Opportunity Prepares for Launch Odyssey Orbiter Reveals Mars' Icy

Total Page:16

File Type:pdf, Size:1020Kb

Opportunity Prepares for Launch Odyssey Orbiter Reveals Mars' Icy Inside July 3, 2003 Volume 33 Number 13 News Briefs . 2 One NASA: Columbia recovery . 3 Special Events Calendar . 2 Passings, Letters . 4 This Month in History . 2 Retirees, Classifieds . 4 Jet Propulsion Laboratory The launch of “Opportunity,” circumference, would be rein- accelerate the spacecraft in a the second of JPL’s twin Mars stalled. direction perpendicular to the Exploration Rovers, has been Following its scheduled Jan. rotation axis fired in pulses Opportunity postponed to no earlier than 25, 2004 landing in Meridiani timed to the spacecraft’s rota- Saturday, July 5. Planum, Opportunity will join its tion rate—with 264 pulses total- prepares NASA decided on Monday, twin, Spirit, in a quest to under- ing about 22 minutes of burn June 30 to take additional time stand the role of water on Mars. time. The total maneuver in- to perform tests on the process Plans call for each rover to creased Spirit’s speed by 14.3 for launch used to bond the cork insulation operate for at least three meters per second (32 mph). to the surface of the Delta II months. At the end of the trajectory launch vehicle. These tests were Spirit, which was launched correction, Spirit performed an scheduled to be completed late June 10, performed its first attitude turn that adjusted its Wednesday, July 2. trajectory correction maneuver orientation in space to maintain The launch times on July 5 are June 20. the optimal combination of 7:51 p.m. and 8:34 p.m. PDT. Following commands from the facing its solar array toward the NASA engineers inspected the Mars Exploration Rover flight Sun and pointing its low-gain first stage of the Delta vehicle team at JPL, Spirit first per- antenna toward Earth. All sys- Opportunity, the second after a June 28 attempt to formed a calibration and check tems on the spacecraft are in Mars Exploration launch Opportunity, and found of its eight thrusters, then fired good health. that a lower band of cork insula- the thrusters to fine-tune its Spirit’s next trajectory correc- Rover, required repairs tion that was removed and re- flight path toward Mars. tion maneuver is scheduled for and will launch no placed had limited areas that The main burn had two com- Aug. 1 and its next attitude turn earlier than July 5. debonded from the surface of ponents. Thrusters that acceler- for July 22. the vehicle. ate the rotating spacecraft along Spirit will arrive at Mars on NASA announced Sunday, June the direction of the rotation axis Jan. 4, 2004, Universal Time 29 that sections of this band, burned steadily for about 28 (evening of Jan. 3, 2004, East- approximately 10 percent of the minutes. Then, thrusters that ern and Pacific times). JPL’s Mars Odyssey spacecraft is revealing new details about the other hand, the neutron detector loses sensitivity to measure carbon- intriguing, dynamic character of the frozen layers now known to domi- dioxide thickness greater than 1 meter (3 feet), where the altimeter Odyssey nate the high northern latitudes of Mars. The implications have a bear- obtained reliable data. Working together, we can examine the whole ing on science strategies for future missions in the search of habitats. range of dry ice snow accumulations.” orbiter Odyssey’s neutron and gamma ray sensors tracked seasonal changes “The synergy between the measurements from our two ‘eyes in the as layers of “dry ice” (carbon-dioxide frost or snow) accumulated during skies of Mars’ has enabled these new findings about the nature of near- northern Mars’ winter and then dissipated in the spring, exposing a soil surface frozen materials, and suggests compelling places to visit in reveals layer rich in water ice, the Martian counterpart to permafrost. future missions in order to understand habitats on Mars,” said Dr. Jim Researchers used measurements of Martian neutrons, combined with Garvin, NASA’s lead scientist for Mars exploration. height measurements from the laser altimeter on another JPL space- Another report, to be published in the Journal of Geophysical Re- Mars’ icy craft, Mars Global Surveyor, to monitor the amount of dry ice during the search-Planets, combines measurements from Odyssey and Global northern winter and spring seasons. Surveyor to provide indications of how densely the winter layer of car- character “Once the carbon-dioxide layer disappears, we see even more water bon-dioxide frost or snow is packed at northern