 Aleicheim Schaffer Israeli Folk Songs PO 1 Anderson Ford Forgotten Dreams BE 1 Anderson Ford Sandpaper Ballet BE 1 Arcadelt Whiting Ave Maria EM 1 Arensky Powell The Cuckoo PO 1 Bach Gardner Little Bach Suite ST Grand Finale from Cantata 1 Bach Gordon BO #207 1 Bach Walters Celebrated Air RU 1 Bain, James L. M Wagner Brother James' Air BE 1 Balent Bold Adventure WB Drummin' With Reuben And 1 Balent BE Rachel 1 Balent Lonesome Tune WB 1 Balmages Gettysburg FJ 2011 WV Graded Music List, p. 2 1 Balmages Majestica FJ 1 Barnes Ivory Towers of Xanadu SP 1 Bartok Castle Hungarian Folk Suite AL 1 Beethoven Clark Theme From Fifth Symphony HL 1 Beethoven Foulkes Creation's Hymn PO 1 Beethoven Henderson Hymn to Joy PO 1 Beethoven Mitchell Ode To Joy CF 1 Beethoven Sebesky Three Beethoven Miniatures Al 1 Beethoven Tolmage
    [Show full text]
  • SETA: an IMAGING SPECTROMETER for MARCO POLO MISSION. M.C. De Sanctis1, G. Filacchio- Ne1, F. Capaccioni1, G. Piccioni1, E. Ammannito2, M.T
    41st Lunar and Planetary Science Conference (2010) 1203.pdf SETA: AN IMAGING SPECTROMETER FOR MARCO POLO MISSION. M.C. De Sanctis1, G. Filacchio- ne1, F. Capaccioni1, G. Piccioni1, E. Ammannito2, M.T. Capria1, A. Coradini2, A. Migliorini1, E. Battistelli3, G. Preti3 1Istituto di Astrofisica Spaziale e Fisica Cosmica – INAF, via del fosso del cavaliere 100, 00133 Roma, Italy, ma- [email protected] 2Istituto di Fisica dello Spazio Interplanetario – INAF, via del fosso del cava- liere 100, 00133 Roma, Italy, 3 Selex Galileo-via Einstein, Campi Bisenzio, Italy Introduction: The MarcoPolo NEO sample return obtained by using the relative motion of the orbiter M-class mission has been selected for assessment with respect to the target or by using a scan mirror. study within the ESA Cosmic Vision 2015-2025 pro- The SETA optical concept is mostly inherited from the gram. The Marco Polo mission proposes to do a sam- SIMBIO-SYS/VIHI (Visible Infrared Hyperspectral ple return mission to Near Earth Asteroid [1]. With Imager) imaging spectrometer aboard Bepi Colombo this mission we have the opportunity to return for mission [2] but also from other space flying imaging study in Earth-based laboratories a direct sample of the spectrometers, such as VIRTIS (on Rosetta and Venus earliest record of how our solar system formed. The Express) and VIR (on DAWN) [3,4]. landing site and sample selection will truly be the most Seta is based on a modified Schmidt optical important scientific decision to make during the course scheme both for Telescope and Spectrometer (substi- of the entire mission.
    [Show full text]
  • General Assembly Distr.: General 7 January 2005
    United Nations A/AC.105/839 General Assembly Distr.: General 7 January 2005 Original: English Committee on the Peaceful Uses of Outer Space Scientific and Technical Subcommittee Forty-second session Vienna, 21 February-4 March 2004 Item 10 of the provisional agenda∗ Near-Earth objects Information on research in the field of near-Earth objects carried out by international organizations and other entities Note by the Secretariat Contents Page I. Introduction ................................................................... 2 II. Replies received from international organizations and other entities ..................... 2 European Space Agency ......................................................... 2 The Spaceguard Foundation ...................................................... 17 __________________ ∗ A/AC.105/C.1/L.277. V.05-80067 (E) 010205 020205 *0580067* A/AC.105/839 I. Introduction In accordance with the agreement reached at the forty-first session of the Scientific and Technical Subcommittee (A/AC.105/823, annex II, para. 18) and endorsed by the Committee on the Peaceful Uses of Outer Space at its forty-seventh session (A/59/20, para. 140), the Secretariat invited international organizations, regional bodies and other entities active in the field of near-Earth object (NEO) research to submit reports on their activities relating to near-Earth object research for consideration by the Subcommittee. The present document contains reports received by 17 December 2004. II. Replies received from international organizations and other entities European Space Agency Overview of activities of the European Space Agency in the field of near-Earth object research: hazard mitigation Summary 1. Near-Earth objects (NEOs) pose a global threat. There exists overwhelming evidence showing that impacts of large objects with dimensions in the order of kilometres (km) have had catastrophic consequences in the past.
