ESA Technology Programmes A

Total Page:16

File Type:pdf, Size:1020Kb

ESA Technology Programmes A ESA Technology Programmes A. Tobias European Space Agency Directorate of Technical and Quality Management January 2013 1. Strategic objectives and Technology The strategic objectives in the DG’s proposal to the 2012 Council at Ministerial level •Pushing the frontiers of knowledge Top class Science of space, in space and from Space •Enabling Services Earth observation, meteorology and environmental monitoring, navigation, telecommunications, space situation awareness, integrated applications •Supporting an innovative and competitive Europe 35 % of the satcom market, 50 % of launches to GTO, high multiplicative effort downstream, a sector of high gross added value, with high spin factor The keys: sustaining innovation, strengthening competitiveness and assuring a robust supply chain, and it all •Enabled by technology •Made possible by a competitive industry built during decades of technology and industrial policies and public investments in shared assets 1 • • • • The domains when theytakeoveratTRL5/6fromtechnologypreparation lines Investments intechnologydevelopmentsarefurther continuedinprojects for industry’scompetitivenessintheworldmarket investments inmissions/launchersspaceinfrastructures developmentsand 350 Exploration (Exomars),EarthObservation(MTG,MetOpSG,GSC) areas, orstabilizationinareaswithmajormissionprogrammes,e.g.Robotic Funding fortechnologydevelopmentwithanincreasingtrendinnearlyall Successful CM12,10B The programmes 2. ESATechnologyProgrammes 2. ESATechnologyProgrammes – 400 M € / yearintechnologydevelopmentlinesprepare3B € new fundingaddingtothe5B TRP All CTP Space Science EOEP EO ARTES Telecoms EGEP Navigation FLPP Launchers MREP Robotic Exploration HSF Human Space € still running,15B GSTP All but TEL IOV/IOD PRR SRR PDR QR € / yearof Projects Missions € 2 2. ESA Technology Programmes at CM 12 and CM08 (draft) Telecommunications including major product development under NEOSAT and Partnership Launchers and HSF not comparable with 2008, not shown as they are significantly higher due to specific Ariane 5 adapted, Ariane 6 and common upper- stage development for launchers and to MPCV for HSF 3. ESA Technology Programmes, responding to user needs • Space serves the user communities, scientific or operational, their research agendas or operational needs respectively; (also often science initiated capabilities result in operational systems) Scientists, users • Technology requirements are derived from user needs & engineers through joint work Technology needs • Programmes address the technology needs of the users • In addition, generic technologies and technology push Programmes • And also key cross-cutting initiatives, across application and technology domains and implemented in concert in several programmes 3 3. Roadmaps per domain (example) and cross cutting initiative: Technologies for breakthroughs in Science Cosmic Vision 2015-2025: M3 Small (S), STE-Quest Medium (M), BepiColombo S1: CHEOPS M2: EUCLID LOFT Large (L) ECHO missions Marco Polo R L1: JUICE LPF JWST M1: Solar L2 Orbiter Athena Gaia NGO 2015 2020 2025 Swarm EEx-7 EEx-8 EEx-9 EEx-10 BIOMAS Carbonsat CoreH2O Flex Aeolus EarthCARE PREMIER Cross-cutting initiative: Technologies for breakthrough in science Scientists and technologists define technologies that bring us farther faster by joining efforts across science domains, recommendations 2012: Cold atom devices (optical clocks, atom interferometers) Ultra-stable deployable structures Only Space and Earth Science shown 3. Roadmaps per domain (example) and cross cutting initiative: Technologies for Exploration Cross cutting: Exploration Technologies ELIPS periods Technology for enabling capabilities Implemented across programmes O E L ISS expl. periods Beyond MPCV-SM ATV 4,5 Preparation human exploration N O Lunar Lander O Further missins M 2015 2020 2025 2030 INSPIRE MSR PHOOTPRINT S R A M Exomars 16 - 18 4 3. Cross cutting initiative: Clean Space Clean Space initiative aims at converting an issue in a competitive advantage and at preserving our work place, Space, through Clean Technologies Clean Technologies are those which contribute to the reduction of the environmental impact of space programmes, taking into consideration the overall life-cycle and the management of residual waste and pollution resulting from space activities, both in the Earth eco-sphere and in space. Green technologies – Eco-Design to evaluate the green propulsion, environmental impact and Four Branches: green electronics, monitor legislation risk new materials and Green Technologies processes 1 – Eco-Design 2 - Green Technologies Studies to Clean Technologies improve 3 – Space Debris understanding Mitigation Debris Mitigation and Remediation 4 – Space Debris Remediation Technologies for Technologies to active debris support end of life removal operations 3. Cross cutting initiative: Space and Energy Space Technology / Energy Application Matrix Photovoltaic & Space Energy: Remote Sensing Space Weather Energy Storage Hydrogen Thermal Control Robotics Life Support Power Fossils X X X Hydroelectric X Wind X Photovoltaic X X X Fuel Cells X X X Batteries X X Power Distribution X X X Energy Saving X X Ocean Power X Space systems are supporting the Energy sector in critical daily operations Space and Energy sectors can benefit from cooperation in Technology. For its extreme requirements Space can be a lead market. Energy with its volume can support R&D to new unprecedented performance levels H2020 for its multi-sector character is specially suited to lead these cross cutting multi- sector initiatives 5 3. Technology for industrial competitiveness • Technology is the basis for innovation and industrial world competitiveness • Technology programmes, in particular GSTP and ARTES, support industry with field proven mechanisms • Permanently open announcements of opportunity for fast, industry driven, market oriented actions • Dedicated funding arrangements to facilitate participation of academia and SME in technology developments, well beyond their relative economic weight, so as to tap their innovation potential • Support to the complete product cycle, from idea to innovation • De-risk of innovation through in-orbit validation and demonstration • Competitiveness is not a permanent status and needs to be nurtured • European industry is very competitive but fragile with a weak home market compared with its competitors. • EU major role in using Space and facilitating the use of Space, federation of users, user segment technologies, long-term data exploitation, etc. 3. Technology for strategic non-dependence • Europe depends on Space systems also for critical services • Europe must be non-dependent to develop, deploy, and exploit such systems • Non-dependence requires unrestricted access to critical technologies • Europe’s supply chain is vulnerable in the basic technologies, e.g. EEE components, driven by terrestrial sectors and for which Space has low volume and very demanding requirements • ESA with NSA set up the ECI, supported in several phases by special measures, lately at CM-12. However ESA mechanisms of industrial return, otherwise very successful, are not quite well suited for ECI and funding remains limited and provisional • ESA with EC and EDA set up also a joint effort for ECI – TnD. This has proven the value of the EU action • H2020 could be the instrument to put ECI-TnD on a permanent basis that strengthens the supply chain and its potential for innovation and competitiveness 6 4. Coordination and Harmonization Science Operational • Good proven European wide communities communities processes involving all stakeholders: Industry • Aggregate their needs ESOA NSA Industry • Coordinate their efforts MS ESA • Good federation Aggregation of the needs • New efforts add, do not duplicate, do not subtract Harmonization Roadmaps • EU as user and stakeholder and Coordination of the efforts with H2020 could provide important contribution to the overall effort ESA programmes, National, industry, other 5. Conclusions and recommendations • Investments of decades by Member States and through ESA in technology development have resulted in a top class space sector that delivers best science and service driven missions and launchers and competes very successfully in the world. • ESA CM12 means another major effort of European Ministers in this direction. New efforts are welcome to add • Well proven processes of aggregation of needs and coordination of efforts along agreed agendas of the communities and roadmaps for development exist • Procurement and industrial policy mechanisms perfected for decades have proven to be essential to develop the most competitive Space industry in the world. • EU as user of Space systems and with H2020 can be an important contribution • H2020 is seen to have a big impact and a major leading role in • ECI-TnD, building on initiatives as the ESCC and the EC-EDA-ESA cooperation • Cross sectorial actions such as Space and Energy, making Space benefit from partnership with a wealthy much bigger sector, benefiting from the multi- sectorial nature of the programme • Standardisation, ESCC related to ECI-TnD, and ECSS • Ground / user segment technologies, stimulating use of Space 7.
