The Clinical Link Between Human Intestinal Microbiota and Systemic Cancer Therapy

Total Page:16

File Type:pdf, Size:1020Kb

The Clinical Link Between Human Intestinal Microbiota and Systemic Cancer Therapy International Journal of Molecular Sciences Review The Clinical Link between Human Intestinal Microbiota and Systemic Cancer Therapy 1,2, , 1,2, 3,4 2,4 Romy Aarnoutse * y, Janine Ziemons y, John Penders , Sander S. Rensen , Judith de Vos-Geelen 1,5 and Marjolein L. Smidt 1,2 1 GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands 2 Department of Surgery, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands 3 Department of Medical Microbiology, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands 4 NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands 5 Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands * Correspondence: [email protected] or [email protected]; Tel.: +31-(0)6-82019105 These authors contributed equally to this work. y Received: 31 July 2019; Accepted: 22 August 2019; Published: 25 August 2019 Abstract: Clinical interest in the human intestinal microbiota has increased considerably. However, an overview of clinical studies investigating the link between the human intestinal microbiota and systemic cancer therapy is lacking. This systematic review summarizes all clinical studies describing the association between baseline intestinal microbiota and systemic cancer therapy outcome as well as therapy-related changes in intestinal microbiota composition. A systematic literature search was performed and provided 23 articles. There were strong indications for a close association between the intestinal microbiota and outcome of immunotherapy. Furthermore, the development of chemotherapy-induced infectious complications seemed to be associated with the baseline microbiota profile. Both chemotherapy and immunotherapy induced drastic changes in gut microbiota composition with possible consequences for treatment efficacy. Evidence in the field of hormonal therapy was very limited. Large heterogeneity concerning study design, study population, and methods used for analysis limited comparability and generalization of results. For the future, longitudinal studies investigating the predictive ability of baseline intestinal microbiota concerning treatment outcome and complications as well as the potential use of microbiota-modulating strategies in cancer patients are required. More knowledge in this field is likely to be of clinical benefit since modulation of the microbiota might support cancer therapy in the future. Keywords: human intestinal microbiota; systemic cancer therapy; chemotherapy; immunotherapy; hormonal therapy; clinical relevance; baseline microbiota sampling; longitudinal microbiota sampling; 16S rRNA gene sequencing; metagenomic sequencing 1. Introduction The human microbiota is the collection of bacteria, archaea, viruses, and eukaryotic microorganisms that live in and on the human gastrointestinal tract, mucosae, and skin. The microbiome is the collective genome of the microbiota and encodes approximately 100-fold more genes than the human genome itself [1]. The majority of the microbiota resides in the gastrointestinal tract and belongs to the ‘intestinal microbiota’ or ‘gut microbiota’. Int. J. Mol. Sci. 2019, 20, 4145; doi:10.3390/ijms20174145 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2019, 20, 4145 2 of 34 Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 2 of 36 It has been established that cross-talk between the gut microbiota and the human host is essential fordysbiosis maintaining has been homeostasis shown to be and associated human health with various [2]. Therefore, metabolic it and is not infl surprisingammatory thatdiseases, microbial such dysbiosisas ulcerative has colitis, been shown obesity, to bediabetes associated mellitus, with and various hypertension metabolic [3–5]. and inflammatory diseases, such as ulcerativeNext colitis,to the obesity,taxonomic diabetes composition mellitus, andof the hypertension gut microbiota, [3–5]. the intra- and inter-individual diversityNext toof thethe taxonomicmicrobial compositioncommunity ofare the considered gut microbiota, to be theof great intra- andimportance inter-individual [3,4,6]. Microbial diversity ofdiversity the microbial can be community quantified are by considered means of to betwo of metrics: great importance α-diversity [3,4 ,6and]. Microbial