latitudes greater than ice in northern latitudes than Odyssey found last year in southern lati- 85 degrees. The Odyssey data are used to estimate the mass of the tudes,” said Odyssey’s Dr. Igor Mitrofanov of the Russian Space Re- deposit, which can then be compared with the thickness to obtain a By Guy Webster search Institute, Moscow, lead author of a paper in the June 27 issue of density. The dry ice layer appears to have a fluffy texture, like freshly the journal Science. “In some places, the water-ice content is more than fallen snow, according to the report by Dr. William Feldman of Los 90 percent by volume.” Mitrofanov and co-authors used the changing Alamos National Laboratory, N.M., and 11 co-authors. The study also nature of the relief of these regions, measured more than two years ago found once the dry ice disappears, the remaining surface near the pole In winter months, Mars’ icy soil is by the Global Surveyor’s laser altimeter science team, to explore the is composed almost entirely of water ice. covered by a thick layer of carbon implications of the changes. “Mars is constantly changing,” said Dr. Jeffrey Plaut, Mars Odyssey Odyssey’s trio of instruments, the gamma ray spectrometer suite, can project scientist at JPL. “With Mars Odyssey, we plan to examine these dioxide (“dry ice”) frost, identify elements in the top meter (3 feet) or so of Mars’ surface. Mars dynamics through additional seasons, to watch how the winter accumu- obscuring the water ice signature. Global Surveyor’s laser altimeter is precise enough to monitor meter- lations of carbon dioxide on each pole interact with the atmosphere in the current climate regime.” As the layer dissipates in the spring scale changes in the thickness of the seasonal frost, which can accumu- late to depths greater than a meter. The new findings show a correlation Mitrofanov’s co-authors include researchers at the Institute for Space and summer, the water ice in the springtime between Odyssey’s detection of dissipating carbon Research, Russian Academy of Science, Moscow; Massachusetts Insti- becomes ‘visible’ to the neutron dioxide in latitudes poleward of 65 degrees north and Global Surveyor’s tute of Technology; NASA Headquarters, Washington, D.C.; Goddard measurement of the thinning of the frost layer in prior years. Space Flight Center, Greenbelt, Md.; and TechSource, Santa Fe, N.M. and gamma ray detectors “Odyssey’s high-energy neutron detector allows us to measure the Feldman's co-authors include researchers at New Mexico State Universi- onboard Odyssey. Left image thickness of carbon- dioxide at lower latitudes, where Global Surveyor’s ty; Cornell University, Ithaca, N.Y.; and Observatoire Midi-Pyrenees, mosaic shows the northern altimeter does not have enough sensitivity,” Mitrofanov said. “On the Toulouse, France. hemisphere of Mars as seen by the Viking orbiter. The second image shows the concentration of water ice (in blue) observed by Odyssey during the northern winter, when much of it is buried by carbon dioxide frost. Third image shows the water ice that is revealed during the Martian summer. 2 Stardust trajectory modified interstellar dust, will be taken to the Universe JPL’s Stardust spacecraft on June 18 planetary material curatorial facility at Johnson Space Center for examination. Special Events Calendar successfully completed the mission’s third deep-space maneuver. This criti- cal maneuver modified the spacecraft’s Women’s Club offers kids’ activities News The Caltech Women’s Club is spon- Wednesday, July 9 trajectory, placing it on a path to Ongoing Support Groups soring two summertime activities for encounter and collect dust samples Alcoholics Anonymous—Meetings are JPL Amateur Radio Club—Meeting at children from 10 a.m to noon at Tour- from comet Wild 2 in January 2004. available. Call the Employee Assistance noon in Building 238-543. nament Park in Pasadena. Briefs Stardust fired its eight, 4.4-newton Program at ext. 4-3680 for time and Preschool Playgroup for ages 1-4 is JPL Toastmasters Club—Meeting at 5 (1-pound) thrusters for 1,456 seconds, location. changing the comet sampler’s speed by held Tuesdays. The group offers crafts, p.m. in the 167 conference room. Call 34.4 meters per second (77 mph). song and story time, free play and Caregivers Support Group—Meets the Debbie Llata at ext. 3-3690 for infor- “It was a textbook maneuver,” said exploratory learning, and also offers a first Thursday of the month at noon in mation. JPL’s ROBERT RYAN, Stardust’s mission supportive environment for parents and Building 