Recommended publications
  • Space Situational Awareness
    → SPACE SITUATIONAL AWARENESS OUTLINE - Background - Purpose - Aims - Composition - Space Surveillance (SST) - Space Weather (SWE) - Near-Earth Objects (NEO) - Summary 2 BACKGROUND Image: Dan Durda – FIAAA 3 INTRODUCTION PURPOSE OF THE SSA PROGRAMME “The objective of the Space Situational Awareness (SSA) programme is to support the European independent utilisation of, and access to, space for research or services, through the provision of timely and quality data, information, services and knowledge regarding the space environment, the threats and the sustainable exploitation of the outer space surrounding our planet Earth.” - ESA Ministerial Council November 2008 4 INTRODUCTION AIMS OF THE SSA PROGRAMME • Independent utilisation of Space – Space assets are critical assets • Guarantee access to Space – Diplomatic, – Political – Regulatory – Technical • Serve EU “Lisbon Objectives” – New Applications – New Jobs – New Markets 5 INTRODUCTION CUSTOMERS FOR SSA SERVICES • European Governments • Space Insurance • United Nations – EU • Space Industry • Defence – National • Energy • Civil Protection – Regional – Surveying • European Space Agencies – Electrical Grid – ESA – Power Supply – National • Network Operations • Spacecraft Operators • Telecommunications – Commercial • Air Traffic Control – Academic • Search and Rescue Entities – Governmental 6 INTRODUCTION Current Objectives 2009 – 2012 • Preparatory Programme – Governance Definition – Data Policy – Architecture – Federation – Precursor Services – Radar Breadboard – Pilot Data Centres 2012
    [Show full text]
  • DLR Developments and Application Ideas for Interplanetary Cubesats
    DLR developments and application ideas for interplanetary cubesats iCubeSat, Milano 2019 Jens Biele1, Michael Maibaum1, Caroline Lange2, Thimo Grundmann2, Stephan Ulamec1, Marcus Thomas Knopp3, Frank-Cyrus Roshani3 1DLR German Aerospace Center, RB-MUSC, Cologne, Germany 2DLR German Aerospace Center, Bremen, Germany 3DLR German Aerospace Center, GSOC, Munich, Germany www.DLR.de • Chart 3 > Lecture > Author • Document > Date SKAD-Study [FRANK, MARCUS] • Orbiter as relais station for Mars-Rover • ………. Designs flown or studied (DLR) Hopper(10-25 kg) MASCOT (30, 70 kg) Philae (100 kg) Leonard MASCOT (10 kg) Folie 4 > Vortrag > Autor Folie 5 > Vortrag > Autor Study Flow of MASCOT („how to shrink a lander..“) • December 2008 – September 2009: feasibility study, with CNES, in context of Marco Polo and Hayabusa-2, with common requirements: • 3 iterations of different mass (95kg, 35kg & 10kg) and P/L • Settled on 10 kg lander package including 3 kg of P/L • Ho, T.-M., et al. (2016). "MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission." Space Science Reviews 208(1-4): 339– 374. • ➔ Design of MASCOT 10 kg: a nanosat (30x30*20 cm³) . Could be a 18 U cubesat! Large ~ 95 kg, Philae hertitage Middle ~ 35 kg, Xtra Small ~ 10 kg, No post-landing Up-righting + mobility mobility MASCOT Payload (25% of total mass!) Instrument Science Goals Heritage Institute; PI/IM Mass [kg] MAG magnetization of the NEA MAG of ROMAP on Rosetta TU Braunschweig Lander (Philae), ESA VEX, 0,15 → formation history Themis K.H. Glassmeier / U. Auster mineralogical composition ESA ExoMars, Russia and characterize grains Phobos GRUNT, ESA size and structure of Rosetta, ESA ExoMars IAS Paris µOmega surface soil samples at μ- rover 2018, Rosetta / Philae J.P.