β-diversity. diversity α-diversity can be quantifieddescribes the by number means of (richness) two metrics: and αdistribution-diversity and(evenness)β-diversity. of taxaα-diversity in a given describes sample [7]. the Common number (richness)indices to anddescribe distribution α-diversity (evenness) are the Shannon of taxa in index, a given Simpson sample index, [7]. Common and the Chao indices 1 index to describe [7]. β- αdiversity-diversity defines are the the Shannon number index, of taxa Simpson shared index, between and thedifferent Chao 1samples index [7and]. β -diversitycan be seen defines as a the(dis)similarity number of taxascore shared [7]. Generally, between dia healthyfferent samples state is andcharacterized can be seen by asa aspecies-rich, (dis)similarity diverse, score and [7]. Generally,stable microbiota, a healthy which state fulfills is characterized various and by complex a species-rich, metabolic diverse, roles [8]. and stable microbiota, which fulfillsIn various recent andyears, complex increasing metabolic evidence roles shows [8]. that the gut microbiota has an important role in carcinogenesisIn recent years, and the increasing pathophysiology evidence of shows human that cancer. the gut For microbiota instance, infection has an important with Helicobacter role in carcinogenesispylori is considered and theto stimulate pathophysiology the development of human of gastric cancer. carcinoma For instance, by producing infection with virulenceHelicobacter factors pyloriand enhancingis considered chronic to stimulate inflammation the development and subsequent of gastric carcinogenesis carcinoma by [9]. producing Similarly, virulence abundance factors of andFusobacterium enhancing nucleatum chronicinflammation has been found and to subsequentbe increased carcinogenesis in colorectal cancer [9]. Similarly, and it is suggested abundance that of Fusobacteriumthis bacterial nucleatumspecies mighthas beenbe involved found to in be intestinal increased tumorigenesis in colorectal cancerand modulation and it is suggested of the tumor that thismicroenvironment bacterial species [10,11]. might be involved in intestinal tumorigenesis and modulation of the tumor microenvironmentInterestingly, the [10, 11involvement]. of the gut microbiota is not limited to gastrointestinal cancers. It has beenInterestingly, suggested the that involvement gut bacteria of theaffect gut the microbiota development is not limitedof breast to cancer gastrointestinal through modulation cancers. It has of beenestrogen suggested metabolism that gut [12,13]. bacteria aInff ectline the with development this, it ofhas breast been cancer demonstrated through modulation that gut ofmicrobiota estrogen metabolismcomposition, [12 as,13 well]. In as line several with this,functional it has beenfeatur demonstratedes, differ between that gutpostme microbiotanopausal composition, breast cancer as wellpatients as several and healthy functional controls features, [14]. diFurthermore,ffer between Ra postmenopausaljagopala et al. breast(2016) cancerdemonstrated patients that and patients healthy controlswith leukemia [14]. Furthermore, already had Rajagopala reduced microbial et al. (2016) divers demonstratedity and dysbiosis that patients at the withtime leukemiaof diagnosis already and hadcould reduced be distinguished microbial diversityfrom healthy and controls dysbiosis based at the on time their of microbiota diagnosis profiles and could [15]. be distinguished fromWhile healthy there controls are strong based indications on their microbiota for the role profiles of the [15 gut]. microbiota in carcinogenesis, evidence concerningWhile thereits role are strongin the indicationscontext of forcancer the roletreatment of the gutis scarce. microbiota Currently, in carcinogenesis, most of the evidence results concerningconcerning its interactions role in the contextbetween of cancerthe gut treatment microbio ista scarce. and cancer Currently, therapy most oforiginate the results from concerning in-vitro interactionsstudies using between culturing the methods gut microbiota [16–18]. andA comprehens cancer therapyive overview originate of from clinical in-vitro studies studies in this using field culturingof research methods is lacking. [16 –18]. A comprehensive overview of clinical studies in this field of research is lacking.This systematic review summarizes clinical studies investigating the influence of the intestinal microbiotaThis systematic on systemic review cancer summarizes therapy as clinical well as studies the influence investigating of systemic the influence cancerof therapy the intestinal on the microbiotaintestinal microbiota on systemic (Figure cancer 1). therapy We focused as well on as thechemotherapy, influence of immunoth systemic cancererapy, therapyand hormonal on the intestinaltherapy. microbiotaIn addition, (Figure Table1 ).A2 We in focused Appendix on chemotherapy,B provides an immunotherapy, overview of important and hormonal terms therapy.used in Inmicrobiota addition, research. Table A2 Byin Appendixproviding Ba providescomprehensive
