Studies of the Secretion of Corticotropin-Releasing Factor and Arginine Vasopressin Into the Hypophysial-Portal Circulation of the Conscious Sheep

Total Page:16

File Type:pdf, Size:1020Kb

Studies of the Secretion of Corticotropin-Releasing Factor and Arginine Vasopressin Into the Hypophysial-Portal Circulation of the Conscious Sheep Studies of the secretion of corticotropin-releasing factor and arginine vasopressin into the hypophysial-portal circulation of the conscious sheep. II. The central noradrenergic and neuropeptide Y pathways cause immediate and prolonged hypothalamic-pituitary-adrenal activation. Potential involvement in the pseudo-Cushing's syndrome of endogenous depression and anorexia nervosa. J P Liu, … , J W Funder, D Engler J Clin Invest. 1994;93(4):1439-1450. https://doi.org/10.1172/JCI117121. Research Article Studies were performed to determine the effects of intracerebroventricular norepinephrine (NE) or neuropeptide Y (NPY) on the ovine hypothalamic-pituitary-adrenal (HPA) axis. NE (50 micrograms) increased mean hypophysial-portal corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) levels (1 h, 1.3- and 2.9-fold; 4 h, 2.2- and 5.7-fold) and caused acute and sustained increases in mean plasma ACTH and cortisol. NPY (50 microgram) also increased mean CRF and AVP levels (1 h, 1.4- and 4.2-fold; 4 h, 1.1- and 1.9-fold), increased pituitary-adrenal activity at 1 h, and caused ACTH hypersecretion at 4 h. When added to cultured ovine anterior pituitary cells, NPY neither increased basal ACTH release nor augmented CRF- or AVP-induced ACTH release. We conclude that: (a) activation of either the central noradrenergic or NPY pathways causes an acute and sustained stimulation of the ovine HPA axis; (b) such activation increases the AVP/CRF ratio, suggesting a dominant role for AVP in the ovine stress response; and (c) the central noradrenergic or NPY systems may cause sustained HPA activation by attenuating or disrupting the glucocorticoid negative feedback on those brain areas concerned with regulation of the HPA axis. The possible roles of the central noradrenergic and NPY systems in the etiology of the hypercortisolemia of endogenous depression and anorexia nervosa are discussed. Find the latest version: https://jci.me/117121/pdf Studies of the Secretion of Corticotropin-releasing Factor and Arginine Vasopressin into the Hypophysial-Portal Circulation of the Conscious Sheep II. The Central Noradrenergic and Neuropeptide Y Pathways Cause Immediate and Prolonged Hypothalamic-Pituitary-Adrenal Activation. Potential Involvement in the Pseudo-Cushing's Syndrome of Endogenous Depression and Anorexia Nervosa Jun-Ping Liu,* lain J. Clarke,* John W. Funder,* and Dennis Engler* *Prince Henry's Institute ofMedical Research, Clayton, Victoria 3168; and the *Baker Medical Research Institute, Prahran, Victoria 3181, Australia Abstract hypophysial-portal circulation ( 1, 2). In the rat, corticotropin- releasing factor (CRF)' is the most potent ACTH secretagogue Studies were performed to determine the effects of intracere- and the only neuropeptide known to augment pro-opiomelan- broventricular norepinephrine (NE) or neuropeptide Y (NPY) ocortin (POMC) biosynthesis (3, 4). The effect of CRF on on the ovine hypothalamic-pituitary-adrenal (HPA) axis. NE ACTH release is potentiated by arginine vasopressin (AVP), (50 gg) increased mean hypophysial-portal corticotropin-re- oxytocin, angiotensin II, and the catecholamines norepineph- leasing factor (CRF) and arginine vasopressin (AVP) levels (1 rine and epinephrine (5, 6). However, it is now apparent that h, 13- and 2.9-fold; 4 h, 2.2- and 5.7-fold) and caused acute and CRF is not the most potent ACTH secretagogue in all species sustained increases in mean plasma ACTH and cortisol. NPY since CRF and AVP are equipotent in their ability to release (50 ,ug) also increased mean CRF and AVP levels (1 h, 1.4- and ACTH from bovine anterior pituitary cells (7), and in the 4.2-fold; 4 h, 1.1- and 1.9-fold), increased pituitary-adrenal ovine species, AVP is a more potent ACTH secretagogue than activity at 1 h, and caused ACI7H hypersecretion at 4 h. When is CRF in vivo and