    [Show full text]
  • Living Waters: an Interfaith Conference
    Living Waters: An Interfaith Conference November 19, 2013 Lewis Ginter Botanical Garden Richmond, Virginia Sponsored by the Chesapeake Bay Foundation Facilitated by the University of Virginia Institute for Environmental Negotiation PLANNING TEAM, SPONSORS, and ACKNOWLEDGEMENTS Planning/Steering Committee • Craig Anderson, Randolph-Macon College and affiliated with the Episcopal Diocese of Virginia and the Church of the Holy Comforter • Karl Bren, Green Visions Consultation and Chair of the Stewardship of God’s Creation Committee • Martha Burford, Director of Church Music, Church of the Holy Comforter, and Committee member of Stewardship of Creation for the Episcopalian Diocese of Virginia • Aimee Bushman, Chesapeake Bay Foundation • Nina Beth Cardin, Rabbi and Chair of the Chesapeake Covenant Community • Nissa Dean, Alliance for the Chesapeake Bay • Tanya Denckla Cobb, Institute for Environmental Negotiation • Frank Dukes, Institute for Environmental Negotiation • Ann Jurczyk, Chesapeake Bay Foundation • The Honorable Tayloe Murphy, Former Delegate to the Virginia General Assembly, former Virginia Secretary of Natural Resources, Board Member of the Chesapeake Bay Foundation • Jacob Powell, Virginia Conservation Network • Katie Preston, Former Executive Director of Interfaith Power and Light • Justin Reilly, Catholic Archdiocese of Richmond • Ephraim Seidman, Chair, Social Action- Tikkun Olam Committee, Temple Beth-El • Deborah Usry, Chairwoman, Board of Directors for the James River Association • Pat Watkins, Executive Director of Caretakers
    [Show full text]
  • WV Graded Music List 2011
    2011 WV Graded Music List, p. 1 2011 West Virginia Graded Music List Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 Grade Artist Arranger Title Publisher 1 - Higgins, John Suo Gan HL 1 - McGinty Japanese Folk Trilogy QU 1 - McGinty, Anne Elizabethan Songbook, An KJ 1 - Navarre, Randy Ngiele, Ngiele NMP 1 - Ployhar Along the Western Trail BE 1 - Ployhar Minka BE 1 - Ployhar Volga Boat Song BE 1 - Smith, R.W. Appalachian Overture BE Variant on an Old English 1 - Smith, R.W. BE Carol 1 - Story A Jubilant Carol BE 1 - Story Classic Bits and Pieces BE 1 - Story Patriotic Bits and Pieces BE 1 - Swearingen Three Chorales for Band BE 1 - Sweeney Shenandoah HL 1 Adams Valse Petite SP 1 Akers Berkshire Hills BO 1 Akers Little Classic Suite CF 1 Aleicheim Schaffer Israeli Folk Songs PO 1 Anderson Ford Forgotten Dreams BE 1 Anderson Ford Sandpaper Ballet BE 1 Arcadelt Whiting Ave Maria EM 1 Arensky Powell The Cuckoo PO 1 Bach Gardner Little Bach Suite ST Grand Finale from Cantata 1 Bach Gordon BO #207 1 Bach Walters Celebrated Air RU 1 Bain, James L. M Wagner Brother James' Air BE 1 Balent Bold Adventure WB Drummin' With Reuben And 1 Balent BE Rachel 1 Balent Lonesome Tune WB 1 Balmages Gettysburg FJ 2011 WV Graded Music List, p. 2 1 Balmages Majestica FJ 1 Barnes Ivory Towers of Xanadu SP 1 Bartok Castle Hungarian Folk Suite AL 1 Beethoven Clark Theme From Fifth Symphony HL 1 Beethoven Foulkes Creation's Hymn PO 1 Beethoven Henderson Hymn to Joy PO 1 Beethoven Mitchell Ode To Joy CF 1 Beethoven Sebesky Three Beethoven Miniatures Al 1 Beethoven Tolmage
    [Show full text]
  • SETA: an IMAGING SPECTROMETER for MARCO POLO MISSION. M.C. De Sanctis1, G. Filacchio- Ne1, F. Capaccioni1, G. Piccioni1, E. Ammannito2, M.T
    41st Lunar and Planetary Science Conference (2010) 1203.pdf SETA: AN IMAGING SPECTROMETER FOR MARCO POLO MISSION. M.C. De Sanctis1, G. Filacchio- ne1, F. Capaccioni1, G. Piccioni1, E. Ammannito2, M.T. Capria1, A. Coradini2, A. Migliorini1, E. Battistelli3, G. Preti3 1Istituto di Astrofisica Spaziale e Fisica Cosmica – INAF, via del fosso del cavaliere 100, 00133 Roma, Italy, ma- [email protected] 2Istituto di Fisica dello Spazio Interplanetario – INAF, via del fosso del cava- liere 100, 00133 Roma, Italy, 3 Selex Galileo-via Einstein, Campi Bisenzio, Italy Introduction: The MarcoPolo NEO sample return obtained by using the relative motion of the orbiter M-class mission has been selected for assessment with respect to the target or by using a scan mirror. study within the ESA Cosmic Vision 2015-2025 pro- The SETA optical concept is mostly inherited from the gram. The Marco Polo mission proposes to do a sam- SIMBIO-SYS/VIHI (Visible Infrared Hyperspectral ple return mission to Near Earth Asteroid [1]. With Imager) imaging spectrometer aboard Bepi Colombo this mission we have the opportunity to return for mission [2] but also from other space flying imaging study in Earth-based laboratories a direct sample of the spectrometers, such as VIRTIS (on Rosetta and Venus earliest record of how our solar system formed. The Express) and VIR (on DAWN) [3,4]. landing site and sample selection will truly be the most Seta is based on a modified Schmidt optical important scientific decision to make during the course scheme both for Telescope and Spectrometer (substi- of the entire mission.
