Direct Compatibility Testing by N

Total Page:16

File Type:pdf, Size:1020Kb

Direct Compatibility Testing by N J Clin Pathol: first published as 10.1136/jcp.11.4.311 on 1 July 1958. Downloaded from J. clin. Path. (1958), 11, 311. DIRECT COMPATIBILITY TESTING BY N. A. F. YOUNG From St. Margaret's Hospital, Epping (RECEIVED FOR PUBLICATION NOVEMBER 29, 1957) Despite the rapid development of knowledge it The Indirect Coombs Test (A.H.G.) still remains fundamental that mistakes within the Minimum Incubation Period for Reliable Results.- ABO and Rhesus systems are responsible for vir- Twenty-five sera were tested in triplicate, all tests tually all fatal mismatched transfusions. It therefore being standardized so that 4 vol. of serum was cannot be too highly stressed that the careful used to sensitize 1 vol. 50% suspension of washed preliminary grouping of the bloods of all patients packed Group 0 Rjr cells. Incubation periods of for transfusion is of prime importance, irrespective 10, 30, and 120 minutes were used. The test sera of whether there is a previous record of their blood ranged in potency from extremely weak ones, giving group or not. This should always be regarded as only a trace albumin agglutination, to strong sera copyright. an essential part of any cross-maiching routine, with albumin titres up to 1/128. and in urgent cases Stratton's (1955) " sandwich Readings were made by the usual tile method and technique" is highly recommended for rapid Rh the reactions timed with a stopwatch. typing. If no agglutination had occurred at the end of The " emergency crossmatch " presents a problem, seven minutes a negative result was recorded. and the vital question which needs answering is: All tests gave positive results although some of http://jcp.bmj.com/ What can safely be accepted as the minimum the " 10-minute incubation " ones were rather weak. incubation period which will not impair the effi- The usual reaction in these cases was a fine granu- ciency of the particular compatibility tests being larity first appearing between two and four minutes, used ? gradually becoming clear cut, but still tending to The concept of gradual red cell sensitization retain a homogeneous pink background at the end progressively increasing with time is fallacious. of seven minutes. Antigen-antibody union takes place quite rapidly, The reactions of the " 30-minute incubation tests'" and, after a relatively short time, which varies were all strong and clear cut. They were as good on September 28, 2021 by guest. Protected slightly with different methods, further prolonged as those obtained by longer incubation and in a incubation does not increase the sensitivity or surprising number of instances they were somewhat render the detection of very weak antibodies better defined than the corresponding two-hour significantly more likely. This is shown by the agglutinations. investigations which are detailed later, and the There seems little doubt that the optimal incuba- results obtained by Lewis and Chown (1957) using tion time for complete sensitization is much shorter a 10-minute albumin agglutination technique than is generally appreciated. Using the indirect substantiate this view. Coombs for direct compatibility testing, it is con- The ideal cross-matching technique should provide sidered that an incubation time of 30 minutes is a simple, easily performed procedure which is not adequate. In an emergency, a 10- or 15-minute only highly sensitive but which at the same time Coombs test is an extremely valuable procedure will yield reliable results when used routinely. which is capable of detecting very weak sensitization. Certain practical points have been investigated, and on the basis of the findings obtained a simple Effect of Variable Serum-cell Ratios on Sensitivity direct matching procedure, which is not time- of Coombs Reaction.-The Coombs reactions consuming but still combines the advantages of obtained after sensitizing red cells for a standard both trypsin and Coombs testing, is recommended. incubation period of 30 minutes using serum : cell J Clin Pathol: first published as 10.1136/jcp.11.4.311 on 1 July 1958. Downloaded from 312 Ar. A. F. YO UNG ratios varying from 2 :1 to 10: 1 have shown no test was weakly positive. In sera 2 and 3 the significant differences. It is therefore apparent that, tile method was negative at 10 minutes whereas the although theoretically it might be expected that the tube showed positive agglutination after this period addition of a greater volume of serum would increase of incubation. the amount of antibody available for each red cell, Further experience in a large number of con- in practice the effect is minimal. The probable trolled tests has led to the conclusion that for routine explanation of this is the fact that, although the usage the tube technique gives more consistent total amount of antibody is thereby increased, the resuilts and is distinctly more sensitive than the tile actual concentration of antibody molecules per unit method. There does not appear to be any tendency volume of serum remains precisely the same. to false agglutination and in all cases the negative A Modified Tube Technique.