SPAN 4900 Don Quijote Spring 2016 Utah State University

Total Page:16

File Type:pdf, Size:1020Kb

SPAN 4900 Don Quijote Spring 2016 Utah State University SPAN 49oo: Don Quijote 1 SPAN 4900 Don Quijote Spring 2016 Utah State University T/Th 3:00-4:15 p.m. Old Main 326 Felipe Valencia [email protected] Office: Old Main 002A Office Hours: Th 10:00 a.m.-12:00 p.m. Pablo Picasso, Don Quijote (1955) BANNER COURSE DESCRIPTION Select topics of Spanish cultural production, such as literature, art, cinema, or music. Prerequisite/Restriction: At least two of the following: SPAN 3600, SPAN 3610, SPAN 3620, SPAN 3630, SPAN 3640, SPAN 3650, SPAN 3660; or permission of instructor. Repeatable for credit when topics change Semester(s). EXTENDED COURSE DESCRIPTION What is it about Don Quixote’s tilting at windmills and acting as if life followed the rules of fiction that has captivated the imagination of so many writers and thinkers ever since it was written in Spain four hundred years ago? This course explores Cervantes’s Don Quijote (1605 and 1615) by paying special attention to its literary and historical context in early modern Spain, and the theoretical problems it has raised in literary theory. We will think about Cervantes’s innovations in narrative technique, the possibility of interpretation, and the nature of fiction and reality. Students will acquire tools of literary analysis and theory. In Spanish. COURSE OBJECTIVES By the end of the semester, students in this course will have learned: • Thorough knowledge of the text and main interpretations of Cervantes’s Don Quijote. • Familiarity with the literature and history of Spain in the early modern period. • Strategies for close reading, literary analysis, critical thinking, and interpretation of cultural artifacts. SPAN 49oo: Don Quijote 2 • Improved oral, aural, writing and reading skills in Spanish. REQUIRED FOR PURCHASE AT THE USUBOOKSTORE Cervantes, Miguel de. Don Quijote. Ed. Tom Lathrop. Ill. Jack Davis. Newark, Del.: Juan de la Cuesta, 2013. All other required readings will be available through the library or Canvas. COURSE WEBSITES Moodle Site: <https://usu.instructure.com/courses/395577> COURSE COMPONENTS Components Percentage of the Grade 1. Class participation 25% 2. Discussion questions 25% 3. Presentation in class 20% 4. Final exam 30% 5. Meetings with the professor 1. Class participation: Students are expected to come prepared, having read all the assigned texts and completed the required homework, and ready and willing to discuss ideas in a collegiate atmosphere. This means that students will have a firm grasp on the material and actively talk— pose questions, offer and challenge interpretations, and formulate hypotheses—in the discussions facilitated by the professor. The grade for class participation will be the average of four separate grades, one for each month. 2. Discussion questions: The discussion questions will be short and very clear questions that reflect students’ own queries or thoughts on the reading assigned for the day, raising issues that s/he would like to have discussed in class. The questions will be uploaded to Canvas by 11:30 a.m. before the indicated session. The professor needs time before his classes and lunchtime to examine the questions and incorporate them to the lesson plan. Any question posted after 11:30 a.m. will not count, and the grade for that question shall be 0. Given the size of the class, students will be divided into three groups (A through C) at the beginning of the semester. For each indicated class, only one group is responsible for formulating questions. All students, however, must read the questions of the day and be prepared to address them before coming to class. The grade for discussion questions will be the average of the grades for each of the nine questions. 3. Presentation in class: On the indicated class, a group of 2 or 3 students will present on a passage or topic, determined by the professor. The students are free to choose the format: from a formal presentation to leading discussion. They will be expected to carefully research and read at least 3 or 4 pieces of criticism on the subject of the presentation. Without exception, they must send the instructor a full outline of what they intend to do 48 hours before class, including the bibliography they have consulted. SPAN 49oo: Don Quijote 3 4. Final exam: Students will have three hours to answer two questions from a choice of four. The exam will take place on the date assigned by the registrar. 