    [Show full text]
  • Planetary Protection at ESA Issues & Status
    Planetary Protection at ESA Issues & Status Gerhard Kminek Planetary Protection Officer, ESA NASA Planetary Protection Subcommittee Meeting 12-13 November 2013, GSFC Selected Missions BepiColombo → Launch of a composite spacecraft, comprising the MTM, the MPO and MMO on an Ariane V from CSG; nominal launch slot opens July 2016 → Planetary Protection Category II, due to Venus gravity assist → Launcher upper stage and spacecraft impact on Mars analysis described and agreed during CDR Solar Orbiter → Launch of the spacecraft on a NASA provided launch vehicle from KSC; nominal launch is 2017 → Planetary Protection Category II, due to Venus gravity assist → Spacecraft probability of Mars impact demonstrated to be within requirement → Scope for the launcher upper stage probability of Mars impact discussed with NASA ExoMars → See later presentation Jupiter Icy Moon Explorer (JUICE) → Selected L-class mission in the frame of the Cosmic Vision Program → ESA lead mission to the Jovian system with focus on Ganymede and Europa → Launch planned on Ariane V from CSG in 2022 → Phase A completed; currently in PRR in preparation for Phase B → Planetary Protection Category III → Planetary protection approach for Europa agreed (probability of impact < 1x10-4) → Planetary protection approach for Ganymede will be reviewed based on a recently published paper during the next ESA PPWG Candidate Missions Phootprint → Mission candidate in the frame of the Mars Robotic Exploration Preparatory (MREP) Program for launch opportunities from 2024 onwards → ESA lead mission to return samples from the martian moon Phobos → Launch planned on Ariane V from CSG with a return to Woomera Test Range, Australia → Planetary Protection Category V, unrestricted Earth return (to be confirmed) → Dedicated activity initiated to evaluate the level of assurance that no unsterilized martian material naturally transferred to Phobos is accessible to a Phobos sample return mission; result will be published in a peer reviewed journal, reviewed by a panel organised by the ESF, incl.
    [Show full text]
  • Polish Space Industry Association Members Catalog 2018
    POLISH SPACE INDUSTRY ASSOCIATION MEMBERS CATALOG 2018 www.space.biz.plwww.space.biz.pl Location of SPACE PL members offices Tricity Elbląg Szymbark Płoty Toruń Warszawa Józefów Poznań Zielona Góra Łódz Radom Wrocław Gliwice Rzeszów Kraków Czechowice- -Dziedzize Białobrzegi Poznań Łódź GMV Innovating Solutions Thales Alenia Space Polska TS2 Antmicro FastLogic Instytut Lotnictwa Wasat iTTi National Institute of Kąty Wrocławskie Piktime Systems Szymbark Telecommunications Wołomin Radiotechnika Marketing Jakusz SpaceTech Inphotech VFRPOLAND Radom IPPT PAN Płoty Polish Armaments Group S.A. Ożarów Mazowiecki IRES Technologies Wrocław Embedded Arch (PGZ S.A.) WB Electronics JSC ITSG Komes Kapitech Nobo Solutions JSC Czechowice-Dziedzice Tricity Gliwice Military Electronic Works JSC Scanway Silesian Science and Technology Blue Dot Solutions KP Labs N7 Space Centre of Aviation Industry Ltd. Syderal Polska N7Mobile Torun SIRC Piaseczno PIAP ABM Space Elbląg SpaceForest Creotech Instruments JSC PCO JSC PIAP-Space OPEGIEKA WiRan Semicon Warszawa Sener Zielona Góra Kraków Łomianki Airbus Skytechnology Hertz Systems Ltd 6ROADS Adaptronica Astri Polska Softwaremill Planet PR Astronika Space Kinetics Józefów SATIM Monitoring Satelitarny Rzeszów CloudFerro Space Research Centre PAS Solaris Optics JSC SmallGIS Space Garden Eversis Systemics-PAB Spectator Geosystems Polska TechOcean Index Polish Space Industry Association 2 Industrial Research Institute for Automation and Technology tree 4 Measurements PIAP 36 6ROADS 6 PIAP Space 37 ABM Space 7 Piktime
    [Show full text]
  • Asteroid Redirect Mission Update NAC Human Exploration and Operations Committee