-With the develop- controls have shown no trace of agglutination. ment of a simplified trypsin-saline and trypsin- Stability of Stored Diluted A.H.G. Serum.--The Coombs compatibility routine in mind, the results instability of A.H.G. serum and its inability to of the Coombs test performed in tubes were com- withstand repeated thawing and refreezing are well- pared with those obtained by the more generally recognized drawbacks which can cause anomalous adopted tile method. For this comparative trial a results. Mollisoni (1951) states: "Attention must series of very weak albumin agglutinating anti-Rh be drawn to the fact that anti-human globulin sera sera was used. A parallel series of tests was made diluted in saline lose their potency very rapidly by the tile method and by a modified tube technique even when stored at -- 20' C. The diluted reagent described here. should be prepared freshly each day...." This Method. Unit volumes of 100' washed test cell has not been the author's experience nor that of suspensions were sensitized with 4 vol. of serum. Tests his colleague Dr. F. Marsh (1957), to whom he is were set up in triplicate for incubation periods of 10, indebted for the results of a two-year trial using 30, and 120 minutes respectively. After incubation they stored diluted antiglobulin sera. Diluted serum copyright. were washed three times in saline, the final supernatant stored at 20 C., placed in a water-bath for a couple being completely removed so as to leave a dry button of of minutes and used for testing, then immediatelv red cells. Three drops of suitably diluted A.H.G. replaced in the refrigerator, will withstand thawing reagent were added to each tube. The tubes were vigorously shaken to mix the cells, allowed to stand at for at least seven times without significant loss of bench temperature for two minutes, and then centrifuged its ability to agglutinate weakly sensitized red cells. at 1,500 r.p.m. for two minutes. Readings were made Such diluted reagent has been kept and used regu- http://jcp.bmj.com/ by gently resuspending the cells and microscoping if larly once daily for periods up to 10 to 14 days necessary. without deterioration. Reagent made up and used at weekly intervals remained stable and still strongly Results.-In most instances the results by tile agglutinated sensitized cells when finally tested for and tube techniques were similar, but in some cases the seventh time after being stored for eight weeks. the tube test gave clearer results and was distinctly Initially storage results were not constant or more sensitive for the detection of minimal sen- reliable, and it was noted that odd A.H.G. sera sitization. The results obtained in four antenatal would deteriorate much more rapidly and unexpec- on September 28, 2021 by guest. Protected patients whose sera contained very weak antibodies tedly, as Mollison states. Experience showed that are shown in Table I, and it will be noted that in these failures were attributable to two causes. In one case the tile test was negative whereas the tube the first place, the extreme importance of avoiding TABLE I any trace of globulin contamination in the saline RESULTS IN TILE AND TUBE TESTS ON FOUR ANTENATAL used as the diluent had not been sufficiently appre- SERA ciated. Secondly, it was found that if the A.H.G. serum from which the diluted reagent was made Serum Incubation Time N. Method had itself began to deteriorate, then the diluted 10 Min. 30 Min. 120 Min. reagent would be quite unstable. Provided meticu- Tile Uniform fine - lous care is taken in the preparation of the diluted granularitv Tube -7 reagent from a fully potent A.H.G. serum which 2 Tile Neg. Neg. Neg. has not started to deteriorate, then this reagent Tube Weak Weak Weak can be stored at -- 200 C. for long periods. It will 3 Tile Neg. Very weak Weak --- granularity withstand thawing up to at least seven times; nor Tube Weak - does there appear to be any loss of specificity and 4 Tile Neg. Doubtful Weak Tube false agglutinations have not been encountered. The great advantage and convenience of having a J Clin Pathol: first published as 10.1136/jcp.11.4.311 on 1 July 1958. Downloaded from DIRECT COMPATIBILITY TESTING 313 reliable reagent immediately available for use, albumin (the diluent effect of serum excluded). It particularly for night emergencies, can be appre- would seem therefore that, if albumin is used for ciated. compatibility testing, a 10-minute centrifugation Storage of Sensitized Cells Suitable for Coombs test is to be preferred, since the results of tests on a Control.-Washed, packed, sensitized red cells may wide selection of sera have clearly indicated that be stored at 60 C.
