Effects of Corticotropin-Releasing Factor on Feeding and Pancreatic Polypeptide Response in the Dog
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Impact of a Plant-Based Diet on Gestational Diabetes:A Review
antioxidants Review The Impact of a Plant-Based Diet on Gestational Diabetes: A Review Antonio Schiattarella 1 , Mauro Lombardo 2 , Maddalena Morlando 1 and Gianluca Rizzo 3,* 1 Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; [email protected] (A.S.); [email protected] (M.M.) 2 Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; [email protected] 3 Independent Researcher, Via Venezuela 66, 98121 Messina, Italy * Correspondence: [email protected]; Tel.: +39-320-897-6687 Abstract: Gestational diabetes mellitus (GDM) represents a challenging pregnancy complication in which women present a state of glucose intolerance. GDM has been associated with various obstetric complications, such as polyhydramnios, preterm delivery, and increased cesarean delivery rate. Moreover, the fetus could suffer from congenital malformation, macrosomia, neonatal respiratory distress syndrome, and intrauterine death. It has been speculated that inflammatory markers such as tumor necrosis factor-alpha (TNF-α), interleukin (IL) 6, and C-reactive protein (CRP) impact on endothelium dysfunction and insulin resistance and contribute to the pathogenesis of GDM. Nutritional patterns enriched with plant-derived foods, such as a low glycemic or Mediterranean diet, might favorably impact on the incidence of GDM. A high intake of vegetables, fibers, and fruits seems to decrease inflammation by enhancing antioxidant compounds. This aspect contributes to improving insulin efficacy and metabolic control and could provide maternal and neonatal health benefits. Our review aims to deepen the understanding of the impact of a plant-based diet on Citation: Schiattarella, A.; Lombardo, oxidative stress in GDM. -
Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain. -
Effect of Atropine on Vagal Release of Gastrin and Pancreatic Polypeptide
Effect of Atropine on Vagal Release of Gastrin and Pancreatic Polypeptide MARK FELDMAN, CHARLES T. RICHARDSON, IAN L. TAYLOR, and JOHN H. WALSH, Departments of Internal Medicine, Veterans Administration Hospital, Dallas, Texas 75216; University of California at Los Angeles Health Science Center, Los Angeles, California 90093; and The University of Texas Health Science Center at Dallas, Southwestern Medical School, Dallas, Texas 75235 A B S TRA C T We studied the effect of several doses of the rise in serum gastrin concentration induced by in- atropine on the serum gastrin and pancreatic poly- sulin hypoglycemia was further increased by atropine peptide responses to vagal stimulation in healthy premedication (1). In addition, several workers have human subjects. Vagal stimulation was induced by shown that atropine increases the serum gastrin con- sham feeding. To eliminate the effect of gastric acidity centration after an eaten meal (2-4). These observa- on gastrin release, gastric pH was held constant (pH 5) tions, together with the fact that basal and postprandial and acid secretion was measured by intragastric titra- gastrin levels rise after vagotomy (5-7), have led to tion. Although a small dose of atropine (2.3 ,ug/kg) speculation that the vagus nerve can inhibit, as well as significantly inhibited the acid secretory response and stimulate, gastrin release. completely abolished the pancreatic polypeptide re- For several reasons, however, none of these observa- sponse to sham feeding, this dose of atropine signifi- tions proves that the vagus nerve actually inhibits cantly enhanced the gastrin response. Higher atropine gastrin release under normal circumstances. First, doses (7.0 and 21.0,g/kg) had effects on gastrin and studies using insulin hypoglycemia as a vagal stimulant pancreatic polypeptide release which were similar to must be interpreted with caution because there is the 2.3-pAg/kg dose. -
Identification of Neuropeptide Receptors Expressed By
RESEARCH ARTICLE Identification of Neuropeptide Receptors Expressed by Melanin-Concentrating Hormone Neurons Gregory S. Parks,1,2 Lien Wang,1 Zhiwei Wang,1 and Olivier Civelli1,2,3* 1Department of Pharmacology, University of California Irvine, Irvine, California 92697 2Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697 3Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California 92697 ABSTRACT the MCH system or demonstrated high expression lev- Melanin-concentrating hormone (MCH) is a 19-amino- els in the LH and ZI, were tested to determine whether acid cyclic neuropeptide that acts in rodents via the they are expressed by MCH neurons. Overall, 11 neuro- MCH receptor 1 (MCHR1) to regulate a wide variety of peptide receptors were found to exhibit significant physiological functions. MCH is produced by a distinct colocalization with MCH neurons: nociceptin/orphanin population of neurons located in the lateral hypothala- FQ opioid receptor (NOP), MCHR1, both orexin recep- mus (LH) and zona incerta (ZI), but MCHR1 mRNA is tors (ORX), somatostatin receptors 1 and 2 (SSTR1, widely expressed throughout the brain. The physiologi- SSTR2), kisspeptin recepotor (KissR1), neurotensin cal responses and behaviors regulated by the MCH sys- receptor 1 (NTSR1), neuropeptide S receptor (NPSR), tem have been investigated, but less is known about cholecystokinin receptor A (CCKAR), and the j-opioid how MCH neurons are regulated. The effects of most receptor (KOR). Among these receptors, six have never classical neurotransmitters on MCH neurons have been before been linked to the MCH system. Surprisingly, studied, but those of most neuropeptides are poorly several receptors thought to regulate MCH neurons dis- understood. -
What Is Pancreatic Polypeptide and What Does It Do?