    National Aeronautics and Space Administration Asteroid Redirect Mission Update NAC Human Exploration and Operations Committee Dr. Michele Gates March 2, 2016 1 Last Update in July Included • Updates on contributions of the mission to exploration strategy and Journey to Mars • Guidance for ARRM formulation • A focus on external engagement and feedback 2 Asteroid Redirect Mission Progress ü Robotic Mission Concept Review and Formulation Authorization Mar 2015 ü Acquisition Strategy Decisions for Robotic Mission Aug 2015 ü Formulation Assessment and Support Team (FAST) Established Aug 2015 ü Public comments due on FAST draft report Dec 2015 • https://www.nasa.gov/feature/arm-fast ü Robotic mission requirements technical interchange meeting Dec 2015 ü Robotic spacecraft early design study contracts selected Jan 2016 ü Update with Small Bodies Assessment Group Jan 2016 ü Complete 6th of 6 total Peer Reviews for Restore-L Jan 2016 Synergy Subsystems ü Crewed segment operational requirements meetings at JSC Feb 2016 ü ARM leadership team strategy meeting on partnerships and Feb 2016 engagement ü FAST final report released Feb 2016 3 A Sustainable Exploration Approach Mars Split Mission Concept 4 4 ARM: An Early Mission in the Proving Ground of Cislunar Space IN-SPACE POWER & Solar Electric PROPULSION: • High efficiency 40kW SEP Propulsion extensible to Mars cargo High Efficiency missions Large Solar • Power enhancements feed Arrays forward to deep-space habitats and transit vehicles EXTRAVEHICULAR ACTIVITIES: • Two in-space EVAs of four hours
    [Show full text]
  • The Castalia Mission to Main Belt Comet 133P/Elst-Pizarro C
    The Castalia mission to Main Belt Comet 133P/Elst-Pizarro C. Snodgrass, G.H. Jones, H. Boehnhardt, A. Gibbings, M. Homeister, N. Andre, P. Beck, M.S. Bentley, I. Bertini, N. Bowles, et al. To cite this version: C. Snodgrass, G.H. Jones, H. Boehnhardt, A. Gibbings, M. Homeister, et al.. The Castalia mission to Main Belt Comet 133P/Elst-Pizarro. Advances in Space Research, Elsevier, 2018, 62 (8), pp.1947- 1976. 10.1016/j.asr.2017.09.011. hal-02350051 HAL Id: hal-02350051 https://hal.archives-ouvertes.fr/hal-02350051 Submitted on 28 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Available online at www.sciencedirect.com ScienceDirect Advances in Space Research 62 (2018) 1947–1976 www.elsevier.com/locate/asr The Castalia mission to Main Belt Comet 133P/Elst-Pizarro C. Snodgrass a,⇑, G.H. Jones b, H. Boehnhardt c, A. Gibbings d, M. Homeister d, N. Andre e, P. Beck f, M.S. Bentley g, I. Bertini h, N. Bowles i, M.T. Capria j, C. Carr k, M.
    [Show full text]
  • Measurements of Charged Dust on the Marco Polo Asteroid Sample Return Mission
    MEASUREMENTS OF CHARGED DUST ON THE MARCO POLO ASTEROID SAMPLE RETURN MISSION K L Aplin, N E Bowles*, D J Parker, E C Sawyer and M S Whalley Space Science and Technology Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK *Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK Introduction The Marco Polo mission has been selected by the European Space agency as a candidate for launch under their 2015-2025 Cosmic Vision programme. The mission ultimately aims to understand the origins of the planets and even life itself, by returning a sample of material from a primitive asteroid, representative of the early Solar System. The dust on the surface of the asteroid is readily charged and one of the proposed in situ instruments, described here, is an electric field sensor to detect the electrostatic levitation and transport of charged dust particles. ****** Scientific Background Physical mechanisms controlling dust transport on asteroids are poorly understood, and by analogy with the Moon, there is likely to be considerable electric charging of the surface due to photoelectron emission. Electrostatic dust levitation has been proposed as a possible method to redistribute particles [e.g. Lee, 1996; Colwell et al, 2007], and also a loss mechanism for smaller particles which are not bound by the small gravitational field of the asteroid [Lee, 1996]. Asteroid electric charge has never been measured, but models predict that an electric potential (~1 kV) can be attained on the dark side compared to the sunlit side, which becomes slightly positively charged by photoelectron emission.