in vitro (8-10). In addition, AVP also added to cultured ovine anterior pituitary cells, NPY neither increases total ACTH accumulation in cultured ovine anterior increased basal ACTH release nor augmented CRF- or AVP- pituitary cells, a finding that has been interpreted to reflect an induced ACIJ7 release. We conclude that: (a) activation of effect of AVP on POMC biosynthesis (10). either the central noradrenergic or NPY pathways causes an The CRF and AVP neurons that project to the median acute and sustained stimulation of the ovine HPA axis; (b) eminence and secrete into the hypophysial-portal circulation such activation increases the AVP/CRF ratio, suggesting a are mainly located in the medial parvocellular subdivision of dominant role for AVP in the ovine stress response; and (c) the the paraventricular hypothalamus (PVHmp) ( 11 ). Recent im- central noradrenergic or NPY systems may cause sustained munohistochemical studies performed in the rat indicate that HPA activation by attenuating or disrupting the glucocorticoid pro-AVP expressing and pro-AVP-deficient CRF perikarya negative feedback on those brain areas concerned with regula- are found in almost equal proportions in the PVH ( 12). Al- tion of the HPA axis. The possible roles ofthe central noradren- though comparative studies have yet to be performed, it is prob- ergic and NPY systems in the etiology of the hypercortisolemia able that similar findings may be obtained in other species. In of endogenous depression and anorexia nervosa are discussed. the rat, the CRF+/AVP+ subpopulation is preferentially con- (J. Clin. Invest. 1994. 93:1439-1450.) Key words: hypotha- centrated in the dorsolateral aspect of the PVHmp (12), and lamic-pituitary-adrenal axis * central facilitation * brain cate- this area is densely innervated by dopamine-,B-hydroxylase cholaminergic pathways * brain neuropeptide Y pathways * psy- (DBH) and phenylethanolamine-N-methyltransferase (PNMT) chiatric illness nerve terminals ( 13). The DBH-immunoreactive (ir) axon ter- minals in the PVH are derived from noradrenergic cell bodies Introduction located in the nucleus ofthe tractus solitarius (NTS, A2 area), the ventrolateral medulla (Al area), and the locus ceruleus It is currently believed that the secretion of ACTH by the ante- (A6 area), whereas the PNMT-ir fibers originate from the C1, rior pituitary is regulated in a unidirectional manner by the C2, and C3 brainstem adrenergic cell groups. The adrenergic hypothalamus. This control is stimulatory in nature and is ef- cell groups are found rostral to the noradrenergic perikarya and fected by a number of neuropeptides that are secreted into the the Cl group appears to be absent from the ovine brain ( 13, 14). There are direct synaptic contacts between these DBH- Address correspondence to Dr. Dennis Engler, Prince Henry's Institute and PNMT-ir nerve fibers and the CRF-stained neurons in the of Medical Research, P.O. Box 152, Clayton, Victoria 3168, Australia. PVH, suggesting that the ascending noradrenergic and adren- Jun-Ping Liu's present address is the Department of Endocrinology, John Hunter Hospital, Newcastle, New South Wales 2310, Australia. ergic pathways are strategically placed to regulate CRF and There was a preliminary report of this work at the 74th Annual AVP secretion and/or biosynthesis ( 15 ). Meeting of the Endocrine Society, San Antonio, TX, June 24-26, 1992. Receivedfor publication 28 August 1993 and in revisedform 2 No- 1. Abbreviations used in this paper: AVP, arginine vasopressin; CRF, vember 1993. corticotropin-releasing factor; DBH, dopamine-fl-hydroxylase; icv, intracerebroventricular; EPI, epinephrine; ir, immunoreactive; LC, J. Clin. Invest. locus ceruleus; NE, norepinephrine; NPY, neuropeptide Y; NTS, nu- © The American Society for Clinical Investigation, Inc. cleus of the tractus solitarius; PNMT, phenylethanolamine-N-methyl- 0021-9738/94/03/1439/12 $2.00 transferase; POMC, pro-opiomelanocortin; PVHmp, paraventricular Volume 93, April 1994, 1439-1450 hypothalamus. Stimulation ofthe Ovine Hypothalamic-Pituitary-Adrenal Axis 1439 Neuropeptide Y (NPY) is a highly conserved 36-residue conscious sheep (36). In those studies, we noted that NE and peptide that was isolated from porcine brain and subsequently EPI caused both an acute and sustained increase in ACTH and found to be widely distributed in the mammalian central and cortisol secretion, and that NE appeared to be the more potent peripheral nervous system ( 16). The concentrations ofNPY in agonist in vivo. Since NE and EPI released only very modest the mammalian brain are higher than those of any previously amounts of ACTH from the anterior pituitary, we concluded discovered neuropeptide and the hypothalamus contains partic- that both catecholamines were acting mainly at suprahypophy- ularly high concentrations of the peptide ( 17-19). Studies us- sial brain sites to increase CRF and AVP secretion. In the stud- ing immunohistochemistry and in situ hybridization histo- ies described below, we have directly measured the effects of chemistry have determined the distribution of NPY-ir peri- intracerebroventricular (icv) NE on the secretion of CRF and karya and fibers throughout the brain ( 17-22). The AVP into the hypophysial-portal circulation as well as ACTH hypothalamic arcuate nucleus contains the highest concentra- and cortisol into the systemic circulation of the conscious tion of NPY-ir perikarya of any brain region, and from this sheep. Since the distribution of NPY-stained varicosities in the nucleus there arises a prominent projection that proceeds ros- parvocellular PVH encompasses the PNMT-ir and DBH-ir in- trally to innervate the PVH (19, 23). NPY is not colocalized put (21 ), we have also assessed the effect of icv NPY on the with either norepinephrine (NE) or epinephrine (EPI) within activity of the entire hypothalamic-pituitary-adrenal axis. A the arcuate nucleus (23), but in the brainstem, NPY is exten- preliminary account of these observations has appeared in ab- sively colocalized within the adrenergic neurons of the C1, C2, stract form (37). and C3 groups, while its correspondence within the noradrener- gic cell groups is less complete (2 1). The NPY-ir axon termi- nals within the PVH are therefore derived from two sources, Methods the arcuate nucleus and the brainstem, and of these two the arcuato-paraventricular projection is the more important.
Recommended publications
  • The Impact of a Plant-Based Diet on Gestational Diabetes:A Review
    antioxidants Review The Impact of a Plant-Based Diet on Gestational Diabetes: A Review Antonio Schiattarella 1 , Mauro Lombardo 2 , Maddalena Morlando 1 and Gianluca Rizzo 3,* 1 Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; [email protected] (A.S.); [email protected] (M.M.) 2 Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; [email protected] 3 Independent Researcher, Via Venezuela 66, 98121 Messina, Italy * Correspondence: [email protected]; Tel.: +39-320-897-6687 Abstract: Gestational diabetes mellitus (GDM) represents a challenging pregnancy complication in which women present a state of glucose intolerance. GDM has been associated with various obstetric complications, such as polyhydramnios, preterm delivery, and increased cesarean delivery rate. Moreover, the fetus could suffer from congenital malformation, macrosomia, neonatal respiratory distress syndrome, and intrauterine death. It has been speculated that inflammatory markers such as tumor necrosis factor-alpha (TNF-α), interleukin (IL) 6, and C-reactive protein (CRP) impact on endothelium dysfunction and insulin resistance and contribute to the pathogenesis of GDM. Nutritional patterns enriched with plant-derived foods, such as a low glycemic or Mediterranean diet, might favorably impact on the incidence of GDM. A high intake of vegetables, fibers, and fruits seems to decrease inflammation by enhancing antioxidant compounds. This aspect contributes to improving insulin efficacy and metabolic control and could provide maternal and neonatal health benefits. Our review aims to deepen the understanding of the impact of a plant-based diet on Citation: Schiattarella, A.; Lombardo, oxidative stress in GDM.
    [Show full text]
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • What Is Pancreatic Polypeptide and What Does It Do?
