Training Manual for Therapeutic Footwear

Total Page:16

File Type:pdf, Size:1020Kb

Training Manual for Therapeutic Footwear Footwear For Every Diabetic Training Manual for Therapeutic Footwear Prepared By Bent R. Nielsen, Gentofte University Hospital, Denmark & The Footwear Team Baqai Institute Of Diabetology & Endicrinology Baqai Medical University 1 Karachi - Pakistan Compiled by: Mr. Bent R. Neilsen Chief Podiatrist – Gentofte University, Hospital, Denmark Prof. Abdul Basit Director – Baqai Institute of Diabetology and Endocrinology Chair Elect – IDF Middle East and North Africa Dr. Zahid Miyan Consultant Diabetologist – Baqai Institute of Diabetology and Endocrinology Assistant Professor - Baqai Medical University Project Director – Footwear for Every Diabetic Dr. Asmat Nawaz Consultant Diabetologist – Baqai Institute of Diabetology and Endocrinology Project Manager: Footwear for Every Diabetic Dr. Riaz Ahmed Memon Footwear Section: Diabetic Foot Department, Baqai Institute of Diabetology and Endocrinology Project Coordinator: FED Project Mr. Sufran Ahmed Project Assistant: FED Project 2 Contents Section-A: ……………………………………………………………………………………………………………………………….….... 1010 Diabetes and its Complication, Foot problem in people with Diabetes: .....................................1 100 Complications of Diabetes: ..........................................................................................................11 11 Diabetic foot .................................................................................................................................12 12 Ulcer ..............................................................................................................................................12 12 Diabetic foot ulcers (DFU) .............................................................................................................12 12 Neuropathy ...................................................................................................................................12 12 Peripheral Arterial Disease ......................................................................................................... 16133 Anatomy of foot & ankle …………………………………………………………..…………………..…………………....1313 Basic Foot Anatomy ……………………………………………………….………………………………………..…………..1414 Basic Ankle Anatomy ....................................................................................................................14 14 Biomechanics of the Foot ………………………....………………………………………………….……………….……..1515 Gait and Gait Cycle .............................................................................................................…... 1515 Foot Deformities …………………………………….......................................................... ..................... …1616 3 Hammer toe: ............................................................................................................................... 16166 Claw toe: ...........................................................................................................................................17 Flat feet / fallen arches: ................................................................................................................17 17 High Arched Feet ...........................................................................................................................17 17 Metatarsalgia ................................................................................................................................18 18 Bunion Foot ...................................................................................................................................18 18 Charcot Foot ..................................................................................................................................18 18 Risks Assessment & Recommendation Of Footwear ....................................................................19 19 Knowledge & Importance of Footwear ........................................................................................20 20 Routine wearing of appropriate footwear for people with diabetes ....................................... 22119 Appropriate footwear ................................................................................................................. 21222 Footwear wearing instruction with Break-In period …………………………………………………...…….…2233 When to replace or repair shoes ………………………………………………….…………………………………….…2233 Section-B…………………………………………………………………………………………………………………………..24 Equipments and tools ...................................................................................................................24 24 Stitching Machine ………………………………………………………………………………..……………………………..…2255 4 Flatbed Stitching Machine …………………………………………………………………………………………. ..…... 25 25 Post Bed Stitching Machine ………………………………………….…………………………………………………….. 25 25 Grinding Machine: ………………………………………………………………………………………………….…………......2626 Oven ..............................................................................................................................................26 26 Heating Blower: ............................................................................................................................27 27 Measuring Instrument & Tools: ....................................................................................................27 27 Safety instruments: .......................................................................................................................27 27 Materials & Characteristics of materials required ........................................................................28 28 List of Materials: ...........................................................................................................................29 29 Grinding techniques: …………………………………………………………………………………………………………….