Recommended publications
  • Transfusion Problems in Hemolytic Anemias*
    Transfusion Problems in Hemolytic Anemias* ALI A. HOSSAIN! Department of Pathdlogy, Medical College of Virginia, Richmond 23219 All hemolytic anemias feature shortened red cell Extrinsic Mechanisms survival due to premature hemolysis of the cell. For the Those hemolytic anemias which are due to extrinsic purposes of this presentation, we may classify the factors may be classified, further, as non-immune or hemolytic anemias, most broadly, according to the immune. Non-immune mechanisms include a) drugs mechanisms leading to hemolysis. and chemicals (phenylhydrazine, naphthalene, lead, snake venoms); b) physical agents (heat); c) bacteria Intrinsic Mechanisms and parasites (hemolytic streptococci, Clostridium Hemolytic anemias due to intrinsically defective welchii, Bartonella, plasmodia); and d) acquired sen­ erythrocytes are essentially of three types. First are sitivity to penicillin, methylodopa, Keftin®, or fava those anemias in which the red cells are defective due plant as examples. Some of the agents in this. last to lack of an essential factor, eg, pernicious anemia group serve to lyse the cells, either through duect in relapse. The second type includes those in which action or by formation of antibodies. the red cells have an abnormal shape because of an These hemolytic anemias due to extrinsic factors inherited error in the chemical makeup of the hemo­ of the non-immune variety present no transfusion globin molecules; eg, sickle cells, elliptocytes, sphero­ problem for the Blood Bank. However, it ~~st b.e cytes, and the target
    [Show full text]
  • Hemolytic Disease of the Newborn
    Intensive Care Nursery House Staff Manual Hemolytic Disease of the Newborn INTRODUCTION and DEFINITION: Hemolytic Disease of the Newborn (HDN), also known as erythroblastosis fetalis, isoimmunization, or blood group incompatibility, occurs when fetal red blood cells (RBCs), which possess an antigen that the mother lacks, cross the placenta into the maternal circulation, where they stimulate antibody production. The antibodies return to the fetal circulation and result in RBC destruction. DIFFERENTIAL DIAGNOSIS of hemolytic anemia in a newborn infant: -Isoimmunization -RBC enzyme disorders (e.g., G6PD, pyruvate kinase deficiency) -Hemoglobin synthesis disorders (e.g., alpha-thalassemias) -RBC membrane abnormalities (e.g., hereditary spherocytosis, elliptocytosis) -Hemangiomas (Kasabach Merritt syndrome) -Acquired conditions, such as sepsis, infections with TORCH or Parvovirus B19 (anemia due to RBC aplasia) and hemolysis secondary to drugs. ISOIMMUNIZATION A. Rh disease (Rh = Rhesus factor) (1) Genetics: Rh positive (+) denotes presence of D antigen. The number of antigenic sites on RBCs varies with genotype. Prevalence of genotype varies with the population. Rh negative (d/d) individuals comprise 15% of Caucasians, 5.5% of African Americans, and <1% of Asians. A sensitized Rh negative mother produces anti-Rh IgG antibodies that cross the placenta. Risk factors for antibody production include 2nd (or later) pregnancies*, maternal toxemia, paternal zygosity (D/D rather than D/d), feto-maternal compatibility in ABO system and antigen load. (2) Clinical presentation of HDN varies from mild jaundice and anemia to hydrops fetalis (with ascites, pleural and pericardial effusions). Because the placenta clears bilirubin, the chief risk to the fetus is anemia. Extramedullary hematopoiesis (due to anemia) results in hepatosplenomegaly.
    [Show full text]
  • A Newly Recognized Blood Group in Domestic Shorthair Cats: the Mik Red Cell Antigen
    J Vet Intern Med 2007;21:287–292 A Newly Recognized Blood Group in Domestic Shorthair Cats: The Mik Red Cell Antigen Nicole M. Weinstein, Marie-Claude Blais, Kimberly Harris, Donna A. Oakley, Lillian R. Aronson, and Urs Giger Background: Naturally occurring alloantibodies produced against A and B red cell antigens in cats can cause acute hemolytic transfusion reactions. Blood incompatibilities, unrelated to the AB blood group system, have also been suspected after blood transfusions through routine crossmatch testing or as a result of hemolytic transfusion reactions. Hypothesis: Incompatible crossmatch results among AB compatible cats signify the presence of a naturally occurring alloantibody against a newly identified blood antigen in a group of previously never transfused blood donor cats. The associated alloantibody is clinically important based upon a hemolytic transfusion reaction after inadvertent transfusion of red cells expressing this red cell antigen in a feline renal transplant recipient that lacks this red cell antigen. Methods: Blood donor and nonblood donor cats were evaluated for the presence of auto- and alloantibodies using direct antiglobulin and crossmatch tests, respectively, and were blood typed for AB blood group status. Both standard tube and novel gel column techniques were used. Results: Plasma from 3 of 65 cats and 1 feline renal transplant recipient caused incompatible crossmatch test results with AB compatible erythrocytes indicating these cats formed an alloantibody against a red cell antigen they lack, termed Mik. The 3 donors and the renal transplant recipient were crossmatch-compatible with one another. Tube and gel column crossmatch test results were similar. Conclusions and Clinical Importance: The absence of this novel Mik red cell antigen can be associated with naturally occurring anti-Mik alloantibodies and can elicit an acute hemolytic transfusion reaction after an AB-matched blood transfusion.