    What is Pancreatic Polypeptide and what does it do? This document aims to evaluate current understanding of pancreatic polypeptide (PP), a gut hormone with several functions contributing towards the maintenance of energy balance. Successful regulation of energy homeostasis requires sophisticated bidirectional communication between the gastrointestinal tract and central nervous system (CNS; Williams et al. 2000). The coordinated release of numerous gastrointestinal hormones promotes optimal digestion and nutrient absorption (Chaudhri et al., 2008) whilst modulating appetite, meal termination, energy expenditure and metabolism (Suzuki, Jayasena & Bloom, 2011). The Discovery of a Peptide Kimmel et al. (1968) discovered PP whilst purifying insulin from chicken pancreas (Adrian et al., 1976). Subsequent to extraction of avian pancreatic polypeptide (aPP), mammalian homologues bovine (bPP), porcine (pPP), ovine (oPP) and human (hPP), were isolated by Lin and Chance (Kimmel, Hayden & Pollock, 1975). Following extensive observation, various features of this novel peptide witnessed its eventual classification as a hormone (Schwartz, 1983). Molecular Structure PP is a member of the NPY family including neuropeptide Y (NPY) and peptide YY (PYY; Holzer, Reichmann & Farzi, 2012). These biologically active peptides are characterized by a single chain of 36-amino acids and exhibit the same ‘PP-fold’ structure; a hair-pin U-shaped molecule (Suzuki et al., 2011). PP has a molecular weight of 4,240 Da and an isoelectric point between pH6 and 7 (Kimmel et al., 1975), thus carries no electrical charge at neutral pH. Synthesis Like many peptide hormones, PP is derived from a larger precursor of 10,432 Da (Leiter, Keutmann & Goodman, 1984). Isolation of a cDNA construct, synthesized from hPP mRNA, proposed that this precursor, pre-propancreatic polypeptide, comprised 95 residues (Boel et al., 1984) and is processed to produce three products (Leiter et al., 1985); PP, an icosapeptide containing 20-amino acids and a signal peptide (Boel et al., 1984).
    [Show full text]
  • Evolution of the Neuropeptide Y and Opioid Systems and Their Genomic
    It's time to try Defying gravity I think I'll try Defying gravity And you can't pull me down Wicked List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Sundström G, Larsson TA, Brenner S, Venkatesh B, Larham- mar D. (2008) Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes. General and Comparative Endocrinology Feb 1;155(3):705-16. II Sundström G, Larsson TA, Xu B, Heldin J, Lundell I, Lar- hammar D. (2010) Interactions of zebrafish peptide YYb with the neuropeptide Y-family receptors Y4, Y7, Y8a and Y8b. Manuscript III Sundström G, Xu B, Larsson TA, Heldin J, Bergqvist CA, Fredriksson R, Conlon JM, Lundell I, Denver RJ, Larhammar D. (2010) Characterization of the neuropeptide Y system's three peptides and six receptors in the frog Silurana tropicalis. Manu- script IV Dreborg S, Sundström G, Larsson TA, Larhammar D. (2008) Evolution of vertebrate opioid receptors. Proc Natl Acad Sci USA Oct 7;105(40):15487-92. V Sundström G, Dreborg S, Larhammar D. (2010) Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One May 6;5(5):e10512. VI Sundström G, Larsson TA, Larhammar D. (2008) Phylogenet- ic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters. BMC Evolutionary Biology Sep 19;8:254. VII Widmark J, Sundström G, Ocampo Daza D, Larhammar D. (2010) Differential evolution of voltage-gated sodium channels in tetrapods and teleost fishes.
    [Show full text]
  • Neuropeptide Y and Peptide YY in Association with Depressive
    nutrients Article Neuropeptide Y and Peptide YY in Association with Depressive Symptoms and Eating Behaviours in Adolescents across the Weight Spectrum: From Anorexia Nervosa to Obesity Marta Tyszkiewicz-Nwafor 1,* , Katarzyna Jowik 1, Agata Dutkiewicz 1, Agata Krasinska 2 , Natalia Pytlinska 1, Monika Dmitrzak-Weglarz 3, Marta Suminska 2 , Agata Pruciak 4, Bogda Skowronska 2,† and Agnieszka Slopien 1,† 1 Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; [email protected] (K.J.); [email protected] (A.D.); [email protected] (N.P.); [email protected] (A.S.) 2 Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, 61-701 Poznan, Poland; [email protected] (A.K.); [email protected] (M.S.); [email protected] (B.S.) 3 Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; [email protected] 4 Institute of Plant Protection—National Research Institute, Research Centre of Quarantine, Invasive and Genetically Modified Organisms, 60-318 Poznan, Poland; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Citation: Tyszkiewicz-Nwafor, M.; Jowik, K.; Dutkiewicz, A.; Krasinska, Abstract: Neuropeptide Y (NPY) and peptide YY (PYY) are involved in metabolic regulation. The A.; Pytlinska, N.; Dmitrzak-Weglarz, purpose of the study was to assess the serum levels of NPY and PYY in adolescents with anorexia M.; Suminska, M.; Pruciak, A.; nervosa (AN) or obesity (OB), as well as in a healthy control group (CG). The effects of potential Skowronska, B.; Slopien, A. confounders on their concentrations were also analysed.