…3030 How to take the measurement of the foot ................................................................................ 30311 To measurement length: ………………………………………………...………………………………………………………3311 Measurement width: ……………………………………………………………………………………………………………...3232 To measurement Instep: …………………………………………………………………………………………………….…..3233 TIPS For Marking on Sketch for different deformities……………………………………………………………...3333 5 Forefoot support: ………………………………………………………………………………………………………………....3333 Medial support (S-Shaped): …………………………………………………………………………………………………..3344 Lateral support: …………………………………………………………………………………………………….……….……...3344 Medial Movement stopper: ………………………………………………………………..…………………………….....3434 49 Finger test to examine Foot Arches: ………………………………………………………………………………….....3535 Normal Arch feet: ……………………………………………………………………………..………………………… ...... ..35 35 Low Arched feet (pes planus): …………………………………………………………………………………………......3535 High Arch feet (pes Cavus): ………………………………..…………………………………………………………........35.35 Manufacturing of footwear for people with diabetes according to IWGDFriskcategories:…36 36 Method of cutting the pattern: ………………………………………………………………………………………….…37.3 7 Method for making the upper part:………………………………………………..…………………………..….…. 3838 Manufacturing of footwear for risk category 0 ............................................................................39 39 Steps of Footwear Manufacturing .............................................................................................39 39 6 The outer sole of the footwear .....................................................................................................39 39 Insole .............................................................................................................................................40 40 Top cover on Insole .......................................................................................................................40 40 Upper part of the footwear ........................................................................................................ 42411 Lasting & Finishing: .................................................................................................................... 42411 Manufacturing of footwear for risk category 1 .......................................................................... 42422 Manufacturing of footwear for risk category 2 .......................................................................... 42433 Outer Sole: .................................................................................................................................. 42433 Midsole (Bottom of the footwear (the middle portion between the outer sole and insole):.... 42444 Rocker sole modification: ........................................................................................................... 42444 Basic function:............................................................................................................................. 42444 The general biomechanical effects: ............................................................................................ 42444 Rocker sole: …………………………………………………………………………………………………………………….…..….4545 Types of individualualized rocker sole ........................................................................................ 42466 Customized rocker sole constructions ........................................................................................ 42466 Manufacturing process ............................................................................................................... 42477 7 Fixation of outer sole and the bottom ........................................................................................ 42477 Insoles: .......................................................................................................................................
Recommended publications
  • Pierre Robin and the Syndrome That Bears His Name PETER RANDALL
    Pierre Robin and the Syndrome That Bears His Name PETER RANDALL, M.D. WILTON M. KROGMAN, Ph.D. SOONA JAHINA, B.D.S., M.Sc. Philadelphia, Pennsylvania The Pierre Robin Syndrome refers to a combination of micrognathia (a small jaw) and glossoptosis (literally, a falling downward or back- ward of the tongue) in the newborn infant (Figure 1). These conditions are likely to cause obstruction of the upper airway, and they are fre- quently associated with an incomplete cleft of the palate. Patients with the Pierre Robin Syndrome may present a real emer- gency in the delivery room because of the obstructed upper airway, or the airway problem may not become manifest for several days or weeks (10, 11, 38). There is frequently a feeding problem, as well as problems associated with the cleft of the palate (if one is present) and also an unusual malocclusion (2, 5, 12, 16). In addition, it presents a fascinating anthropological puzzle (22, 23). This paper will review the work of Dr. Robin, consider some possible etiologies of this syndrome, and report on some work on mandibular bone growth in a group of such patients. History Pierre Robin was far from the first person to recognize this syndrome. One account is recorded in 1822 by St. Hilaire. In 1891 Taruffi men- tioned two subclassifications-hypomicrognatus (small jaw) and hypo- agnathus (absent jaw). In 1891, four cases, two of them having cleft palates, were reported by Lanneloague and Monard (12, 14). Shukow- sky in 1902 described a tongue to lip surgical adhesion to overcome the respiratory obstruction (34).