    [Show full text]
  • Blood Bank I D
    The Osler Institute Blood Bank I D. Joe Chaffin, MD Bonfils Blood Center, Denver, CO The Fun Just Never Ends… A. Blood Bank I • Blood Groups B. Blood Bank II • Blood Donation and Autologous Blood • Pretransfusion Testing C. Blood Bank III • Component Therapy D. Blood Bank IV • Transfusion Complications * Noninfectious (Transfusion Reactions) * Infectious (Transfusion-transmitted Diseases) E. Blood Bank V (not discussed today but available at www.bbguy.org) • Hematopoietic Progenitor Cell Transplantation F. Blood Bank Practical • Management of specific clinical situations • Calculations, Antibody ID and no-pressure sample questions Blood Bank I Blood Groups I. Basic Antigen-Antibody Testing A. Basic Red Cell-Antibody Interactions 1. Agglutination a. Clumping of red cells due to antibody coating b. Main reaction we look for in Blood Banking c. Two stages: 1) Coating of cells (“sensitization”) a) Affected by antibody specificity, electrostatic RBC charge, temperature, amounts of antigen and antibody b) Low Ionic Strength Saline (LISS) decreases repulsive charges between RBCs; tends to enhance cold antibodies and autoantibodies c) Polyethylene glycol (PEG) excludes H2O, tends to enhance warm antibodies and autoantibodies. 2) Formation of bridges a) Lattice structure formed by antibodies and RBCs b) IgG isn’t good at this; one antibody arm must attach to one cell and other arm to the other cell. c) IgM is better because of its pentameric structure. P}Chaffin (12/28/11) Blood Bank I page 1 Pathology Review Course 2. Hemolysis a. Direct lysis of a red cell due to antibody coating b. Uncommon, but equal to agglutination. 1) Requires complement fixation 2) IgM antibodies do this better than IgG.
    [Show full text]
  • Autoimmune Hemolytic Anemia in COVID-19 Patients, the « Transmissible » Direct Coombs Test
    J H C R JOURNAL OF HEMATOLOGY 2640-2823 AND CLINICAL RESEARCH Research Article More Information *Address for Correspondence: Alice Brochier, Hematology Department of Laboratory Medicine, Autoimmune hemolytic anemia in Saint-Luc University Hospital, Avenue Hippocrate 10, 1200 Brussels, Belgium, Tel: +322764 6814; COVID-19 patients, the « transmissible » Email: [email protected]; Véronique Deneys, Hematology Department of Laboratory Medicine, Saint-Luc University direct Coombs test Hospital, Avenue Hippocrate 10, 1200 Brussels, Belgium, Email: [email protected] Alice Brochier1*, Julien Cabo1, Claudine Guerrieri1, Leïla Belkhir2, Submitted: March 24, 2021 3 1 Pierre-François Laterre and Véronique Deneys * Approved: April 06, 2021 Published: April 07, 2021 1Hematology Department of Laboratory Medicine, Saint-Luc University Hospital, Brussels, Belgium 2Department of Internal Medicine and Infectious Diseases, Saint-Luc University Hospital, Brussels, How to cite this article: Brochier A, Cabo J, Guerrieri C, Belkhir L, Laterre PF, Deneys V. Belgium Autoimmune hemolytic anemia in COVID-19 3 Department of Intensive Care Medicine, Saint-Luc University Hospital, Brussels, Belgium patients, the « transmissible » direct Coombs test. J Hematol Clin Res. 2021; 5: 004-008. Abstract DOI: 10.29328/journal.jhcr.1001016 Copyright: © 2021 Brochier A, et al. This Background: Like other viruses, the SARS-CoV-2 (severe acute respiratory syndrome is an open access article distributed under coronavirus 2) appears to be responsible for several autoimmune complications. The occurrence the Creative Commons Attribution License, of autoimmune hemolytic anemia has been described in several case reports. This AIHA was also which permits unrestricted use, distribution, noticeable by the important number of blood transfusions required for COVID-19 (coronavirus and reproduction in any medium, provided the disease 2019) patients.