167-111 (The Wellness Place). caregivers to observe and interact with Call the Employee Assistance Program manager. “This was the last big burn Thursday, July 17 we will have prior to our encounter with their child in learning and at play. For at ext. 4-3680. “Staying on Track in a Market Down- Wild 2, and it looks very accurate.” more information, contact JULIA KEN- Codependents Anonymous—Meets at turn”—Scott Budde, TIAA/CREF’s Stardust has traveled more than 2.9 NEFICK at (626) 792-7808 or julia@ astro.caltech.edu. noon every Wednesday. For more director of equity portfolio analytics, billion kilometers (1.8 billion miles) information, call Occupational Health Wednesdays in the Park offers conver- will appear in the 180-101 conference since its February 1999 launch.
Recommended publications
  • Dynamics and Stability of Telluric Planets Within the Habitable Zone of Extrasolar Planetary Systems
    A&A 488, 1133–1147 (2008) Astronomy DOI: 10.1051/0004-6361:200809822 & c ESO 2008 Astrophysics Dynamics and stability of telluric planets within the habitable zone of extrasolar planetary systems Numerical simulations of test particles within the HD 4208 and HD 70642 systems T. C. Hinse1,2, R. Michelsen1,U.G.Jørgensen1 ,K.Go´zdziewski3, and S. Mikkola4 1 Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Ø, Denmark e-mail: [tobiash; rm]@astro.ku.dk 2 Armagh Observatory, College Hill, BT61 9DG Armagh, Northern Ireland, UK 3 Nicolaus Copernicus University, Torun Centre for Astronomy, Gagarin Str. 11, 87-100 Torun, Poland 4 Turku University Observatory, Väisäläntie 20, Piikkiö, Finland Received 20 March 2008 / Accepted 3 June 2008 ABSTRACT Aims. We study gravitational perturbation effects of observed giant extrasolar planets on hypothetical Earth-like planets in the context of the three-body problem. This paper considers a large parameter survey of different orbital configuration of two extrasolar giant planets (HD 70642b and HD 4208b) and compares their dynamical effect on Earth-mass planetary orbits initially located within the respective habitable terrestrial region. We are interested in determining giant-planet orbit (and mass) parameters that favor the condi- tion to render an Earth-mass planet to remain on a stable and bounded orbit within the continuous habitable zone. Methods. We applied symplectic numerical integration techniques to studying the short and long term time evolution of hypothetical Earth-mass planets that are treated as particles. In addition, we adopt the MEGNO technique to obtain a complete dynamical picture of the terrestrial phase space environment.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Dynamical Stability and Habitability of a Terrestrial Planet in HD74156
    A dynamic search for potential habitable planets amongst the extrasolar planets 1,2 1 1 1,3 1, 4 P. Hinds , A. Munro , S. T. Maddison , C. Tan , and M. C. Gino [1] Swinburne University, Australia [2] Pierce College, USA [3] Methodist Ladies’ College, Australia [4] Dudley Observatory, USA ABSTRACT: While the detection of habitable terrestrial planets around nearby stars is currently beyond our observational capabilities, dynamical studies can help us locate potential candidates. Following from the work of Menou & Tabachnik (2003), we use a symplectic integrator to search for potential stable terrestrial planetary orbits in the habitable zones of known extrasolar planetary systems. A swarm of massless test particles is initially used to identify stability zones, and then an Earth-mass planet is placed within these zones to investigate their dynamical stability. We investigate 22 new systems discovered since the work of Menou & Tabachnik, as well as simulate some of the previous 85 extrasolar systems whose orbital parameters have been more precisely constrained. In particular, we model three systems that are now confirmed or potential double planetary systems: HD169830, HD160691 and eps Eridani. The results of these dynamical studies can be used as a potential target list for the Terrestrial Planet Finder. Introduction Numerical Technique Results & Discussion To date 122 extrasolar planets have been detected around 107 stars, with 13 of them To follow the evolution of the planetary systems, we use the SWIFT integration software package1. This The systems we have investigated broadly fall in four categories: (1) unstable being multiple planet systems (Schneider, 2004). Observational evidence for the allows us to model a planetary system and a swarm of massless test particles in orbit around a central star.