    [Show full text]
  • Nutrition Research Reviews (2014), 27, 186–197 Doi:10.1017/S0954422414000109 Q the Author 2014
    Nutrition Research Reviews (2014), 27, 186–197 doi:10.1017/S0954422414000109 q The Author 2014 Factors affecting circulating levels of peptide YY in humans: a comprehensive review Jamie A. Cooper* Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA Abstract As obesity continues to be a global epidemic, research into the mechanisms of hunger and satiety and how those signals act to regulate energy homeostasis persists. Peptide YY (PYY) is an acute satiety signal released upon nutrient ingestion and has been shown to decrease food intake when administered exogenously. More recently, investigators have studied how different factors influence PYY release and circulating levels in humans. Some of these factors include exercise, macronutrient composition of the diet, body-weight status, adiposity levels, sex, race and ageing. The present article provides a succinct and comprehensive review of the recent literature published on the different factors that influence PYY release and circulating levels in humans. Where human data are insufficient, evidence in animal or cell models is summarised. Additionally, the present review explores the recent findings on PYY responses to different dietary fatty acids and how this new line of research will make an impact on future studies on PYY. Human demographics, such as sex and age, do not appear to influence PYY levels. Conversely, adiposity or BMI, race and acute exercise all influence circulating PYY levels. Both dietary fat and protein strongly stimulate PYY release. Furthermore, MUFA appear to result in a smaller PYY response compared with SFA and PUFA. PYY levels appear to be affected by acute exercise, macronutrient composition, adiposity, race and the composition of fatty acids from dietary fat.
    [Show full text]
  • Appetite Hormones and the Transition to Hyperphagia in Children with Prader-Willi Syndrome
    International Journal of Obesity (2012) 36, 1564 --1570 & 2012 Macmillan Publishers Limited All rights reserved 0307-0565/12 www.nature.com/ijo ORIGINAL ARTICLE Appetite hormones and the transition to hyperphagia in children with Prader-Willi syndrome AP Goldstone1, AJ Holland2, JV Butler2 and JE Whittington2 OBJECTIVE: Prader--Willi syndrome (PWS) is a genetic neurodevelopmental disorder with several nutritional phases during childhood proceeding from poor feeding, through normal eating without and with obesity, to hyperphagia and life-threatening obesity, with variable ages of onset. We investigated whether differences in appetite hormones may explain the development of abnormal eating behaviour in young children with PWS. SUBJECTS: In this cross-sectional study, children with PWS (n ¼ 42) and controls (n ¼ 9) aged 7 months--5 years were recruited. Mothers were interviewed regarding eating behaviour, and body mass index (BMI) was calculated. Fasting plasma samples were assayed for insulin, leptin, glucose, peptide YY (PYY), ghrelin and pancreatic polypeptide (PP). RESULTS: There was no significant relationship between eating behaviour in PWS subjects and the levels of any hormones or insulin resistance, independent of age. Fasting plasma leptin levels were significantly higher (mean±s.d.: 22.6±12.5 vs 1.97±0.79 ng mlÀ1, P ¼ 0.005), and PP levels were significantly lower (22.6±12.5 vs 69.8±43.8 pmol lÀ1, Po0.001) in the PWS group compared with the controls, and this was independent of age, BMI, insulin resistance or IGF-1 levels. However, there was no significant difference in plasma insulin, insulin resistance or ghrelin levels between groups, though PYY declined more rapidly with age but not BMI in PWS subjects.