5. Meetings with the professor: Students will hold at least one mandatory meeting with the professor during his office hours throughout the semester: on March 15, 17 or 24. GRADING SCALE B+ = 87-89% C+ = 77-79% D+ = 67-69% A = 94-100% B = 84-86% C = 74-76% D = 64-66% A- = 90-93% B- = 80-83% C- = 70-73% F = 0-63% GENERAL POLICIES AND CLASSROOM CONDUCT • Absences: Students may have three unexcused absences (no questions asked), but must turn in the assigned work no later than two days after class. Students are responsible for keeping track of their absences. Each unexcused absence after the first three detracts 0.5% from the final grade. Only three types of absences are excused: a) the student is celebrating a religious holiday and has notified the professor at least one day in advance; b) the student has a medical or family emergency, and has either gone to the campus health center or spoken to a dean; and c) the student is representing USU in a sporting event off-campus, and has shown proper documentation from the athletics department at the beginning of the semester. • Deadlines: Turning in assignments past the deadline without a valid excuse is inadmissible, and students should not expect the professor to accept the late work. Students should also be aware that the professor is not responsible for reminding them of missed deadlines. • Grading: The professor will provide rubrics detailing the expectations for each assignment and how they are evaluated and graded. • Classroom conduct: Students are expected to behave in a respectful and attentive manner toward their peers and the professor. Students should arrive to class on time, refrain from engaging in personal conversations, texting or checking of personal e-mail during class, and listen to the professor and their peers in silence and with full attention. • Phones: Unless needed due to a disability, students are not allowed to use phones (smart or otherwise) or recording devices in the classroom. If the student expects an emergency call, the professor must be notified at the beginning of class. • Laptops and tablets: Devices are only acceptable for note-taking, but students are strongly encouraged to take notes by hand; research shows that it favors absorption. The professor reserves himself the right to ban the use of tablets or tablets in the classroom. Using a device during class for purposes different from those of the course will detract from the participation grade. USU HONOR PLEDGE Students must agree that they will not cheat, falsify, or plagiarize anybody’s work. Plagiarism includes “representing, by paraphrase or direct quotation, the published or unpublished work of another person as one’s own in any academic exercise or activity without full and clear acknowledgement. It also includes using materials prepared by another person or by an agency SPAN 49oo: Don Quijote 4 engaged in the sale of term papers or other academic materials” (Code of Policies and Procedures for Students, Article V, Section V-3.A). The penalties for plagiarism are severe. They include a verbal warning, written reprimand, re-writing the assignment, grade adjustment, and even failure of the course. Additionally, the University may impose probation, suspension, or expulsion (see Article VI, Section VI-1.A). DISABILITIES The professor will accommodate students with disabilities so that their participation in the course is comparable to that of their peers. The USU Disability Resource Center website advises that “Students with ADA-documented physical, sensory, emotional or medical impairments may be eligible for reasonable accommodations. Veterans may also be eligible for services. All accommodations are coordinated through the Disability Resource Center (DRC) in room 101 of the University Inn, 435-797-2444 or toll-free at 800-259-2966. Please contact the DRC as early in the semester as possible. Alternate format materials (Braille, large print or digital) are available with advance notice.” SPAN 49oo: Don Quijote 5 CALENDARIO Fecha Lección o actividad Lecturas antes de clase Tarea antes de clase La posición social de DQ parte I, capítulo 1 (hasta Martes 12/1 don Quijote p. 26) DQ parte I, preliminares y cap. 1 Pregunta de discusión Jueves 14/1 [Discusión] B. Ife, “The historical and 1A social context” DQ 1.2-5 J. L. Austin, How to Do Pregunta de discusión Martes 19/1 Los moriscos, parte I Things with Words, caps. 1-2 1B y 8 DQ 1.6-7 E. M. Gerli, “The Pregunta de discusión Jueves 21/1 Los judeoconversos antecedents of the novel in 1C sixteenth-century Spain” DQ 1.8-10 B. W. Wardropper, “DQ: Pregunta de discusión Martes 26/1 [Discusión] Story or History?” 2A G. Haley, “The Narrator in DQ” (pp. 241-45) DQ 1.11-14 Pregunta de discusión Jueves 28/1 La ficción pastoril B. Fuchs, Romance, pp. 1-11 2B y 78-93 La mujer en la España Pregunta de discusión Martes 2/2 DQ 1.15-19 del Siglo de Oro 2C DQ 1.20-22 Pregunta de discusión Jueves 4/2 La ficción picaresca L. Spitzer, “Linguistic 3A Perspectivism” Pregunta de discusión Martes 9/2 La melancolía DQ 1.23-27 3B Pregunta de discusión Jueves 11/2 La ficción sentimental DQ 28-32 3C DQ 1.33-35 Pregunta de discusión Jueves 18/2 La novela R.