    [Show full text]
  • Podo Pediatrics Podo Pediatrics
    Podo Pediatrics Identifying Biomechanical Pathologies David Lee, D.P.M., D. A.B.P.S. Purpose • Identification of mechanical foot and ankle conditions • Base treatments • Knowing when to refer to a podiatrist Topics • Flatfoot (Pes Plano Valgus) • Equinus • Intoed feet (Cavo-adductor Varus) • Heel pain (Calcaneodynia) • Shin Splints • Various Pedal deformities 1 WHAT IS NORMAL? At birth to ~9 months • Ankle flexible to over 20 deg DF • No “C” shaped foot • No clicking or popping sounds • Babinski sign • Pull up 7-8mo. 9-16 months… • Begin walking • Feet are fat, flat and floppy • Knees are always center or externally rotated, never internal. • Stance is wide and less stable • Stomping gait pattern 2 16-18 months • Able to walk upstairs • Knee never internal • Still wide base and flat and floppy feet • Stomping still 3-7 years • Able toe walk downstairs • Heel-to-toe walk • Watch for – Intoeing – Tripping – Tight ankle joint (equinus) 7 years and up • Arch should be developed • Heel-to-toe walk • Heel is perpendicular to ground • Knees straight ahead 3 Neutral Internal Rotation Early detection is important • Prevent long term adaptation • Joint damage • Adult pathology – Heel pain, bunions, hammertoes, ankle instability, knee pain, shin splints, etc. • Ability to thrive physically and socially 4 THE FLAT FOOT Visual Complaints by the Parent • Tripping or falling • Poor balance- Clumsy • Feet look funny, walks funny • Shoes wearing out quickly Social Complaints by the Parent • Lazy, inactive, “doesn’t like going outside to play or play sports
    [Show full text]
  • Cavus Foot, from Neonates to Adolescents
    Orthopaedics & Traumatology: Surgery & Research (2012) 98, 813—828 Available online at www.sciencedirect.com REVIEW ARTICLE ଝ Cavus foot, from neonates to adolescents P. Wicart Paris Descartes University, Necker—Sick Children Hospital (AP—HP), 149, rue de Sèvres, Paris 75015, France Accepted: 10 July 2012 KEYWORDS Summary Pes cavus, defined as a high arch in the sagittal plane, occurs in various clinical situa- Pes cavus; tions. A cavus foot may be a variant of normal, a simple morphological characteristic, seen in Charcot-Marie-Tooth healthy individuals. Alternatively, cavus may occur as a component of a foot deformity. When it disease; is the main abnormality, direct pes cavus should be distinguished from pes cavovarus. In direct Neurology; pes cavus, the deformity occurs only in the sagittal plane (in the forefoot, hindfoot, or both). Morphological types Direct pes cavus may be related to a variety of causes, although neurological diseases predom- inate in posterior pes cavus. Pes cavovarus is a three-dimensional deformity characterized by rotation of the calcaneopedal unit (the foot minus the talus). This deformity is caused by palsy of the intrinsic foot muscles, usually related to Charcot-Marie-Tooth disease. The risk of pro- gression during childhood can be eliminated by appropriate conservative treatment (orthosis to realign the foot). Extra-articular surgery is indicated when the response to orthotic treatment is inadequate. Muscle transfers have not been proven effective. Triple arthrodesis (talocalcanear, talonavicular, and calcaneocuboid) accelerates the mid-term development of osteoarthritis in the adjacent joints and should be avoided. © 2012 Published by Elsevier Masson SAS. Introduction The cavus may be either one of the components or the main component of the deformity (Tables 1 and 2).