Recommended publications
  • The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
    microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Altered Fecal Microbiota Composition in Patients with Major Depressive Disorder
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Brain, Behavior, and Immunity 48 (2015) 186–194 Contents lists available at ScienceDirect Brain, Behavior, and Immunity journal homepage: www.elsevier.com/locate/ybrbi Altered fecal microbiota composition in patients with major depressive disorder Haiyin Jiang a,1, Zongxin Ling a,1, Yonghua Zhang b,1, Hongjin Mao c, Zhanping Ma d, Yan Yin c, ⇑ Weihong Wang e, Wenxin Tang c, Zhonglin Tan c, Jianfei Shi c, Lanjuan Li a,2, Bing Ruan a, a Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China b Department of Traditional Chinese Medicine, The Seventh People’s Hospital of Hangzhou, Hangzhou, Zhejiang 310003, China c Department of Psychiatry, The Seventh People’s Hospital of Hangzhou, Hangzhou, Zhejiang 310003, China d Department of Psychiatry, Psychiatric Hospital of Hengshui, Hebei 053000, China e Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China article info abstract Article history: Studies using animal models have shown that depression affects the stability of the microbiota, but the Received 29 July 2014 actual structure and composition in patients with major depressive disorder (MDD) are not well under- Received in revised form 29 March 2015 stood. Here, we analyzed fecal samples from 46 patients with depression (29 active-MDD and 17 Accepted 29 March 2015 responded-MDD) and 30 healthy controls (HCs). High-throughput pyrosequencing showed that, accord- Available online 13 April 2015 ing to the Shannon index, increased fecal bacterial a-diversity was found in the active-MDD (A-MDD) vs.
    [Show full text]
  • 16S Rdna Full-Length Assembly Sequencing Technology Analysis of Intestinal Microbiome in Polycystic Ovary Syndrome
    ORIGINAL RESEARCH published: 10 May 2021 doi: 10.3389/fcimb.2021.634981 16S rDNA Full-Length Assembly Sequencing Technology Analysis of Intestinal Microbiome in Polycystic Ovary Syndrome Sitong Dong 1, Jiao jiao 1, Shuangshuo Jia 2, Gaoyu Li 1, Wei Zhang 1, Kai Yang 3, Zhen Wang 3, Chao Liu 4,DaLi1 and Xiuxia Wang 1* Edited by: 1 Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China, 2 Department of 3 Tao Lin, Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China, Department of Research and 4 Baylor College of Medicine, Development, Germountx Company, Beijing, China, Department of Biological Information, Kangwei Medical Analysis United States Laboratory, Shenyang, China Reviewed by: Barbara Obermayer-Pietsch, Objective: To study the characteristics and relationship of the gut microbiota in patients Medical University of Graz, Austria with polycystic ovary syndrome (PCOS). Julio Plaza-Diaz, Children’s Hospital of Eastern Ontario Method: We recruited 45 patients with PCOS and 37 healthy women from the (CHEO), Canada Alberto Sola-Leyva, Reproductive Department of Shengjing Hospital. We recorded their clinical indexes, University of Granada, Spain and sequenced their fecal samples by 16S rDNA full-length assembly sequencing Yanli Pang, technology (16S-FAST). Peking University Third Hospital, China Result: We found decreased a diversity and different abundances of a series of microbial *Correspondence: species in patients with PCOS compared to healthy controls. We found LH and AMH were Xiuxia Wang fi [email protected] signi cantly increased in PCOS with Prevotella enterotype when compared to control women with Prevotella enterotype, while glucose and lipid metabolism level remained no Specialty section: significant difference, and situations were opposite in PCOS and control women with This article was submitted to Bacteroides enterotype.