What is Pancreatic Polypeptide and what does it do? This document aims to evaluate current understanding of pancreatic polypeptide (PP), a gut hormone with several functions contributing towards the maintenance of energy balance. Successful regulation of energy homeostasis requires sophisticated bidirectional communication between the gastrointestinal tract and central nervous system (CNS; Williams et al. 2000). The coordinated release of numerous gastrointestinal hormones promotes optimal digestion and nutrient absorption (Chaudhri et al., 2008) whilst modulating appetite, meal termination, energy expenditure and metabolism (Suzuki, Jayasena & Bloom, 2011). The Discovery of a Peptide Kimmel et al. (1968) discovered PP whilst purifying insulin from chicken pancreas (Adrian et al., 1976). Subsequent to extraction of avian pancreatic polypeptide (aPP), mammalian homologues bovine (bPP), porcine (pPP), ovine (oPP) and human (hPP), were isolated by Lin and Chance (Kimmel, Hayden & Pollock, 1975). Following extensive observation, various features of this novel peptide witnessed its eventual classification as a hormone (Schwartz, 1983). Molecular Structure PP is a member of the NPY family including neuropeptide Y (NPY) and peptide YY (PYY; Holzer, Reichmann & Farzi, 2012). These biologically active peptides are characterized by a single chain of 36-amino acids and exhibit the same ‘PP-fold’ structure; a hair-pin U-shaped molecule (Suzuki et al., 2011). PP has a molecular weight of 4,240 Da and an isoelectric point between pH6 and 7 (Kimmel et al., 1975), thus carries no electrical charge at neutral pH. Synthesis Like many peptide hormones, PP is derived from a larger precursor of 10,432 Da (Leiter, Keutmann & Goodman, 1984). Isolation of a cDNA construct, synthesized from hPP mRNA, proposed that this precursor, pre-propancreatic polypeptide, comprised 95 residues (Boel et al., 1984) and is processed to produce three products (Leiter et al., 1985); PP, an icosapeptide containing 20-amino acids and a signal peptide (Boel et al., 1984). -
Evolution of the Neuropeptide Y and Opioid Systems and Their Genomic
It's time to try Defying gravity I think I'll try Defying gravity And you can't pull me down Wicked List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Sundström G, Larsson TA, Brenner S, Venkatesh B, Larham- mar D. (2008) Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes. General and Comparative Endocrinology Feb 1;155(3):705-16. II Sundström G, Larsson TA, Xu B, Heldin J, Lundell I, Lar- hammar D. (2010) Interactions of zebrafish peptide YYb with the neuropeptide Y-family receptors Y4, Y7, Y8a and Y8b. Manuscript III Sundström G, Xu B, Larsson TA, Heldin J, Bergqvist CA, Fredriksson R, Conlon JM, Lundell I, Denver RJ, Larhammar D. (2010) Characterization of the neuropeptide Y system's three peptides and six receptors in the frog Silurana tropicalis. Manu- script IV Dreborg S, Sundström G, Larsson TA, Larhammar D. (2008) Evolution of vertebrate opioid receptors. Proc Natl Acad Sci USA Oct 7;105(40):15487-92. V Sundström G, Dreborg S, Larhammar D. (2010) Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One May 6;5(5):e10512. VI Sundström G, Larsson TA, Larhammar D. (2008) Phylogenet- ic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters. BMC Evolutionary Biology Sep 19;8:254. VII Widmark J, Sundström G, Ocampo Daza D, Larhammar D. (2010) Differential evolution of voltage-gated sodium channels in tetrapods and teleost fishes. -
Neuropeptide Y and Peptide YY in Association with Depressive
nutrients Article Neuropeptide Y and Peptide YY in Association with Depressive Symptoms and Eating Behaviours in Adolescents across the Weight Spectrum: From Anorexia Nervosa to Obesity Marta Tyszkiewicz-Nwafor 1,* , Katarzyna Jowik 1, Agata Dutkiewicz 1, Agata Krasinska 2 , Natalia Pytlinska 1, Monika Dmitrzak-Weglarz 3, Marta Suminska 2 , Agata Pruciak 4, Bogda Skowronska 2,† and Agnieszka Slopien 1,† 1 Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; [email protected] (K.J.); [email protected] (A.D.); [email protected] (N.P.); [email protected] (A.S.) 2 Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, 61-701 Poznan, Poland; [email protected] (A.K.); [email protected] (M.S.); [email protected] (B.S.) 3 Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznan, Poland; [email protected] 4 Institute