    [Show full text]
  • Gianfranco Visentin
    i-SAIRAS 2016 ESA AI and Robotics at iSAIRAS 2016 G. Visentin (European Space Agency) Contact Author: G. Visentin Affiliation: European Space Agency Address: p.o. Box 299, 2200AG, Noordwijk, The Netherlands Email: Gianfranco . Visentin (-at-) esa . int Phone: +31715654835 Presentation Preference: oral, plenary Keywords: Space Robotics, AI in Space, Programmatics Abstract The paper will provide the programmatic context in which the European Space Agency (ESA) is and hence serves as orientation background, introduction and index to the several papers on ESA missions and ESA-sponsored technologies submitted to i-SAIRAS 2016. The paper will provide an overview of these activities. Research and development activities have progressed in the different branches of the ESA A&R technology tree. The paper will illustrate some achievements and new developments. Finally ESA, on behalf of the European Union, leads a team of European space agencies that coordinate the next 5 years of space robotics developments under European Union funds. The paper will illustrate goals and steps of these developments. Prospector and other international missions that Planetary Robotics Missions may benefit from cis-lunar orbiting station. On the subject of organization, the ESA differentiation between the field of space The ExoMars Missions exploration in human-oriented and otherwise non- The ExoMars missions are developed in human tended missions has been removed with cooperation with the Russian Space Agency, the attribution of all exploration activities to the ROSKOSMOS and were established to Human and Robotics Exploration directorate. investigate the Martian environment and to The directorate is currently readying the demonstrate new technologies paving the way for ExoMars programme.
    [Show full text]
  • Eastern Kentucky
    ~-- • ----;-r -- - () - -------------~.::.:...::.,.~~....:.~~..:::.;::..:;;~~::.......;.;..:.;__.;__..,.,'1/q/g1Oct. 3 1988 'rl ';)'/l-'fk :JO - I~ . 0 If .:i.o I ~ MSU Clip Sheet CCI- A rmpllq of ncent artlcla of lllterat to Morehad State Ualvcnlty MEDIA RELATIONS • MOREHEAD STATE UNIVERSITY • UPO BOX 1100 • MOREHEAD, KY 40351-1689 • 606-783-2030 ~EXINGTON,HERAlEl-LEAElER, ~NGTQN;,KY.,.·SAJURpA'!',·OCTQBEIH,,19811 rrn9iversrtres· ·. want~'·"oigger•,>•p1_e:, ~- ,., · -llte- fonnula· estab)ished a ra­ tional, formal basis for splitting the .·n·or~ratrer·~srrces state funding pie, she said. It is a .1 ' 1·. k~d- .,. ·- -.i:,...,.;o.,..,..:."";il Robert Bell,- chairtnan' ·of' Ken'~ !=Qmpl!,Jf, .5e! of components. used to ' By··oal'll181•r..'t1C V. • tucky Advocates for f!igher Edu~­ calciiliife how much money each Her~td.-Le.a~er education write.r, - . ~ · tion, ,urgi;d, the .council tQ ~p up scliooLneeds 'to carry out its mis­ , -" IP 'corifrast to "the bi~, ~ its review quickly 311d begm ~ sfoil, coinpared ,with average fund, · divisive .l>irth· of formula ftm.dm~ paring for .a sJ:M.!(:ial l~la~v~.~- . ing at.1simitar:"schools in. other . s~·years ago, Kentucky's,,publi~ sion that Gov. Wallace I W11kirison stafes.,The-main component of the . universities have shown strong um­ has promised for, early next year. fo!ii;i~,is ~llment. : - ,' ty. as}he fonnula ~derg<M:5 its first Though Wilkinson has said he · :,·· The:·state• provides about 84 formal-review, offioals said;yester- does not plan to .put higher educa­ percent, of: the money needed to tion on the agenda;; Belr said 'the : daY;,~; real issue m: edu~tio~ \~ universities must be ready to push - fpn9;W,ej~rmu1a fullr.
    [Show full text]