    [Show full text]
  • Package Insert
    Anti-Human Globulin Anti-IgG IH-Card AHG Anti-IgG (Rabbit)(Green)_____________________________________________________________________ English, B186359, Version 07, 2016.07 FOR IN VITRO DIAGNOSTIC USE Gel card for use with the IH-System MEETS FDA POTENCY REQUIREMENTS U.S. LICENSE NUMBER: 1845 Product-Identification: 74020 IH-Card AHG Anti-IgG: VOL 12 cards per box............ REF 813 420 100 VOL 48 cards per box............ REF 813 421 100 VOL 288cards per box........... REF 813 422 100 INTENDED USE The IH-Card AHG Anti-IgG is intended for the detection of antibodies on human red blood cells using the Direct and Indirect Antiglobulin Tests. SUMMARY Moreschi first described the use of Anti-Human Globulin in 1908.1 Coombs rediscovered the test in 1945.2,3 By injecting rabbits with human IgG, they were able to produce a protein (Anti-IgG) that reacted with ˝incomplete˝ antibodies (IgG). Most ˝incomplete˝ antibodies (IgG) fail to agglutinate red blood cells suspended in saline.4 Most clinically significant antibodies in red blood cell serology are of the IgG class and can only be detected by the use of Anti-IgG. The IH-Card AHG Anti-IgG is suitable for the Direct and Indirect Antiglobulin Tests. The Direct Antiglobulin Test allows the detection of in vivo sensitization of human red blood cells with immunoglobulins. The Indirect Antiglobulin Tests allows the detection of in vitro sensitization of human red blood cells with clinically significant antibodies. The Indirect Antiglobulin Test may be used for antibody detection, identification, IAT crossmatching , and D variant testing. An optional autocontrol may help to distinguish autoantibodies and alloantibodies.
    [Show full text]
  • Giant Cell Hepatitis with Autoimmune Hemolytic Anemia; a Case Report
    Iran J Pediatr Case Report Dec 2009; Vol 19 (No 4), Pp:421-424 Giant Cell Hepatitis with Autoimmune Hemolytic Anemia; a Case Report Mehri Najafi1, MD; Vajiheh Modarresi*1, MD; Kambiz Eftekhari1, MD; Fatemeh Mahjoub2, MD; Mina Izadyar1, MD 1. Department of Pediatrics, Children’s Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, IR Iran 2. Department of Pathology, Tehran University of Medical Sciences, Tehran, IR Iran Received: Jan 30, 2009; Final Revision: Apr 25, 2009; Accepted: May 22, 2009 Abstract Background: Giant cell hepatitis (GCH) is a histological finding in infants with neonatal cholestasis and rarely can be seen after this period. Autoimmune hemolytic anemia (AIHA) which is characterized by massive and acute red blood cell destruction due to antibody production, responds favorably to corticosteroid therapy. The combination of GCH and AIHA is a rare distinct entity that carries poor response to immunosuppressive therapy and often progresses to fatal liver disease. Case Presentation: A 13‐month‐old boy was referred to us with anemia and icterus. Investigations confirmed the diagnosis of GCH which was associated with AIHA. Treatment with steroids and azathioprin failed. We changed to cyclosporine. The anemia improved by steroid and IVIG at the beginning, but few months later anemia relapsed. Finally he recovered with rituximab and now he is 6 years old in suitable condition. Conclusion: The association of AIHA with GCH is an uncommon condition that can be life threatening. Most patients initially respond to immunosuppressive agents, but usually recur and have an aggressive course. In this case liver disease responded to steroid and immunosuppressive therapy, but the AIHA was refractory to immunosuppressive therapy.