    [Show full text]
  • Genetic, Cytogenetic and Physical Refinement of the Autosomal Recessive CMT Linked to 5Q31ð Q33: Exclusion of Candidate Genes I
    European Journal of Human Genetics (1999) 7, 849–859 © 1999 Stockton Press All rights reserved 1018–4813/99 $15.00 t http://www.stockton-press.co.uk/ejhg ARTICLE Genetic, cytogenetic and physical refinement of the autosomal recessive CMT linked to 5q31–q33: exclusion of candidate genes including EGR1 Ang`ele Guilbot1, Nicole Ravis´e1, Ahmed Bouhouche6, Philippe Coullin4, Nazha Birouk6, Thierry Maisonobe3, Thierry Kuntzer7, Christophe Vial8, Djamel Grid5, Alexis Brice1,2 and Eric LeGuern1,2 1INSERM U289, 2F´ed´eration de Neurologie and 3Laboratoire de Neuropathologie R Escourolle, Hˆopital de la Salpˆetri`ere, Paris 4Laboratoire de cytog´en´etique, Villejuif 5G´en´ethon, Evry, France 6Service de Neurologie, Hˆopital des Sp´ecialit´es, Rabat, Morocco 7Service de Neurologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland 8Service D’EMG et de pathologie neuromusculaire, Hˆopital neurologique Pierre Wertheimer, Lyon, France Charcot-Marie-Tooth disease is an heterogeneous group of inherited peripheral motor and sensory neuropathies with several modes of inheritance: autosomal dominant, X-linked and autosomal recessive. By homozygosity mapping, we have identified, in the 5q23–q33 region, a third locus responsible for an autosomal recessive form of demyelinating CMT. Haplotype reconstruction and determination of the minimal region of homozygosity restricted the candidate region to a 4 cM interval. A physical map of the candidate region was established by screening YACs for microsatellites used for genetic analysis. Combined genetic, cytogenetic and physical mapping restricted the locus to a less than 2 Mb interval on chromosome 5q32. Seventeen consanguineous families with demyelinating ARCMT of various origins were screened for linkage to 5q31–q33.
    [Show full text]
  • Flexible Flatfoot
    REVIEW ORTHOPEDICS & TRAUMATOLOGY North Clin Istanbul 2014;1(1):57-64 doi: 10.14744/nci.2014.29292 Flexible flatfoot Aziz Atik1, Selahattin Ozyurek2 1Department of Orthopedics and Tarumatology, Balikesir University Faculty of Medicine, Balikesir, Turkey; 2Department of Orthopedics and Traumatology, Aksaz Military Hospital, Marmaris, Mugla, Turkey ABSTRACT While being one of the most frequent parental complained deformities, flatfoot does not have a universally ac- cepted description. The reasons of flexible flatfoot are still on debate, but they must be differentiated from rigid flatfoot which occurs secondary to other pathologies. These children are commonly brought up to a physician without any complaint. It should be kept in mind that the etiology may vary from general soft tissue laxities to intrinsic foot pathologies. Every flexible flatfoot does not require radiological examination or treatment if there is no complaint. Otherwise further investigation and conservative or surgical treatment may necessitate. Key words: Children; flatfoot; flexible; foot problem; pes planus. hough the term flatfoot (pes planus) is gener- forms again (Figure 2). When weight-bearing forces Tally defined as a condition which the longitu- on feet are relieved this arch can be observed. If the dinal arch of the foot collapses, it has not a clinically foot is not bearing any weight, still medial longitu- or radiologically accepted universal definition. Flat- dinal arch is not seen, then it is called rigid (fixed) foot which we frequently encounter in routine out- flatfoot. To differentiate between these two condi- patient practice will be more accurately seen as a re- tions easily, Jack’s test (great toe is dorisflexed as the sult of laxity of ligaments of the foot.