Recommended publications
  • Space Situational Awareness
    → SPACE SITUATIONAL AWARENESS OUTLINE - Background - Purpose - Aims - Composition - Space Surveillance (SST) - Space Weather (SWE) - Near-Earth Objects (NEO) - Summary 2 BACKGROUND Image: Dan Durda – FIAAA 3 INTRODUCTION PURPOSE OF THE SSA PROGRAMME “The objective of the Space Situational Awareness (SSA) programme is to support the European independent utilisation of, and access to, space for research or services, through the provision of timely and quality data, information, services and knowledge regarding the space environment, the threats and the sustainable exploitation of the outer space surrounding our planet Earth.” - ESA Ministerial Council November 2008 4 INTRODUCTION AIMS OF THE SSA PROGRAMME • Independent utilisation of Space – Space assets are critical assets • Guarantee access to Space – Diplomatic, – Political – Regulatory – Technical • Serve EU “Lisbon Objectives” – New Applications – New Jobs – New Markets 5 INTRODUCTION CUSTOMERS FOR SSA SERVICES • European Governments • Space Insurance • United Nations – EU • Space Industry • Defence – National • Energy • Civil Protection – Regional – Surveying • European Space Agencies – Electrical Grid – ESA – Power Supply – National • Network Operations • Spacecraft Operators • Telecommunications – Commercial • Air Traffic Control – Academic • Search and Rescue Entities – Governmental 6 INTRODUCTION Current Objectives 2009 – 2012 • Preparatory Programme – Governance Definition – Data Policy – Architecture – Federation – Precursor Services – Radar Breadboard – Pilot Data Centres 2012
    [Show full text]
  • The Hera Mission
    Dr. Patrick Michel Hera Investigation Team PI Université Côte d’Azur Observatoire de la Côte d’Azur CNRS, Lagrange Laboratory Nice, France The Hera Mission ESA UNCLASSIFIED - For Official Use Hera main aspects Role of space missions at ESA in NEO hazard mitigation • Understanding the problem (deflection modeling and simulations) 2001 • Ground versus space solutions analyses • Assessment of space component options 2002- • 6 parallel phase-0 studies (3 space telescopes, 3 rendezvous) Euneos Nero Earthguard 1 2004 • ESA’s NEO Mission Advisory Panel (NEOMAP) established • Kinetic impactor validation ranked highest importance 2004- • Don Quijote mission selected and studied up to phase-A level 2006 • SANCHO / Proba-IP orbiter up to phase A level studies, small deep-space Don Quijote Ishtar Simone 2008- mission to investigate impactor’s result 2009 • AIDA proposed by NASA: USA/impactor + ESA/impact assessment • ESA phase 0 and phase A studies on the observer spacecraft "AIM” (GSP) 2011- Proba-IP 2016 • Phase B1 study and “consolidation phase” for mission definition (GSTP) • HERA: impact observer spacecraft reformulation and optimization AIM 2017- • Phase B1 implementation + payload + technology breadboards (GSTP+SSA) Several concepts 2019 • DART phase-C kick-off on 15 May 2018 Hera iterated AIDA: An International Planetary Defense Mission U.S. National Research Council Committee “Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies” Recommendation: “If [U.S.] Congress chooses to fund mitigation research at an appropriately high level, the first priority for a space mission in the mitigation area is an experimental test of a kinetic impactor along with a characterization, monitoring, and verification system, such as the Don Quixote mission that was previously considered, but not funded, by the European Space Agency.