    [Show full text]
  • Exoplanet Community Report
    JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probe­class missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2
    [Show full text]
  • Exploring the Realm of Scaled Solar System Analogues with HARPS?,?? D
    A&A 615, A175 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832711 & c ESO 2018 Astrophysics Exploring the realm of scaled solar system analogues with HARPS?;?? D. Barbato1,2, A. Sozzetti2, S. Desidera3, M. Damasso2, A. S. Bonomo2, P. Giacobbe2, L. S. Colombo4, C. Lazzoni4,3 , R. Claudi3, R. Gratton3, G. LoCurto5, F. Marzari4, and C. Mordasini6 1 Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, 10125, Torino, Italy e-mail: [email protected] 2 INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025, Pino Torinese, Italy 3 INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122, Padova, Italy 4 Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Vicolo dell’Osservatorio 3, 35122, Padova, Italy 5 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 6 Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland Received 8 February 2018 / Accepted 21 April 2018 ABSTRACT Context. The assessment of the frequency of planetary systems reproducing the solar system’s architecture is still an open problem in exoplanetary science. Detailed study of multiplicity and architecture is generally hampered by limitations in quality, temporal extension and observing strategy, causing difficulties in detecting low-mass inner planets in the presence of outer giant planets. Aims. We present the results of high-cadence and high-precision HARPS observations on 20 solar-type stars known to host a single long-period giant planet in order to search for additional inner companions and estimate the occurence rate fp of scaled solar system analogues – in other words, systems featuring lower-mass inner planets in the presence of long-period giant planets.
    [Show full text]
  • • August the 26Th 2004 Detection of the Radial-Velocity Signal Induced by OGLE-TR-111 B Using UVES/FLAMES on the VLT (See Pont Et Al
    2004 • August the 26th 2004 Detection of the radial-velocity signal induced by OGLE-TR-111 b using UVES/FLAMES on the VLT (see Pont et al. 2004, A&A in press, astro-ph/0408499). • August the 25th 2004 TrES-1b: A new transiting exoplanet detected by the Trans-Atlantic Exoplanet Survey (TreS) team . (see Boulder Press release or Alonso et al.) • August the 25th 2004 HD 160691 c : A 14 Earth-mass planet detected with HARPS (see ESO Press Release or Santos et al.) • July the 8th 2004 HD 37605 b: The first extra-solar planet detected with HRS on the Hobby- Eberly Telescope (Cochran et al.) • May the 3rd 2004 HD 219452 Bb withdrawn by Desidera et al. • April the 28th 2004 Orbital solution for OGLE-TR-113 confirmed by Konacki et al • April the 15th 2004 OGLE 2003-BLG-235/MOA 2003-BLG-53: a planetary microlensing event (Bond et al.) • April the 14th 2004 FLAMES-UVES spectroscopic orbits for two OGLE III transiting candidates: OGLE-TR-113 and OGLE-TR-132 (Bouchy et al.) • February 2004 Detection of Carbon and Oxygen in the evaporating atmosphere of HD 209458 b by A. Vidal-Madjar et al. (from HST observations). • January the 5th 2004 Two planets orbiting giant stars announced by Mitchell et al. during the AAS meeting: HD 59686 b and 91 Aqr b (HD 219499 b). Two other more massive companions, Tau Gem b (HD 54719 b) and nu Oph b (HD 163917 b), have also been announced by the same authors. 2003 • December 2003 First planet detected with HARPS: HD 330075 b (see Mayor et al., in the ESO Messenger No 114) • July the 3rd 2003 A long-period planet on a circular orbit around HD 70642 announced by the AAT team (Carter et al.