    [Show full text]
  • Asteroid Redirect Mission Update NAC Human Exploration and Operations Committee
    National Aeronautics and Space Administration Asteroid Redirect Mission Update NAC Human Exploration and Operations Committee Dr. Michele Gates March 2, 2016 1 Last Update in July Included • Updates on contributions of the mission to exploration strategy and Journey to Mars • Guidance for ARRM formulation • A focus on external engagement and feedback 2 Asteroid Redirect Mission Progress ü Robotic Mission Concept Review and Formulation Authorization Mar 2015 ü Acquisition Strategy Decisions for Robotic Mission Aug 2015 ü Formulation Assessment and Support Team (FAST) Established Aug 2015 ü Public comments due on FAST draft report Dec 2015 • https://www.nasa.gov/feature/arm-fast ü Robotic mission requirements technical interchange meeting Dec 2015 ü Robotic spacecraft early design study contracts selected Jan 2016 ü Update with Small Bodies Assessment Group Jan 2016 ü Complete 6th of 6 total Peer Reviews for Restore-L Jan 2016 Synergy Subsystems ü Crewed segment operational requirements meetings at JSC Feb 2016 ü ARM leadership team strategy meeting on partnerships and Feb 2016 engagement ü FAST final report released Feb 2016 3 A Sustainable Exploration Approach Mars Split Mission Concept 4 4 ARM: An Early Mission in the Proving Ground of Cislunar Space IN-SPACE POWER & Solar Electric PROPULSION: • High efficiency 40kW SEP Propulsion extensible to Mars cargo High Efficiency missions Large Solar • Power enhancements feed Arrays forward to deep-space habitats and transit vehicles EXTRAVEHICULAR ACTIVITIES: • Two in-space EVAs of four hours
    [Show full text]
  • Measurements of Charged Dust on the Marco Polo Asteroid Sample Return Mission
    MEASUREMENTS OF CHARGED DUST ON THE MARCO POLO ASTEROID SAMPLE RETURN MISSION K L Aplin, N E Bowles*, D J Parker, E C Sawyer and M S Whalley Space Science and Technology Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK *Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK Introduction The Marco Polo mission has been selected by the European Space agency as a candidate for launch under their 2015-2025 Cosmic Vision programme. The mission ultimately aims to understand the origins of the planets and even life itself, by returning a sample of material from a primitive asteroid, representative of the early Solar System. The dust on the surface of the asteroid is readily charged and one of the proposed in situ instruments, described here, is an electric field sensor to detect the electrostatic levitation and transport of charged dust particles. ****** Scientific Background Physical mechanisms controlling dust transport on asteroids are poorly understood, and by analogy with the Moon, there is likely to be considerable electric charging of the surface due to photoelectron emission. Electrostatic dust levitation has been proposed as a possible method to redistribute particles [e.g. Lee, 1996; Colwell et al, 2007], and also a loss mechanism for smaller particles which are not bound by the small gravitational field of the asteroid [Lee, 1996]. Asteroid electric charge has never been measured, but models predict that an electric potential (~1 kV) can be attained on the dark side compared to the sunlit side, which becomes slightly positively charged by photoelectron emission.
    [Show full text]
  • Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies Final Report
    PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies Final Report Committee to Review Near-Earth Object Surveys and Hazard Mitigation Strategies Space Studies Board Aeronautics and Space Engineering Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study is based on work supported by the Contract NNH06CE15B between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the agency that provided support for the project. International Standard Book Number-13: 978-0-309-XXXXX-X International Standard Book Number-10: 0-309-XXXXX-X Copies of this report are available free of charge from: Space Studies Board National Research Council 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu.
    [Show full text]