    [Show full text]
  • Asteroid Retrieval Feasibility Study
    Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society [email protected] Mike Brown Caltech [email protected] Michael Busch UCLA [email protected] John Casani NASA JPL [email protected] Marcello Coradini ESA [email protected] John Dankanich NASA GRC [email protected] Paul Dimotakis Caltech [email protected] Harvard -Smithsonian Center for Martin Elvis [email protected] Astrophysics Ian Garrick-Bethel UCSC [email protected] Bob Gershman NASA JPL [email protected] Florida Institute for Human and Tom Jones [email protected] Machine Cognition Damon Landau NASA JPL [email protected] Chris Lewicki Arkyd Astronautics [email protected] John Lewis University of Arizona [email protected] Pedro Llanos USC [email protected] Mark Lupisella NASA GSFC [email protected] Dan Mazanek NASA LaRC [email protected] Prakhar Mehrotra Caltech [email protected]
    [Show full text]
  • General Assembly Distr.: General 7 January 2005
    United Nations A/AC.105/839 General Assembly Distr.: General 7 January 2005 Original: English Committee on the Peaceful Uses of Outer Space Scientific and Technical Subcommittee Forty-second session Vienna, 21 February-4 March 2004 Item 10 of the provisional agenda∗ Near-Earth objects Information on research in the field of near-Earth objects carried out by international organizations and other entities Note by the Secretariat Contents Page I. Introduction ................................................................... 2 II. Replies received from international organizations and other entities ..................... 2 European Space Agency ......................................................... 2 The Spaceguard Foundation ...................................................... 17 __________________ ∗ A/AC.105/C.1/L.277. V.05-80067 (E) 010205 020205 *0580067* A/AC.105/839 I. Introduction In accordance with the agreement reached at the forty-first session of the Scientific and Technical Subcommittee (A/AC.105/823, annex II, para. 18) and endorsed by the Committee on the Peaceful Uses of Outer Space at its forty-seventh session (A/59/20, para. 140), the Secretariat invited international organizations, regional bodies and other entities active in the field of near-Earth object (NEO) research to submit reports on their activities relating to near-Earth object research for consideration by the Subcommittee. The present document contains reports received by 17 December 2004. II. Replies received from international organizations and other entities European Space Agency Overview of activities of the European Space Agency in the field of near-Earth object research: hazard mitigation Summary 1. Near-Earth objects (NEOs) pose a global threat. There exists overwhelming evidence showing that impacts of large objects with dimensions in the order of kilometres (km) have had catastrophic consequences in the past.
    [Show full text]
  • Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies Final Report
    PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies Final Report Committee to Review Near-Earth Object Surveys and Hazard Mitigation Strategies Space Studies Board Aeronautics and Space Engineering Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study is based on work supported by the Contract NNH06CE15B between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the agency that provided support for the project. International Standard Book Number-13: 978-0-309-XXXXX-X International Standard Book Number-10: 0-309-XXXXX-X Copies of this report are available free of charge from: Space Studies Board National Research Council 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu.