    [Show full text]
  • Macellibacteroides Fermentans Gen. Nov., Sp. Nov., a Member of the Family Porphyromonadaceae Isolated from an Upflow Anaerobic Filter Treating Abattoir Wastewaters
    International Journal of Systematic and Evolutionary Microbiology (2012), 62, 2522–2527 DOI 10.1099/ijs.0.032508-0 Macellibacteroides fermentans gen. nov., sp. nov., a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters Linda Jabari,1,2 Hana Gannoun,2 Jean-Luc Cayol,1 Abdeljabbar Hedi,1 Mitsuo Sakamoto,3 Enevold Falsen,4 Moriya Ohkuma,3 Moktar Hamdi,2 Guy Fauque,1 Bernard Ollivier1 and Marie-Laure Fardeau1 Correspondence 1Aix-Marseille Universite´ du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Case 925, Marie-Laure Fardeau 163 Avenue de Luminy, 13288 Marseille Cedex 9, France [email protected] 2Laboratoire d’Ecologie et de Technologie Microbienne, Institut National des Sciences Applique´es et de Technologie, Centre Urbain Nord, BP 676, 1080 Tunis Cedex, Tunisia 3Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center 2-1 Hirosawa, Wako, Saitama 351-0198, Japan 4CCUG, Culture Collection, Department of Clinical Bacteriology, University of Go¨teborg, 41346 Go¨teborg, Sweden A novel obligately anaerobic, non-spore-forming, rod-shaped mesophilic bacterium, which stained Gram-positive but showed the typical cell wall structure of Gram-negative bacteria, was isolated from an upflow anaerobic filter treating abattoir wastewaters in Tunisia. The strain, designated LIND7HT, grew at 20–45 6C (optimum 35–40 6C) and at pH 5.0–8.5 (optimum pH 6.5–7.5). It did not require NaCl for growth, but was able to grow in the presence of up to 2 % NaCl. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite were not used as terminal electron acceptors.
    [Show full text]
  • Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
    International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis.
    [Show full text]
  • Exploring the Concept of Safety and Tolerability
    SECOND ANNUAL WORKSHOP ON CLINICAL OUTCOME ASSESSMENTS IN CANCER CLINICAL TRIALS April 25, 2017 Bethesda, MD Co-sponsored by Session 1 Exploring the Concepts of Safety and Tolerability: Incorporating the Patient Voice SECOND ANNUAL WORKSHOP ON CLINICAL OUTCOME ASSESSMENTS IN CANCER CLINICAL TRIALS April 25, 2017 Bethesda, MD Co-sponsored by Disclaimer • The views and opinions expressed in the following slides are those of the individual presenters and should not be attributed to their respective organizations/companies, the U.S. Food and Drug Administration or the Critical Path Institute. • These slides are the intellectual property of the individual presenters and are protected under the copyright laws of the United States of America and other countries. Used by permission. All rights reserved. All trademarks are the property of their respective owners. 3 Session Participants Chair • Bindu Kanapuru, MD – Medical Officer, Division of Hematology Products, OHOP, FDA Presenters • James (Randy) Hillard, MD – Professor of Psychiatry, Michigan State University • Crystal Denlinger, MD, FACP – Associate Professor, Department of Hematology/Oncology; Chief, Gastrointestinal Medical Oncology; Director, Survivorship Program; Deputy Director, Phase 1 Program, Fox Chase Cancer Center • Katherine Soltys, MD – Acting Director, Bureau of Medical Sciences, Therapeutic Products Directorate, Health Products and Food Branch, Health Canada • Karen E. Arscott, DO, MSc – Associate Professor of Medicine-Patient Advocate and Survivor, Geisinger Commonwealth
    [Show full text]
  • Gut Microbiota and Inflammation
    Nutrients 2011, 3, 637-682; doi:10.3390/nu3060637 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Review Gut Microbiota and Inflammation Asa Hakansson and Goran Molin * Food Hygiene, Division of Applied Nutrition, Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-22100 Lund, Sweden; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +46-46-222-8327; Fax: +46-46-222-4532. Received: 15 April 2011; in revised form: 19 May 2011 / Accepted: 24 May 2011 / Published: 3 June 2011 Abstract: Systemic and local inflammation in relation to the resident microbiota of the human gastro-intestinal (GI) tract and administration of probiotics are the main themes of the present review. The dominating taxa of the human GI tract and their potential for aggravating or suppressing inflammation are described. The review focuses on human trials with probiotics and does not include in vitro studies and animal experimental models. The applications of probiotics considered are systemic immune-modulation, the metabolic syndrome, liver injury, inflammatory bowel disease, colorectal cancer and radiation-induced enteritis. When the major genomic differences between different types of probiotics are taken into account, it is to be expected that the human body can respond differently to the different species and strains of probiotics. This fact is often neglected in discussions of the outcome of clinical trials with probiotics. Keywords: probiotics; inflammation; gut microbiota 1. Inflammation Inflammation is a defence reaction of the body against injury. The word inflammation originates from the Latin word ―inflammatio‖ which means fire, and traditionally inflammation is characterised by redness, swelling, pain, heat and impaired body functions.