    [Show full text]
  • Plasmapheresis in a Child with Cold Antibody Autoimmune Hemolytic Anemia: Case Report
    Case Report Plasmapheresis in a child with cold antibody autoimmune hemolytic anemia: case report Zeynep Canan Özdemir1, Özcan Bör1, Ener Çağrı Dinleyici2, Eylem Kıral2 1Department of Pediatrics, Division of Pediatric Hematology/Oncology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey 2Department of Pediatrics, Division of Pediatric Intensive Care and Infectious Diseases, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey Cite this article as: Özdemir ZC, Bör Ö, Dinleyici EÇ, Kıral E. Plasmapheresis in a child with cold antibody autoim- mune hemolytic anemia: Case report. Turk Pediatri Ars 2017; 52: 169-72. Abstract Autoimmune hemolytic anemia is a picture of hemolysis which is caused by autoantibodies against red blood cell surface antigens. It is classified as primary, secondary or warm and cold autoimmune hemolytic anemia according to the temperature at which antibodies react. It is usually an acute and self-limiting condition. Here, we present a three-year-old male patient who presented with malaise, paleness, and dark-colored urine. His hemoglobin level was 5.8 g/dL, and increased indirect bilirubin and lactate dehydrogenase levels and decreased hap- toglobulin and reticulocyte levels were noted. A direct Coombs test was positive using anti-C3. Four erythrocyte suspension transfusions were given because the anemia was life-threatening. High-dose steroids (30 mg/kg/ day, methylprednisolone) and intravenous immunoglobulin (1 g/kg/day, two days) treatments were unresponsive. Plasmapheresis was performed and no further transfusions were needed after plasma- pheresis. Plasmapheresis treatment can be effective in children with cold type autoimmune hemolytic anemia. Key words: Autoimmune hemolytic anemia, cold antibody, plasmapheresis Introduction warm-antibody hemolytic anemia.
    [Show full text]
  • Direct Coombs Test
    Lab Dept: Transfusion Services Test Name: DIRECT COOMBS TEST General Information Lab Order Codes: DAT or DCAS (includes Direct Coombs and Antibody Screen, Indirect) or ABDC (includes Direct Coombs, ABO and Rh) Synonyms: Coombs Test; Direct, DAT; Coombs, Direct; Direct Antiglobulin Test CPT Codes: 86880 – Antihuman globulin test (Coombs), Direct Test Includes: Direct antiglobulin testing with polyspecific anti-human globulin serum. It may include use of monospecific (anti-IgG, anticomplement) when indicated. Logistics Test Indications: Useful for the detection of immunoglobulins (IgG) or complement adsorbed onto red cells. Used to detect autoimmune hemolytic anemias caused by antibody and/or complement components being bound to the patient’s red cells (including drug induced), transfusion reaction and erythroblastosis fetalis (hemolytic disease of the newborn). Coated red cells are said to be “sensitized”. In a DAT (Direct Antiglobulin/Coombs Test), the test is for antibody attached to the patient’s red cells in vivo. In an Antibody Screen (Indirect Antiglobulin Test), the antigen-antibody reaction occurs in vitro and one tests patient’s serum for antibody with reagent cells (the antigen). Refer to Direct Coombs/Antibody Screen or Type and Direct Coombs for alternative test combinations. Lab Testing Sections: Transfusion Services Phone Numbers: MIN: 612-813-6824 STP: 651-220-6558 Test Availability: Daily, 24 hours Turnaround Time: 4 – 24 hours Special Instructions: Provide diagnosis, transfusion history, and pertinent medications to the laboratory. Additional specimen may be requested if elution studies are indicated. Specimen Specimen Type: Whole blood Container: Lavender top tube (EDTA) Draw Volume: 0.5 mL blood (small EDTA) or 2 mL blood (large EDTA) Collection: All specimens submitted to the Transfusion Service must be appropriately labeled at the bedside with the time and date of collection, and the signature of the individual collecting the specimen.