    [Show full text]
  • Asteroid Impact Mission) Dual Spacecraft Momentum Transfer Characterization Concept
    Asteroid→ Impact Mission (AIM) ESA’s NEO Exploration Precursor Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office – ESA HQ SBAG – Jan 2013 HSF Precursor Missions Application driven objectives and payload definition • Science to enable exploration • Definition in consultation with diverse community – space sciences, planetology, radiation biology, robotics, HSF technologies, human physiology etc. Lunar Lander (see next slide): • Lunar Exploration Definition Team – initial objectives • Topical Teams – Details • What has to be done to prepare for future human exploration? • What needs to be done in-situ on the Moon? • What can be achieved by a precursor mission? • How does the mission achieve this? 2 2 Lunar Lander Objectives Programme Objective PREPARATION FOR FUTURE HUMAN EXPLORATION Lunar Lander Mission Objective ENABLE SUSTAINABLE EXPLORATION Soft Precision Landing Crew health with hazard avoidance Habitation Resources Preparations for human activities 3 Definition Process High Priority 16 Medium Priority 9 Low Priority 16 Lunar Exploration Objectives and Requirements Definition Topical Team Document Review 4 High Priority Objectives Crew health Habitation and surface systems • Radiation effects on human • Landing Site Characterisation physiology Dose Particle spectra • Dust: DNA repair pathway responses Charging and levitation Physical properties (mechanical, electrostatic, adhesive, abrasive, magnetic • Dust toxicity etc.) “chemical reactivity” System interactions and pathways for nm – µm size distribution
    [Show full text]
  • 1 Asteroid Investigation Mission
    ASTEROID INVESTIGATION MISSION: THE EUROPEAN CONTRIBUTION TO THE AIDA EU-US COOPERATION Andres Galvez(1), Ian Carnelli(1), Michael Khan(2), Waldemar Martens(2), Patrick Michel(3), Stephan Ulamec(4), Alina Hriscu(1) (1)European Space Agency Headquarters, 8-10 rue Mario Nikis, 75015 Paris, France [email protected] (2)European Space Operations Centre, Robert-Bosch-Str. 5, 64293 Darmstadt, Germany (3)Observatoire de la Côte d’Azur, Boulevard de l'Observatoire, 06300 Nice, France (4)Deutschen Zentrum für Luft- und RaumfahrtLR, Linder Höhe, 51147 Köln, Germany Abstract: The Asteroid Impact & Deflection Assessment (AIDA) is a cooperative mission of opportunity currently investigated by ESA, DLR and Observatoire Côte d’Azur (OCA) on one side and NASA and John Hopkins University Applied Physics Laboratory (JHU/APL) on the other. The US spacecraft, Double Asteroid Redirection Test (DART), would impact at high- velocity into the smaller asteroid of the target binary system 65803 Didymos on October 2022 with the purpose of modifying the relative orbit thus demonstrating asteroid deflection by means of kinetic impact. The European Asteroid Investigation Mission (AIM) spacecraft would rendezvous with Didymos a few months before to characterize the system, monitor the impact and ultimately allow for in-orbit validation of technologies including deep-space autonomous navigation and close proximity operations. This paper briefly presents the AIM mission scenario and some trade-offs currently under assessment. Keywords: binary asteroid, deflection, mission 1. Background Near-Earth Objects or NEOs include both objects having a likely asteroidal origin, and extinct comets orbiting the Sun in the near Earth Space, crossing the region of the inner planets.
    [Show full text]
  • PDC2013 Flagstaff, AZ, USA IAA-PDC13-04-10 Planetary Defense – Recent Progress & Plans NEO Discovery NEO Characterization
    PDC2013 Flagstaff, AZ, USA IAA-PDC13-04-10 Planetary Defense – Recent Progress & Plans NEO Discovery NEO Characterization x Mitigation Techniques & Missions Impact Effects that Inform Warning, Mitigation & Costs Consequence Management & Education AIDA: ASTEROID IMPACT & DEFLECTION ASSESSMENT A.F. Cheng(1), P. Michel(2), C. Reed(1), A. Galvez(3), I. Carnelli(3) (1)Johns Hopkins University Applied Physics Laboratory, (email: [email protected], phone: 1-240-228-5415), (2)University of Nice-Sophia Antipolis, CNRS, Côte d’Azur Observatory, (3)ESA Headquarters, Paris Keywords: asteroid mitigation, kinetic impactor, binary asteroid ABSTRACT Abstract To protect the Earth from a potential asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. The Asteroid Impact & Deflection Assessment (AIDA) mission is a first demonstration of asteroid deflection and a characterization of the kinetic impact effects. AIDA consists of two independent but mutually supporting missions, one of which is the asteroid kinetic impactor and the other is the characterization spacecraft. These two missions are, respectively, DART and the European Space Agency’s Asteroid Impact Monitoring (AIM) mission. DART will be the first ever space mission to deflect the trajectory of an asteroid and measure the deflection to within 10%. This will be done using a binary asteroid target with accurate determinations of orbital period by ground-based observations. AIDA will return vital data to determine the momentum transfer efficiency of the kinetic impact [1,2]. 1. Introduction DART follows the previous Don Quijote mission study performed by ESA in 2005 - 2007, whose objectives were to demonstrate the ability to modify the trajectory of an asteroid, to measure the trajectory change, and to characterize physical properties of the asteroid.