    [Show full text]
  • Supporting Information
    Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs.
    [Show full text]
  • Development of the Equine Hindgut Microbiome in Semi-Feral and Domestic Conventionally-Managed Foals Meredith K
    Tavenner et al. Animal Microbiome (2020) 2:43 Animal Microbiome https://doi.org/10.1186/s42523-020-00060-6 RESEARCH ARTICLE Open Access Development of the equine hindgut microbiome in semi-feral and domestic conventionally-managed foals Meredith K. Tavenner1, Sue M. McDonnell2 and Amy S. Biddle1* Abstract Background: Early development of the gut microbiome is an essential part of neonate health in animals. It is unclear whether the acquisition of gut microbes is different between domesticated animals and their wild counterparts. In this study, fecal samples from ten domestic conventionally managed (DCM) Standardbred and ten semi-feral managed (SFM) Shetland-type pony foals and dams were compared using 16S rRNA sequencing to identify differences in the development of the foal hindgut microbiome related to time and management. Results: Gut microbiome diversity of dams was lower than foals overall and within groups, and foals from both groups at Week 1 had less diverse gut microbiomes than subsequent weeks. The core microbiomes of SFM dams and foals had more taxa overall, and greater numbers of taxa within species groups when compared to DCM dams and foals. The gut microbiomes of SFM foals demonstrated enhanced diversity of key groups: Verrucomicrobia (RFP12), Ruminococcaceae, Fusobacterium spp., and Bacteroides spp., based on age and management. Lactic acid bacteria Lactobacillus spp. and other Lactobacillaceae genera were enriched only in DCM foals, specifically during their second and third week of life. Predicted microbiome functions estimated computationally suggested that SFM foals had higher mean sequence counts for taxa contributing to the digestion of lipids, simple and complex carbohydrates, and protein.
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Bugs, Drugs, and Cancer: Can the Microbiome Be a Potential
    REVIEWS Drug Discovery Today Volume 24, Number 4 April 2019 Reviews Bugs, drugs, and cancer: can the GENE TO SCREEN microbiome be a potential therapeutic target for cancer management? 1,z 2,z 1 1 Biying Chen , Guangye Du , Jiahui Guo and Yanjie Zhang 1 Department of Oncology, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China 2 Department of Pathology, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China Outnumbering our own cells over ten times, gut microbes can even be considered an additional organ. Several studies have explored the association between microbiomes and antitumor drug response. It has been reported that the presence of specific bacteria might modulate cancer progression and the efficacy of anticancer therapeutics. Bacteria-targeting intervention can provide crucial guidance for the design of next-generation antitumor drugs. Here, we review previous findings elucidating the impact of gut microbiomes on cancer treatment and the possible underlying mechanisms. In addition, we examine the role of microbiome manipulation in controlling tumor growth. Finally, we discuss concerns regarding the alteration of the microbiome composition, and the potential approaches to surpass existing limitations. Introduction cantly during life [5] (Fig. 1). Gut microbial density increases from The microbiota is defined as all microorganisms that are associated the proximal to the distal GI tract and along the tissue–lumen axis. with a specific host cellular environment [1]. These microorganisms Similarly, diversity further increases in the same pattern [6]. More- are identified using 16S ribosomal RNA (rRNA)sequencing.
    [Show full text]