    [Show full text]
  • Transfusion Services Test Name: TYPE and DIRECT COOMBS
    Lab Dept: Transfusion Services Test Name: TYPE AND DIRECT COOMBS General Information Lab Order Codes: ABDC Synonyms: Type and Coombs; ABO and Coombs; Type and DAT; ABO and DAT; ABO/Rh and Direct Coombs CPT Codes: 86900 – ABO 86901 – Rh 86880 - Direct Coombs Test Includes: ABO Group, Rh type and Direct Coombs (Direct Antiglobulin Test - DAT) Logistics Test Indications: Evaluating the presence of Hemolytic Disease of the Newborn (HDN) or evaluating the potential cause of other red cell hemolysis. Lab Testing Sections: Transfusion Service Phone Numbers: MIN Lab: 612-813-6824 STP Lab: 651-220-6558 Test Availability: Daily, 24 hours Turnaround Time: Blood Type: 30 minutes DAT: 4 – 24 hours Special Instructions: Provide diagnosis, transfusion history and pertinent medications to the laboratory. Additional specimen may be requested if elution studies are indicated. Specimen Specimen Type: Whole blood Container: Lavender top tube (EDTA) Draw Volume: 0.5 mL blood (small EDTA tube) or 2 mL blood (large EDTA tube) Collection: All specimens submitted to the Transfusion Service must be appropriately labeled at the bedside with the time and date of collection, and the signature of the individual collecting the specimen. A completed order, either through the HIS or general requisition must accompany each specimen. It is not always necessary to collect a new sample prior to the provision of blood for patients. Consult with the Transfusion Service prior to collecting additional samples if the patient status is unknown. Special Processing: Lab Staff: Refrigerate specimen Patient Preparation: Refer to Collection of Patient Specimens for full details. The patient must be positively identified when the specimen is collected.
    [Show full text]
  • Immunological Mechanisms in Drug-Induced Blood Dyscrasias
    J Clin Pathol: first published as 10.1136/jcp.s3-9.1.46 on 1 January 1975. Downloaded from J. clin. Path., 28, Suppl. (Roy. Coll. Path.), 9, 46-49 Immunological mechanisms in drug-induced blood dyscrasias URS NYDEGGER AND PETER A. MIESCHER From the Division of Haematology, Department of Medicine, University of Geneva, Geneva, Switzerland Drugs can produce blood disorders in many ways. age in Sedormid-(allylisopropylcarbamide)-induced At one end of the spectrum are dose-dependent thrombocytopenia might be mediated by Sedormid/ effects which can be explained in pharmacological antibody complexes, although at that time he came terms as 'toxic' reactions. At the other end of the to a different conclusion. Soon after, Moeschlin and spectrum are dose-independent effects which cannot Wagner (1952) observed analogous in-vitro pheno- be predicted. With the discovery of the causal rela- mena with the serum of a patient suffering from tionship between amidopyrine intake and agranulo- amidopyrine-induced agranulocytosis, but again the cytosis in certain patients, increasing attention has pathogenesis underlying this observation was inter- been paid to the latter phenomena and a number of preted in a different way. Shulman's studies (1958), distinct immune mechanisms have been elucidated as well as our own (Miescher, 1955), have suggested in drug-induced blood dyscrasias. that formation of immune complexes and their sub- The first mechanism is similar to that encountered sequent deposition on the cells are most likely to be in experimental serum sickness
    [Show full text]
  • Direct Coombs Test-Negative Autoimmune Hemolytic Anemia and Low-Affinity Igg Class Antibodies
    Direct Coombs test-negative autoimmune hemolytic anemia and low-affinity IgG class antibodies R.J. SOKOL, D.J. BOOKER, R. STAMPS, S. JALIHAL, AND B. PAUL Autoimmune hemolytic anemia, in which the direct antiglobulin test was no evidence of other disease or infection, a diagno- (DAT) is negative or weakly positive, may be due to low-affinity sis of AIHA was proposed. However, the DAT was autoantibodies. We describe two such cases. An 8-year-old male pre- sented with weight loss, jaundice, a hemoglobin of 33 g/L, reticulo- negative, even though crossmatching showed incompat- cytes of 306 x 109/L, and haptoglobin of < 0.1 g/L. The DAT was ibilities with all donor red blood cells (RBCs) tested. negative. After washing the red blood cells (RBCs) with saline at 4°C, Repeat testing after washing the red cells at 4°C showed the DAT was positive for IgG and an eluate contained an IgG3 autoan- tibody, thus confirming a diagnosis of autoimmune hemolytic anemia that the DAT test was, in fact, positive for IgG and a RBC (AIHA). Red cell transfusions and corticosteroids were given with eluate contained an IgG3 autoantibody. These findings eventual complete recovery. A 73-year-old male had a hemoglobin of confirmed the diagnosis of AIHA. The patient was treat- 89 g/L and haptoglobin of < 0.1 g/L. The DAT was initially negative but was positive for IgG using cold-washed (4°C) RBCs; it was also pos- ed with blood transfusions, prednisolone, and folic acid, itive with unwashed cells in the DiaMed system and an eluate con- with good effect.
    [Show full text]