    [Show full text]
  • Satellite Dynamics and Space Missions: Theory and Applications of Celestial Mechanics S
    Satellite Dynamics and Space Missions: Theory and Applications of Celestial Mechanics S. Martino al Cimino, 27 August - 2 September 2017 Space missions for minor-body science Andrea Milani Department of Mathematics, University of Pisa PLAN of LECTURES 1. Self presentation and method 2. Mission design and implementation: a difficult process 3. Case A: ROSETTA, cometary mission 4. Case B: MORO, a proposed lunar mission 5. Why so many asteroid missions? 6. Case C: DON QUIXOTE, a proposed deflection experiment 7. Asteroid families, proper elements, and asteroid ground truth 8. Case D: DAWN, rendez-vous asteroids mission 9. Next asteroid missions: LUCY, PSYCHE 1 1.1 Self presentation Old persons have plenty of memories. The challenge is to select the important ones, not just for the old, but for the next generations. The challenge for the young listeners is to be receptive, but critical: do not do as we did in our times, but learn lessons to apply in innovative ways to the new experiences. In the early sixties I was a teenager with some very passionate interests, including exploration of space: these were the times of the first human spaceflights, and of the race for the moon. I also liked computers, not accessible to me, but I did study my first programming language, FORTRAN. In 1976 I was aged 28 and already with a tenured position (Assistant of Mathe- matical Analysis) in the University of Pisa. However, my research career in pure Mathematics was going nowhere. Then, following the advice of A. Nobili and P. Farinella, I attended the lectures by Giuseppe (Bepi) Colombo at SNS.
    [Show full text]
  • COSMIC VISION 2015-2025 TECHNOLOGY PLAN Programme
    COSMIC VISION 2015-2025 TECHNOLOGY PLAN Programme of Work 2008-2011 and related Procurement Plan SUMMARY The present document presents the currently proposed activities in the Basic Technology Programme (TRP), the Science Core Technology Programme (CTP), the General Support Technology Programme (GSTP) and suggested national initiatives supporting the implementation of the first slice of ESA’s Cosmic Vision 2015-2025 Plan. Page 2 Page 2 - Intentionally left blank Page 3 1. Background and Scope This document provides an update to the Cosmic Vision 1525 (CV1525) ESA Science Programme future missions technology preparation plan, first issued last year as ESA/IPC(2008)33, add1. This plan is submitted to the June 2009 SPC. The evolution of the CV1525 programme is taken into account, – essentially SPC recent decision to include Solar Orbiter as Medium (M) class mission and the outer planet Large (L) mission down-selection - the findings of the associated system study activities and the progress with the international coordination. The plan covers the period 2008-2011 for both the L/M missions under assessment and the future science mission themes. 2. Cosmic Vision Plan 2015-2025 2.1 Cosmic Vision 2015-2025 plan Evolution The Cosmic Vision 2015-2025 plan consists of a number of “Science Questions” to be addressed in the course of the 2015-2025 decade. The future space missions to be implemented to this purpose would result from competitive Announcements of Opportunity (AO hereafter) and following down selection processes. Three AOs were foreseen, defining the three “slices” of the plan. The down selection review and decision process is described in ESA/SPC(2009)3, rev.1.