    [Show full text]
  • Responses of Python Gastrointestinal Regulatory Peptides to Feeding
    Responses of python gastrointestinal regulatory peptides to feeding Stephen M. Secor*†‡, Drew Fehsenfeld§, Jared Diamond*, and Thomas E. Adrian§¶ *Department of Physiology, University of California School of Medicine, Los Angeles, CA 90095-1751; and §Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178 Contributed by Jared Diamond, October 3, 2001 In the Burmese python (Python molurus), the rapid up-regulation intestine begins to respond (in function and morphology) to of gastrointestinal (GI) function and morphology after feeding, and feeding within a few hours, before any of the ingested meal has subsequent down-regulation on completing digestion, are ex- reached the intestine (5). (ii) Python intestinal segments that pected to be mediated by GI hormones and neuropeptides. Hence, have been surgically isolated from contact with intestinal nutri- we examined postfeeding changes in plasma and tissue concen- ents but still retain their neurovascular supply continue to trations of 11 GI hormones and neuropeptides in the python. up-regulate nutrient transport after feeding (6). (iii) Eight Circulating levels of cholecystokinin (CCK), glucose-dependent in- python GI peptides have been identified and sequenced (8, 9). sulinotropic peptide (GIP), glucagon, and neurotensin increase by Hence, the python model offers an attractive alternative to respective factors of 25-, 6-, 6-, and 3.3-fold within 24 h after mammals for resolving uncertainties about actions of GI hor- feeding. In digesting pythons, the regulatory peptides neuroten- mones and neuropeptides. sin, somatostatin, motilin, and vasoactive intestinal peptide occur In this article, we describe plasma concentrations of four largely in the stomach, GIP and glucagon in the pancreas, and CCK peptides [cholecystokinin (CCK), glucose-dependent insulino- and substance P in the small intestine.
    [Show full text]
  • Combined GLP-1, Oxyntomodulin, and Peptide YY Improves Body
    EMERGING THERAPIES: DRUGS AND REGIMENS Diabetes Care 1 Preeshila Behary,1 George Tharakan,1 Combined GLP-1, Oxyntomodulin, Kleopatra Alexiadou,1 Nicholas Johnson,2 Nicolai J. Wewer Albrechtsen,3,4 and Peptide YY Improves Julia Kenkre,1 Joyceline Cuenco,1 David Hope,1 Oluwaseun Anyiam,1 Body Weight and Glycemia in Sirazum Choudhury,1 Haya Alessimii,1 Ankur Poddar,1 James Minnion,1 Obesity and Prediabetes/Type Chedie Doyle,1 Gary Frost,1 Carel Le Roux,1,5 Sanjay Purkayastha,6 Krishna Moorthy,6 2 Diabetes: A Randomized Waljit Dhillo,1 Jens J. Holst,7 Ahmed R. Ahmed,6 A. Toby Prevost,2 Single-Blinded Placebo Stephen R. Bloom,1 and Tricia M. Tan1 Controlled Study https://doi.org/10.2337/dc19-0449 OBJECTIVE 1Section of Investigative Medicine, Imperial Col- Roux-en-Y gastric bypass (RYGB) augments postprandial secretion of glucagon-like lege London, London, U.K. 2Imperial Clinical Trials Unit, Imperial College peptide 1 (GLP-1), oxyntomodulin (OXM), and peptide YY (PYY). Subcutaneous London, London, U.K. infusion of these hormones (“GOP”), mimicking postprandial levels, reduces energy 3Department of Clinical Biochemistry, Rigshospi- intake. Our objective was to study the effects of GOP on glycemia and body weight talet, Copenhagen, Denmark 4 when given for 4 weeks to patients with diabetes and obesity. Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Den- RESEARCH DESIGN AND METHODS mark In this single-blinded mechanistic study, obese patients with prediabetes/diabetes 5School of Medicine, University College Dublin, were randomized to GOP (n = 15) or saline (n = 11) infusion for 4 weeks.