    [Show full text]
  • Clinical and Genetic Findings of Two Cases with Apert Syndrome
    BoletínMédicodel HospitalInfantildeMéxico CLINICALCASE ClinicalandgeneticfindingsoftwocaseswithApertsyndrome Francisco Cammarata-Scalisi1*, Elanur Yilmaz2, Michele Callea3, Andrea Avendaño1, Ercan Mıhçı4 and Ozgul M. Alper2 © Permanyer 2019 1 2 Unit of Medical Genetics, Department of Pediatrics, Faculty of Medicine, University of The Andes, Mérida, Venezuela; Department of Medical . Biology and Genetics, Akdeniz University Medical School, Antalya, Turkey; 3Unit of Dentistry, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 4Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey of the publisher Abstract Background: Craniosynostosis is described as the premature fusion of cranial sutures that belongs to a group of alterations which produce an abnormal phenotype. Case report: Two unrelated female patients with clinical findings of Apert syndro- me—characterized by acrocephaly, prominent frontal region, flat occiput, ocular proptosis, hypertelorism, down-slanted pal- pebral fissures, midfacial hypoplasia, high-arched or cleft palate, short neck, cardiac anomalies and symmetrical syndactyly of the hands and feet—are present. In both patients, a heterozygous missense mutation (c.755C>G, p.Ser252Trp) in the FGFR2 gene was identified. Conclusions: Two cases of Apert syndrome are described. It is important to recognize this uncommon entity through clinical findings, highlight interdisciplinary medical evaluation, and provide timely genetic counse- ling for the family. Key words: Apert syndrome. Clinical. FGFR2
    [Show full text]
  • Tumor in Patients with 9Q22.3 Microdeletion Syndrome Suggests a Role for PTCH1 in Nephroblastomas
    European Journal of Human Genetics (2013) 21, 784–787 & 2013 Macmillan Publishers Limited All rights reserved 1018-4813/13 www.nature.com/ejhg SHORT REPORT Wilms’ tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas Bertrand Isidor*,1,2,14, Franck Bourdeaut3,4,5,14, Delfine Lafon6, Ghislaine Plessis7, Elodie Lacaze7, Caroline Kannengiesser8, Sylvie Rossignol9, Olivier Pichon1, Annaig Briand1, Dominique Martin-Coignard10, Maria Piccione11, Albert David1, Olivier Delattre2,Ce´cile Jeanpierre12, Nicolas Se´venet6 and Ce´dric Le Caignec1,13 Nephroblastoma (Wilms’ tumor; WT) is the most common renal tumor of childhood. To date, several genetic abnormalities predisposing to WT have been identified in rare overgrowth syndromes. Among them, abnormal methylation of the 11p15 region, GPC3 and DIS3L2 mutations, which are responsible for Beckwith–Wiedemann, Simpson–Golabi–Behmel and Perlman syndromes, respectively. However, the underlying cause of WT remains unknown in the majority of cases. We report three unrelated patients who presented with WT in addition to a constitutional 9q22.3 microdeletion and dysmorphic/overgrowth syndrome. The size of the deletions was variable (ie, from 1.7 to 8.9 Mb) but invariably encompassed the PTCH1 gene. Subsequently, we identified a somatic PTCH1 nonsense mutation in the renal tumor of one patient. In addition, by array comparative genomic hybridization method, we analyzed the DNA extracted from the blood samples of nine patients with overgrowth syndrome and WT, but did not identify any deleterious chromosomal imbalances in these patients. These findings strongly suggest that patients with constitutional 9q22.3 microdeletion have an increased risk of WT, and that PTCH1 have a role in the pathogenesis of nephroblastomas.