    [Show full text]
  • TRUE MASSES of RADIAL-VELOCITY EXOPLANETS Robert A
    APP Template V1.01 Article id: apj513330 Typesetter: MPS Date received by MPS: 19/05/2015 PE: CE : LE: UNCORRECTED PROOF The Astrophysical Journal, 00:000000 (28pp), 2015 Month Day © 2015. The American Astronomical Society. All rights reserved. TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS Robert A. Brown Space Telescope Science Institute, USA; [email protected] Received 2015 January 12; accepted 2015 April 14; published 2015 MM DD ABSTRACT We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness, image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass.
    [Show full text]
  • Doctor of Philosophy
    Study of Sun-like G Stars and Their Exoplanets Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Mr. SHASHANKA R. GURUMATH May, 2019 ABSTRACT By employing exoplanetary physical and orbital characteristics, aim of this study is to understand the genesis, dynamics, chemical abundance and magnetic field structure of Sun-like G stars and relationship with their planets. With reasonable constraints on selection of exoplanetary physical characteristics, and by making corrections for stellar rate of mass loss, a power law relationship between initial stellar mass and their exo- planetary mass is obtained that suggests massive stars harbor massive planets. Such a power law relationship is exploited to estimate the initial mass (1.060±0.006) M of the Sun for possible solution of “Faint young Sun paradox” which indeed indicates slightly higher mass compared to present mass. Another unsolved puzzle of solar system is angular momentum problem, viz., compare to Sun most of the angular momentum is concentrated in the solar system planets. By analyzing the exoplanetary data, this study shows that orbital angular momentum of Solar system planets is higher compared to orbital angular momentum of exoplanets. This study also supports the results of Nice and Grand Tack models that propose the idea of outward migration of Jovian planets during early history of Solar system formation. Furthermore, we have examined the influence of stellar metallicity on the host stars mass and exoplanetary physical and orbital characteristics that shows a non-linear relationship. Another important result is most of the planets in single planetary stellar systems are captured from the space and/or inward migration of planets might have played a dominant role in the final architecture of single planetary stellar systems.
    [Show full text]
  • Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun Buchhave, Lars A.; Bitsch, Bertram; Johansen, Anders; Latham, David W.; Bizzarro, Martin; Bieryla, Allyson; Kipping, David M. Published in: Astrophysical Journal Link to article, DOI: 10.3847/1538-4357/aaafca Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Buchhave, L. A., Bitsch, B., Johansen, A., Latham, D. W., Bizzarro, M., Bieryla, A., & Kipping, D. M. (2018). Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun. Astrophysical Journal, 856(1), [37]. https://doi.org/10.3847/1538-4357/aaafca General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. The Astrophysical Journal, 856:37 (11pp), 2018 March 20 https://doi.org/10.3847/1538-4357/aaafca © 2018.