    [Show full text]
  • AIDA: Test of Asteroid Deflection by Spacecraft Impact. AF Cheng1 1Johns Hopkins University Applied Physics Laboratory
    44th Lunar and Planetary Science Conference (2013) 2985.pdf AIDA: Test of Asteroid Deflection by Spacecraft Impact. A. F. Cheng1 1Johns Hopkins University Applied Physics Laboratory, (email: [email protected]) Introduction: The impact of a Near Earth object measuring the deflection, monitoring the impact and as large as 30 m in diameter occurs every few centu- making additional characterization measurements. ries, releasing an energy of at least a megaton of Unlike Don Quijote, DART envisions an impactor TNT. The impact of a larger object, which would spacecraft to intercept the secondary member of a occur less often, would be even more hazardous. To binary near-Earth asteroid, with ground-based obser- protect the Earth from a potential asteroid impact, vations to measure the deflection. In the joint AIDA various mitigation methods have been proposed, in- mission, DART combines with the ESA AIM mission cluding deflection of the asteroid by a spacecraft im- which will rendezvous with the asteroid. Each of the- pact. se missions has independent value, with greatly in- The Don Quijote mission study performed by creased return when combined. ESA in 2005-2007 had the objective of demonstrating The DART mission will use a single spacecraft the ability to modify the trajectory of an asteroid and to impact the smaller member of the binary Near- to measure the trajectory change. Although Don Qui- Earth asteroid [65803] Didymos in October, 2022. jote was not funded, the mitigation technique using The impact of the >300 kg DART spacecraft at 6.25 asteroid deflection by spacecraft impact remains of km/s will change the mutual orbit of these two ob- interest [1].
    [Show full text]
  • An Innovative Solution to NASA's NEO Impact Threat Mitigation Grand
    Final Technical Report of a NIAC Phase 2 Study December 9, 2014 NASA Grant and Cooperative Agreement Number: NNX12AQ60G NIAC Phase 2 Study Period: 09/10/2012 – 09/09/2014 An Innovative Solution to NASA’s NEO Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development PI: Dr. Bong Wie, Vance Coffman Endowed Chair Professor Asteroid Deflection Research Center Department of Aerospace Engineering Iowa State University, Ames, IA 50011 email: [email protected] (515) 294-3124 Co-I: Brent Barbee, Flight Dynamics Engineer Navigation and Mission Design Branch (Code 595) NASA Goddard Space Flight Center Greenbelt, MD 20771 email: [email protected] (301) 286-1837 Graduate Research Assistants: Alan Pitz (M.S. 2012), Brian Kaplinger (Ph.D. 2013), Matt Hawkins (Ph.D. 2013), Tim Winkler (M.S. 2013), Pavithra Premaratne (M.S. 2014), Sam Wagner (Ph.D. 2014), George Vardaxis, Joshua Lyzhoft, and Ben Zimmerman NIAC Program Executive: Dr. John (Jay) Falker NIAC Program Manager: Jason Derleth NIAC Senior Science Advisor: Dr. Ronald Turner NIAC Strategic Partnerships Manager: Katherine Reilly Contents 1 Hypervelocity Asteroid Intercept Vehicle (HAIV) Mission Concept 2 1.1 Introduction ...................................... 2 1.2 Overview of the HAIV Mission Concept ....................... 6 1.3 Enabling Space Technologies for the HAIV Mission . 12 1.3.1 Two-Body HAIV Configuration Design Tradeoffs . 12 1.3.2 Terminal Guidance Sensors/Algorithms . 13 1.3.3 Thermal Protection and Shield Issues . 14 1.3.4 Nuclear Fuzing Mechanisms ......................... 15 2 Planetary Defense Flight Validation (PDFV) Mission Design 17 2.1 The Need for a PDFV Mission ............................ 17 2.2 Preliminary PDFV Mission Design by the MDL of NASA GSFC .
    [Show full text]