    [Show full text]
  • Pes Cavus – Not Just a Clinical Sign Diagnosis, Aetiology and Management
    ACNRJF13_Layout 1 13/01/2013 22:33 Page 16 REHABILITATION ARTICLE Pes Cavus – Not Just a Clinical Sign Diagnosis, Aetiology and Management Mr Thomas Ball, he term Pes cavus describes the deformity of Figure 1 MRCS, MRCP, MA(Cantab) is a Specialty Registrar in Trauma a high arched, relatively stiff foot. It has a and Orthopaedics in the South T variety of neurological and other causes. West Peninsula, currently working Management depends on the aetiology, rapidity of at Royal Cornwall Hospital. He progression and the severity of symptoms. aims to specialise in foot and ankle surgery and correction of lower limb deformity. Definition Pes cavus is an umbrella term describing a spec- trum of foot shapes with a high arch.1 Pure Pes cavus occurs when the metatarsal bones are plan- tarflexed relative to the hindfoot – described as ‘forefoot plantaris’ – which increases the height and curvature of the medial longitudinal arch (Figure 1). When the patient weight-bears, the hindfoot is pushed into dorsiflexion by the plan- tarflexed forefoot (Figure 2). Mr Michael Butler, A high arch accompanied by a medially angu- MA MB BS FRCS (TR&Orth) lated heel is termed pes cavovarus (Figure 3). is a Consultant Orthopaedic Surgeon and Foot and Ankle When this is complicated by foot drop and Specialist at the Royal Cornwall equinus of the ankle, it is described as pes Hospital in Truro and is a regular equinocavovarus. A n o t h e r va r i a n t , pes calcaneo- officer in the Army. Mr Butler varus, occurs when the primary deformity is treats patients for complex excessive ankle and hindfoot dorsiflexion; in problems of the foot and ankle Box 1: Causes of Pes cavus and is a Review Board Member for order to place the foot flat on the ground, the fore- Foot and Ankle Surgery.
    [Show full text]
  • A Rare Intermetatarsal Coalition with Rigid Fifth Metatarsal Deformity and Symptomatic Plantar Lesion
    The Journal of Foot & Ankle Surgery xxx (2015) 1–6 Contents lists available at ScienceDirect The Journal of Foot & Ankle Surgery journal homepage: www.jfas.org Case Reports and Series A Rare Intermetatarsal Coalition With Rigid Fifth Metatarsal Deformity and Symptomatic Plantar Lesion Antonio Cordoba-Fern andez, DP, PhD 1, Rafael Rayo-Rosado, DP, PhD 2, Daniel Lopez-Garc ıa, DP 3, Jose MarıaJuarez-Jim enez, DP, PhD 2 1 Professor of Podiatric Surgery, Department of Podiatry, Universidad de Sevilla, Sevilla, Spain 2 Assistant Professor, Department of Podiatry, Universidad de Sevilla, Sevilla, Spain 3 Private Practice, Jerez de la Frontera, Spain article info abstract Level of Clinical Evidence: 4 Coalition or synostosis of the foot is a relatively uncommon abnormality. Some cases of synostosis of the foot, primarily involving the midfoot and hindfoot, have been reported. However, intermetatarsal coalition is Keywords: bone bridge extremely rare, with only a small number of cases reported. We report a case of a unilateral, congenital fi metatarsal coalition metatarsal coalition between the fourth and fth metatarsal bones in a 27-year-old female. She had initially oblique metatarsal osteotomy been referred because of a symptomatic plantar lesion under the fifth metatarsal head. Surgery consisted of synostosis separating the affected metatarsals, combined with a proximal osteotomy, which proved successful in establishing pain-free and more natural weightbearing. Ó 2015 by the American College of Foot and Ankle Surgeons. All rights reserved. Congenital coalitions of the foot are relatively uncommon abnor- malities and occur in approximately 1% of the population (1). Talo- calcaneal and calcaneonavicular are the most common types of coalitions.