    [Show full text]
  • The Central Melanocortin System and the Integration of Short- and Long-Term Regulators of Energy Homeostasis
    The Central Melanocortin System and the Integration of Short- and Long-term Regulators of Energy Homeostasis KATE L.J. ELLACOTT AND ROGER D. CONE Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239-3098 ABSTRACT The importance of the central melanocortin system in the regulation of energy balance is highlighted by studies in transgenic animals and humans with defects in this system. Mice that are engineered to be deficient for the melanocortin-4 receptor (MC4R) or pro-opiomelanocortin (POMC) and those that overexpress agouti or agouti-related protein (AgRP) all have a characteristic obese phenotype typified by hyperphagia, increased linear growth, and metabolic defects. Similar attributes are seen in humans with haploinsufficiency of the MC4R. The central melanocortin system modulates energy homeostasis through the actions of the agonist, ␣-melanocyte-stimulating hormone (␣-MSH), a POMC cleavage product, and the endogenous antagonist AgRP on the MC3R and MC4R. POMC is expressed at only two locations in the brain: the arcuate nucleus of the hypothalamus (ARC) and the nucleus of the tractus solitarius (NTS) of the brainstem. This chapter will discuss these two populations of POMC neurons and their contribution to energy homeostasis. We will examine the involvement of the central melanocortin system in the incorporation of information from the adipostatic hormone leptin and acute hunger and satiety factors such as peptide YY (PYY3–36) and ghrelin via a neuronal network involving POMC/cocaine and amphetamine-related transcript (CART) and neuropeptide Y (NPY)/AgRP neurons. We will discuss evidence for the existence of a similar network of neurons in the NTS and propose a model by which this information from the ARC and NTS centers may be integrated directly or via adipostatic centers such as the paraventricular nucleus of the hypothalamus (PVH).
    [Show full text]
  • Peptide YY (PYY)3–36 Modulates Thyrotropin Secretion in Rats
    459 Peptide YY (PYY)3–36 modulates thyrotropin secretion in rats K J Oliveira, G S M Paula, R H Costa-e-Sousa, L L Souza, D C Moraes, F H Curty and C C Pazos-Moura Laborato´rio de Endocrinologia Molecular, Instituto de Biofı´sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil (Requests for offprints should be addressed to C C Pazos-Moura; Email: [email protected]) Abstract Peptide YY (PYY)3-36 is a gut-derived hormone, with a However, in fasted rats, PYY3-36 at both doses elicited a proposed role in central mediation of postprandial satiety signals, significant rise (approximately twofold increase, P!0.05) in as well as in long-term energy balance. In addition, recently,the serum TSH observed 15 min after the hormone injection. ability of the hormone to regulate gonadotropin secretion, PYY3-36 treatment did not modify significantly serum T4,T3,or acting at pituitary and at hypothalamus has been reported. Here, leptin. Therefore, in the present paper, we have demonstrated we examined PYY3-36 effects on thyrotropin (TSH) secretion, that the gut hormone PYY3-36 acts directly on the pituitary both in vitro and in vivo.PYY3-36-incubated rat pituitary glands gland to inhibit TSH release, and in the fasting situation, in vivo, showed a dose-dependent decrease in TSH release, with 44 and when serum PYY3-36 is reduced, the activity of thyroid axis is K K 62% reduction at 10 8 and 10 6 M(P!0.05 and P!0.001 reduced as well.
    [Show full text]
  • Genome Sequencing and Transcriptome Analyses of the Siberian Hamster Hypothalamus Identify Mechanisms for Seasonal Energy Balance
    Genome sequencing and transcriptome analyses of the Siberian hamster hypothalamus identify mechanisms for seasonal energy balance Riyue Baoa,b, Kenneth G. Onishic, Elisabetta Tollad, Fran J. P. Eblinge, Jo E. Lewisf, Richard L. Andersong, Perry Barrettg, Brian J. Prendergastc,h, and Tyler J. Stevensond,1 aCenter for Research Informatics, University of Chicago, Chicago, IL 60637; bDepartment of Pediatrics, University of Chicago, Chicago, IL 60637; cInstitute for Mind and Biology, University of Chicago, Chicago, IL 60637; dInstitute for Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom; eSchool of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; fInstitute of Metabolic Sciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; gRowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; and hDepartment of Psychology, University of Chicago, Chicago, IL 60637 Edited by Donald Pfaff, The Rockefeller University, New York, NY, and approved May 13, 2019 (received for review February 18, 2019) Synthesis of triiodothyronine (T3) in the hypothalamus induces service of timing seasonal biology (6, 7). Enzymes that act on marked seasonal neuromorphology changes across taxa. How thyroid hormones, in particular the iodothyronine deiodinases species-specific responses to T3 signaling in the CNS drive annual (type 2 and 3; DIO2 and DIO3, respectively) respond to seasonal changes in body weight and energy balance remains uncharacterized. changes in photoperiod-driven melatonin secretion and govern These experiments sequenced and annotated the Siberian hamster peri-hypothalamic catabolism of the prohormone thyroxine (T4), (Phodopus sungorus) genome, a model organism for seasonal phys- which limits T3-driven changes in neuroendocrine activity.
    [Show full text]