of Plant Protection—National Research Institute, Research Centre of Quarantine, Invasive and Genetically Modified Organisms, 60-318 Poznan, Poland; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Citation: Tyszkiewicz-Nwafor, M.; Jowik, K.; Dutkiewicz, A.; Krasinska, Abstract: Neuropeptide Y (NPY) and peptide YY (PYY) are involved in metabolic regulation. The A.; Pytlinska, N.; Dmitrzak-Weglarz, purpose of the study was to assess the serum levels of NPY and PYY in adolescents with anorexia M.; Suminska, M.; Pruciak, A.; nervosa (AN) or obesity (OB), as well as in a healthy control group (CG). The effects of potential Skowronska, B.; Slopien, A. confounders on their concentrations were also analysed. -
Insulin-Secreting Non-Islet Cells Are Resistant to Autoimmune Destruction (Transgenic Models/Diabetes/Intermediate Pituitary/Insulin Gene Expression) MYRA A
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 8595-8600, August 1996 Medical Sciences Insulin-secreting non-islet cells are resistant to autoimmune destruction (transgenic models/diabetes/intermediate pituitary/insulin gene expression) MYRA A. LIPES*, ERIC M. COOPER, ROBERT SKELLY, CHRISTOPHER J. RHODES, EDWARD BOSCHETrI, GORDON C. WEIR, AND ALBERTO M. DAVALLIt Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School, Boston, MA 02215 Communicated by Roger H. Unger, The University of Texas Southwestern Medical Center, Dallas, IX, April 2, 1996 (received for review December 11, 1995) ABSTRACT Transgenic nonobese diabetic mice were cre- niques, to POMC-expressing pituitary cells in NOD mice. We ated in which insulin expression was targeted to proopiomela- demonstrate that the transgenic intermediate lobe pituitary cells nocortin-expressing pituitary cells. Proopiomelanocortin- efficiently process and secrete mature insulin via a regulated expressing intermediate lobe pituitary cells efficiently secrete secretory pathway and yet, unlike insulin-producing 13 cells, they fully processed, mature insulin via a regulated secretory path- are resistant to immune-mediated destruction. In view of these way, similar to islet .8 cells. However, in contrast to the insulin- immunological and biochemical features, the feasibility of using producing islet (3 cells, the insulin-producing intermediate lobe these cells as an insulin gene delivery system in IDDM was tested. pituitaries are not targeted or destroyed by cells of the immune The methodology used may provide a novel means of identifying system. Transplantation of the transgenic intermediate lobe other B3-cell autoantigens targeted by the autoimmune cascade. tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic METHODS symptoms. -
Nutrition Research Reviews (2014), 27, 186–197 Doi:10.1017/S0954422414000109 Q the Author 2014
Nutrition Research Reviews (2014), 27, 186–197 doi:10.1017/S0954422414000109 q The Author 2014 Factors affecting circulating levels of peptide YY in humans: a comprehensive review Jamie A. Cooper* Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA Abstract As obesity continues to be a global epidemic, research into the mechanisms of hunger and satiety and how those signals act to regulate energy homeostasis persists. Peptide YY (PYY) is an acute satiety signal released upon nutrient ingestion and has been shown to decrease food intake when administered exogenously. More recently, investigators have studied how different factors influence PYY release and circulating levels in humans. Some of these factors include exercise, macronutrient composition of the diet, body-weight status, adiposity levels, sex, race and ageing. The present article provides a succinct and comprehensive review of the recent literature published on the different factors that influence PYY release and circulating levels in humans. Where human data are insufficient, evidence in animal or cell models is summarised. Additionally, the present review explores the recent findings on PYY responses to different dietary fatty acids and how this new line of research will make an impact on future studies on PYY. Human demographics, such as sex and age, do not appear to influence PYY levels. Conversely, adiposity or BMI, race and acute exercise all influence circulating PYY levels. Both dietary fat and protein strongly stimulate PYY release. Furthermore, MUFA appear to result in a smaller PYY response compared with SFA and PUFA. PYY levels appear to be affected by acute exercise, macronutrient composition, adiposity, race and the composition of fatty acids from dietary fat. -