    [Show full text]
  • Solar System Analogues Among Exoplanetary Systems
    Solar System analogues among exoplanetary systems Maria Lomaeva Lund Observatory Lund University ´´ 2016-EXA105 Degree project of 15 higher education credits June 2016 Supervisor: Piero Ranalli Lund Observatory Box 43 SE-221 00 Lund Sweden Populärvetenskaplig sammanfattning Människans intresse för rymden har alltid varit stort. Man har antagit att andra plan- etsystem, om de existerar, ser ut som vårt: med mindre stenplaneter i banor närmast stjärnan och gas- samt isjättar i de yttre banorna. Idag känner man till drygt 2 000 exoplaneter, d.v.s., planeter som kretsar kring andra stjärnor än solen. Man vet även att vissa av dem saknar motsvarighet i solsystemet, t. ex., heta jupitrar (gasjättar som har migrerat inåt och kretsar väldigt nära stjärnan) och superjordar (stenplaneter större än jorden). Därför blir frågan om hur unikt solsystemet är ännu mer intressant, vilket vi försöker ta reda på i det här projektet. Det finns olika sätt att detektera exoplaneter på men två av dem har gett flest resultat: transitmetoden och dopplerspektroskopin. Med transitmetoden mäter man minsknin- gen av en stjärnas ljus när en planet passerar framför den. Den metoden passar bäst för stora planeter med små omloppsbanor. Dopplerspektroskopin använder sig av Doppler effekten som innebär att ljuset utsänt från en stjärna verkar blåare respektive rödare när en stjärna förflyttar sig fram och tillbaka från observatören. Denna rörelse avslöjar att det finns en planet som kretsar kring stjärnan och påverkar den med sin gravita- tion. Dopplerspektroskopin är lämpligast för massiva planeter med små omloppsbanor. Under projektets gång har vi inte bara letat efter solsystemets motsvarigheter utan även studerat planetsystem som är annorlunda.
    [Show full text]
  • Survival of Exomoons Around Exoplanets 2
    Survival of exomoons around exoplanets V. Dobos1,2,3, S. Charnoz4,A.Pal´ 2, A. Roque-Bernard4 and Gy. M. Szabo´ 3,5 1 Kapteyn Astronomical Institute, University of Groningen, 9747 AD, Landleven 12, Groningen, The Netherlands 2 Konkoly Thege Mikl´os Astronomical Institute, Research Centre for Astronomy and Earth Sciences, E¨otv¨os Lor´and Research Network (ELKH), 1121, Konkoly Thege Mikl´os ´ut 15-17, Budapest, Hungary 3 MTA-ELTE Exoplanet Research Group, 9700, Szent Imre h. u. 112, Szombathely, Hungary 4 Universit´ede Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France 5 ELTE E¨otv¨os Lor´and University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary E-mail: [email protected] January 2020 Abstract. Despite numerous attempts, no exomoon has firmly been confirmed to date. New missions like CHEOPS aim to characterize previously detected exoplanets, and potentially to discover exomoons. In order to optimize search strategies, we need to determine those planets which are the most likely to host moons. We investigate the tidal evolution of hypothetical moon orbits in systems consisting of a star, one planet and one test moon. We study a few specific cases with ten billion years integration time where the evolution of moon orbits follows one of these three scenarios: (1) “locking”, in which the moon has a stable orbit on a long time scale (& 109 years); (2) “escape scenario” where the moon leaves the planet’s gravitational domain; and (3) “disruption scenario”, in which the moon migrates inwards until it reaches the Roche lobe and becomes disrupted by strong tidal forces.
    [Show full text]
  • Exploring the Realm of Scaled Solar System Analogs with HARPS
    Astronomy & Astrophysics manuscript no. harps-kp c ESO 2018 April 24, 2018 Exploring the realm of scaled Solar System analogs with HARPS ⋆ D. Barbato1, 2, A. Sozzetti2, S. Desidera3, M. Damasso2, A.S. Bonomo2, P. Giacobbe2, L.S. Colombo4, C. Lazzoni4, 3, R. Claudi3, R. Gratton3, G. LoCurto5, F. Marzari4, and C. Mordasini6 1 Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino, Italy 2 INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, I-10025 Pino Torinese, Italy 3 INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova, Italy 4 Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova, Italy 5 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 6 Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland Received <date> / Accepted <date> ABSTRACT Context. The assessment of the frequency of planetary systems reproducing the Solar System’s architecture is still an open problem in exoplanetary science. Detailed study of multiplicity and architecture is generally hampered by limitations in quality, temporal extension and observing strategy, causing difficulties in detecting low-mass inner planets in the presence of outer giant planetary bodies. Aims. We present the results of high-cadence and high-precision HARPS observations on 20 solar-type stars known to host a single long-period giant planet in order to search for additional inner companions and estimate the occurence rate fp of scaled Solar System analogs, i.e. systems featuring lower-mass inner planets in the presence of long-period giant planets.
    [Show full text]