    [Show full text]
  • Congenital Anomalies of the Upper Extremity
    I have no disclosures Provide an overview of the spectrum of congenital upper extremity anomalies Describe the key imaging findings of these abnormalities Discuss the important clinical features of these entities Not enough bones (deficiencies) Extra bones Fusion/failure of separation Malalignment Abnormal bone morphology Big bones/soft tissues Not enough bones (deficiencies) Extra bones Fusion/failure of separation Malalignment Abnormal bone morphology Big bones/soft tissues Phocomelia: deficiency/absence of the proximal-mid extremity Autosomal recessive › ESCO2 gene involved in chromosome separation Rare; 150 cases reported All extremities affected Multisystem disorder Absent radii, (near) normal thumbs Possibly more extensive upper limb and even lower limb deficiencies Autosomal recessive, 1q21.1, 1:1,000,000 Thrombocytopenia › Severe at birth; bleeding complications › Transfusion requirements decrease by age 1 › Normalization of platelet count by adulthood Radial anomaly most commonly limited to the thumb Autosomal dominant 12q24.1, 1:100,000 Cardiac manifestations › Septal defects (atrial most common) › Pulmonic stenosis Vertebral Anal Cardiac Tracheoesophageal fistula Esophageal atresia RADIAL/Renal Limb incidence 16/100,000 Tend to be associated with other non- MSK abnormalities/syndromes Goldfarb et al. (2006) › Reviewed 56 years of surgical data (Wash U) › 146 patients with radial deficiencies › 55 syndromic Goal is to preserve thumb function to be able to perform basic functions (i.e., grab objects,
    [Show full text]
  • Foot Function Disorders in Children with Severe Spondylolisthesis of L5 Vertebra I.E
    СLINICAL STUDIES УДК 617.586-053.2:616.721.7-001.7 DOI: 10.21823/2311-2905-2019-25-2-71-80 Foot Function Disorders in Children with Severe Spondylolisthesis of L5 Vertebra I.E. Nikityuk, S.V. Vissarionov Turner Scientific Research Institute for Children’s Orthopedics, St. Petersburg, Russian Federation Abstract Background. In children with spondylolisthesis, there are still unexplained aspects in the relationship of the degree of L5 displacement with the severity of the clinical picture and neurological disorders. At the same time, aspects of the mutual aggravating influence of the indicated spinal disorder on the condition of the feet have not been studied. Therefore, the problem of identifying disorder of foot function in children with spinal L5 spondylolisthesis is relevant. Aim of the study — to evaluate the deviations in parameters of the transverse and longitudinal arches of feet in children with severe L5 spondylolisthesis. Materials and Methods. In the period from 2016 to 2018, 12 children aged 14.1 y.o. [12,7; 15,5] were examined with L5 spondylolisthesis body of grade III–IV, accompanied by stenosis of the spinal canal at the same level and by compression of the roots of the spinal cord. Imaging diagnostics included multispiral computed tomography (MSCT) and magnetic resonance imaging (MRI). To estimate the function of the feet, double-bearing and single-bearing plantography was used. The data for the control group included only plantographic examinations of 12 healthy children of the same age. Results. In patients with spondylolisthesis, the mean value of the anterior t and intermediate s plantographic bearing indices were significantly lower than those of healthy children.
    [Show full text]
  • Appendix 3.1 Birth Defects Descriptions for NBDPN Core, Recommended, and Extended Conditions Updated March 2017
    Appendix 3.1 Birth Defects Descriptions for NBDPN Core, Recommended, and Extended Conditions Updated March 2017 Participating members of the Birth Defects Definitions Group: Lorenzo Botto (UT) John Carey (UT) Cynthia Cassell (CDC) Tiffany Colarusso (CDC) Janet Cragan (CDC) Marcia Feldkamp (UT) Jamie Frias (CDC) Angela Lin (MA) Cara Mai (CDC) Richard Olney (CDC) Carol Stanton (CO) Csaba Siffel (GA) Table of Contents LIST OF BIRTH DEFECTS ................................................................................................................................................. I DETAILED DESCRIPTIONS OF BIRTH DEFECTS ...................................................................................................... 1 FORMAT FOR BIRTH DEFECT DESCRIPTIONS ................................................................................................................................. 1 CENTRAL NERVOUS SYSTEM ....................................................................................................................................... 2 ANENCEPHALY ........................................................................................................................................................................ 2 ENCEPHALOCELE ..................................................................................................................................................................... 3 HOLOPROSENCEPHALY.............................................................................................................................................................
    [Show full text]