Biosynthesis and Release of Thyrotropin-Releasing Hormone Immunoreactivity in Rat Pancreatic Islets in Organ Culture
Biosynthesis and release of thyrotropin-releasing hormone immunoreactivity in rat pancreatic islets in organ culture. Effects of age, glucose, and streptozotocin. L O Dolva, … , B S Welinder, K F Hanssen J Clin Invest. 1983;72(6):1867-1873. https://doi.org/10.1172/JCI111149. Research Article Thyrotropin-releasing hormone immunoreactivity (TRH-IR) was measured in isolated islets and in medium from rat pancreatic islets maintained in organ culture. TRH-IR in methanol extracts of both islets and culture medium was eluted in the same position as synthetic TRH by ion-exchange and gel chromatography and exhibited dilution curves parallel with synthetic TRH in radioimmunoassay. [3H]Histidine was incorporated into a component that reacted with TRH antiserum and had the same retention time as synthetic TRH on reversed-phase high-performance liquid chromatography. A continuous release of TRH-IR into the culture medium was observed from islets of both 5-d-old (newborn) and 30-d-old (adult) rats with a maximum on the second day of culture (28.7 +/- 7.0 and 13.3 +/- 3.6 fmol/islet per d, respectively). The content of TRH-IR was higher in freshly isolated islets from newborn rats (22.4 +/- 2.3 fmol/islet) than in adult rat islets, which, however, increased their content from 1.3 +/- 0.5 to 7.0 +/- 0.5 fmol/islet during the first 3 d of culture. Adult rat islets maintained in medium with 20 mM glucose released significantly more TRH-IR than islets in 3.3 mM glucose medium (13.0 +/- 0.7 vs. 4.3 +/- 0.3 fmol/islet per d). -
Appetite Hormones and the Transition to Hyperphagia in Children with Prader-Willi Syndrome
International Journal of Obesity (2012) 36, 1564 --1570 & 2012 Macmillan Publishers Limited All rights reserved 0307-0565/12 www.nature.com/ijo ORIGINAL ARTICLE Appetite hormones and the transition to hyperphagia in children with Prader-Willi syndrome AP Goldstone1, AJ Holland2, JV Butler2 and JE Whittington2 OBJECTIVE: Prader--Willi syndrome (PWS) is a genetic neurodevelopmental disorder with several nutritional phases during childhood proceeding from poor feeding, through normal eating without and with obesity, to hyperphagia and life-threatening obesity, with variable ages of onset. We investigated whether differences in appetite hormones may explain the development of abnormal eating behaviour in young children with PWS. SUBJECTS: In this cross-sectional study, children with PWS (n ¼ 42) and controls (n ¼ 9) aged 7 months--5 years were recruited. Mothers were interviewed regarding eating behaviour, and body mass index (BMI) was calculated. Fasting plasma samples were assayed for insulin, leptin, glucose, peptide YY (PYY), ghrelin and pancreatic polypeptide (PP). RESULTS: There was no significant relationship between eating behaviour in PWS subjects and the levels of any hormones or insulin resistance, independent of age. Fasting plasma leptin levels were significantly higher (mean±s.d.: 22.6±12.5 vs 1.97±0.79 ng mlÀ1, P ¼ 0.005), and PP levels were significantly lower (22.6±12.5 vs 69.8±43.8 pmol lÀ1, Po0.001) in the PWS group compared with the controls, and this was independent of age, BMI, insulin resistance or IGF-1 levels. However, there was no significant difference in plasma insulin, insulin resistance or ghrelin levels between groups, though PYY declined more rapidly with age but not BMI in PWS subjects. -
Views of the NIDA, NINDS Or the National Summed Across the Three Auditory Forebrain Lobule Sec- Institutes of Health
Xie et al. BMC Biology 2010, 8:28 http://www.biomedcentral.com/1741-7007/8/28 RESEARCH ARTICLE Open Access The zebra finch neuropeptidome: prediction, detection and expression Fang Xie1, Sarah E London2,6, Bruce R Southey1,3, Suresh P Annangudi1,6, Andinet Amare1, Sandra L Rodriguez-Zas2,3,5, David F Clayton2,4,5,6, Jonathan V Sweedler1,2,5,6* Abstract Background: Among songbirds, the zebra finch (Taeniopygia guttata) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions. Results: Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; in situ hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus.