Mollusca: Bivalvia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chec List Bivalves of the São Sebastião Channel, North Coast Of
Check List 10(1): 97–105, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Bivalves of the São Sebastião Channel, north coast of the PECIES S São Paulo State, Brazil OF Lenita de Freitas Tallarico 1*, Flávio Dias Passos 2, Fabrizio Marcondes Machado 3, Ariane Campos 1, ISTS 1 1,4 L Shirlei Maria Recco-Pimentel and Gisele Orlandi Introíni 1 Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Estrutural e Funcional. R. Charles Darwin, s/n - Bloco N, Caixa Postal 6109. CEP 13083-863. Campinas, SP, Brazil. 2 Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal. Rua Monteiro Lobato, 255, Caixa Postal 6109. CEP 13083-970. Campinas, SP, Brazil. 3 Programas de Pós-Graduação em Ecologia e Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas. R. Bertrand Russell, s/n, Caixa Postal 6109, CEP 13083-970. Campinas, SP, Brazil. 4 Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Ciências Básicas da Saúde. R. Sarmento Leite, 245. CEP 90050-170. Porto Alegre, RS, Brazil. * Corresponding author. E-mail: [email protected] Abstract: The north coast of the São Paulo State, Brazil, presents great bivalve diversity, but knowledge about these organisms, especially species living subtidally, remains scarce. Based on collections made between 2010 and 2012, the present work provides a species list of bivalves inhabiting the intertidal and subtidal zones of the São Sebastião Channel. Altogether, 388 living specimens were collected, belonging to 52 species of 34 genera, grouped in 18 families. -
IN the KIAMICHI RIVER, OKLAHOMA PROJECTTITLE: Habitat Use and Reproductive Biology of Arkansia Whee/Eri (Mollusca: Unionidae) in the Kiamichi River, Oklahoma
W 2800.7 E56s No.E-12 1990/93 c.3 OKLAHOMA o HABITAT USE AND REPRODUCTIVE BIOLOGY OF ARKANSIA WHEELERI (MOLLUSCA: UNIONIDAE) IN THE KIAMICHI RIVER, OKLAHOMA PROJECTTITLE: Habitat use and reproductive biology of Arkansia whee/eri (Mollusca: Unionidae) in the Kiamichi River, Oklahoma. whee/eri is associated. In its optimal habitat, A. whee/eri is always rare: mean relative 2 abundance varies from 0.2 to 0.7% and the average density is 0.27 individuals/m • In addition, shell length data for live Amb/ema plicata, a dominant mussel species in the Kiamichi River, indicate reduced recruitment below Sardis Reservoir. Much of the Kiamichi River watershed remains forested and this probably accounts for the high diversity and general health of its mussel community in comparison to other nearby rivers. Program Narrative Objective To determine the distribution, abundance and reproductive biology of the freshwater mussel Arkansia whee/eri within different habitats in the Kiamichi River of Oklahoma. Job Procedures 1. Characterize microhabitats and determine the effects of impoundment. 2. Determine movement, growth, and survivorship of individuals. 3. Identify glochidia and fish host. 4. Examine impact of Sardis Reservoir on the populations. 5. Determine historic and current land use within the current range of Arkansia whee/eri in the Kiamichi River. A. Introduction Arkansia (syn. Arcidens) whee/eri, the Ouachita rock pocketbook, is a freshwater mussel. Originally named Arkansia whee/eri by Ortmann and Walker in 1912, Clarke (1981, 1985) recognized Arkansia as a subgenus of Arcidens. The species is considered by Clarke to be distinct. However, Turgeon et al (1988) have continued to use the binomial Arkansia whee/eri. -
Freshwater Mussels of the Pacific Northwest
Freshwater Mussels of the Pacifi c Northwest Ethan Nedeau, Allan K. Smith, and Jen Stone Freshwater Mussels of the Pacifi c Northwest CONTENTS Part One: Introduction to Mussels..................1 What Are Freshwater Mussels?...................2 Life History..............................................3 Habitat..................................................5 Role in Ecosystems....................................6 Diversity and Distribution............................9 Conservation and Management................11 Searching for Mussels.............................13 Part Two: Field Guide................................15 Key Terms.............................................16 Identifi cation Key....................................17 Floaters: Genus Anodonta.......................19 California Floater...................................24 Winged Floater.....................................26 Oregon Floater......................................28 Western Floater.....................................30 Yukon Floater........................................32 Western Pearlshell.................................34 Western Ridged Mussel..........................38 Introduced Bivalves................................41 Selected Readings.................................43 www.watertenders.org AUTHORS Ethan Nedeau, biodrawversity, www.biodrawversity.com Allan K. Smith, Pacifi c Northwest Native Freshwater Mussel Workgroup Jen Stone, U.S. Fish and Wildlife Service, Columbia River Fisheries Program Offi ce, Vancouver, WA ACKNOWLEDGEMENTS Illustrations, -
CHAPTER 10 MOLLUSCS 10.1 a Significant Space A
PART file:///C:/DOCUME~1/ROBERT~1/Desktop/Z1010F~1/FINALS~1.HTM CHAPTER 10 MOLLUSCS 10.1 A Significant Space A. Evolved a fluid-filled space within the mesoderm, the coelom B. Efficient hydrostatic skeleton; room for networks of blood vessels, the alimentary canal, and associated organs. 10.2 Characteristics A. Phylum Mollusca 1. Contains nearly 75,000 living species and 35,000 fossil species. 2. They have a soft body. 3. They include chitons, tooth shells, snails, slugs, nudibranchs, sea butterflies, clams, mussels, oysters, squids, octopuses and nautiluses (Figure 10.1A-E). 4. Some may weigh 450 kg and some grow to 18 m long, but 80% are under 5 centimeters in size. 5. Shell collecting is a popular pastime. 6. Classes: Gastropoda (snails…), Bivalvia (clams, oysters…), Polyplacophora (chitons), Cephalopoda (squids, nautiluses, octopuses), Monoplacophora, Scaphopoda, Caudofoveata, and Solenogastres. B. Ecological Relationships 1. Molluscs are found from the tropics to the polar seas. 2. Most live in the sea as bottom feeders, burrowers, borers, grazers, carnivores, predators and filter feeders. 1. Fossil evidence indicates molluscs evolved in the sea; most have remained marine. 2. Some bivalves and gastropods moved to brackish and fresh water. 3. Only snails (gastropods) have successfully invaded the land; they are limited to moist, sheltered habitats with calcium in the soil. C. Economic Importance 1. Culturing of pearls and pearl buttons is an important industry. 2. Burrowing shipworms destroy wooden ships and wharves. 3. Snails and slugs are garden pests; some snails are intermediate hosts for parasites. D. Position in Animal Kingdom (see Inset, page 172) E. -
Genus-Specific Commensalism of the Galeommatoid Bivalve Koreamya Arcuata (A
Genus-specific commensalism of the galeommatoid bivalve Koreamya arcuata (A. Adams, 1856) associated with lingulid brachiopods Sato, Shin'ichi; Owada, Masato; Haga, Takuma; Hong, Jae-Sang; Lützen, Jørgen; Yamashita, Hiroyoshi Published in: Molluscan Research Publication date: 2011 Document version Publisher's PDF, also known as Version of record Document license: Unspecified Citation for published version (APA): Sato, S., Owada, M., Haga, T., Hong, J-S., Lützen, J., & Yamashita, H. (2011). Genus-specific commensalism of the galeommatoid bivalve Koreamya arcuata (A. Adams, 1856) associated with lingulid brachiopods. Molluscan Research, 31(2), 95-105. http://www.mapress.com/mr/content/v31/2011f/n2p105.htm Download date: 26. Sep. 2021 Molluscan Research 31(2): 95–105 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press Genus-specific commensalism of the galeommatoid bivalve Koreamya arcuata (A. Adams, 1856) associated with lingulid brachiopods SHIN'ICHI SATO1, MASATO OWADA2, TAKUMA HAGA3, JAE-SANG HONG4, JØRGEN LÜTZEN5 & HIROYOSHI YAMASHITA6 1The Tohoku University Museum, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan. Corresponding author - Email: [email protected]. 2Department of Biological Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan 3 Marine Biodiversity Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan 4Department of Oceanography, Inha University, Incheon 402-751, South Korea 5 Section of Marine Biology, Biological Institute, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark 6Association of Conservation Malacology, 3-1-26-103 Kugenuma-Mastugaoka, Fujisawa 251-0038, Japan Abstract We compared shell morphology and DNA sequences of the ectosymbiotic bivalves Koreamya (Montacutidae) attached to two different species of inarticulate brachiopods Lingula collected from South Korea. -
Exputens) in Mexico, and a Review of All Species of This North American Subgenus
Natural History Museum /U, JH caY-^A 19*90 la Of Los Angeles County THE VELIGER © CMS, Inc., 1990 The Veliger 33(3):305-316 (July 2, 1990) First Occurrence of the Tethyan Bivalve Nayadina (.Exputens) in Mexico, and a Review of All Species of This North American Subgenus by RICHARD L. SQUIRES Department of Geological Sciences, California State University, Northridge, California 91330, USA Abstract. The malleid bivalve Nayadina (Exputens) has Old World Tethyan affinities but is known only from Eocene deposits in North America. Nayadina (Exputens) is reported for the first time from Mexico. About 50 specimens of N. (E.) batequensis sp. nov. were found in warm-water nearshore deposits of the middle lower Eocene part of the Bateque Formation, just south of Laguna San Ignacio, on the Pacific coast of Baja California Sur. The new species shows a wide range of morphologic variability especially where the beaks and auricles are located and how much they are developed. A review of the other species of Exputens, namely Nayadina (E.) llajasensis (Clark, 1934) from California and N. (E.) ocalensis (MacNeil, 1934) from Florida, Georgia, and North Carolina, revealed that they also have a wide range of morphologic variability. Nayadina (E.) alexi (Clark, 1934) is shown, herein, to be a junior synonym of N. (E.) llajasensis. The presence of a byssal sinus is recognized for the first time in Exputens. An epifaunal nestling mode of life, with attachment by byssus to hard substrate, can now be assumed for Exputens. INTRODUCTION species. It became necessary to thoroughly examine them, The macropaleontology of Eocene marine deposits in Baja and after such a study, it was found that the Bateque California Sur, Mexico, is largely an untouched subject. -
Marine Boring Bivalve Mollusks from Isla Margarita, Venezuela
ISSN 0738-9388 247 Volume: 49 THE FESTIVUS ISSUE 3 Marine boring bivalve mollusks from Isla Margarita, Venezuela Marcel Velásquez 1 1 Museum National d’Histoire Naturelle, Sorbonne Universites, 43 Rue Cuvier, F-75231 Paris, France; [email protected] Paul Valentich-Scott 2 2 Santa Barbara Museum of Natural History, Santa Barbara, California, 93105, USA; [email protected] Juan Carlos Capelo 3 3 Estación de Investigaciones Marinas de Margarita. Fundación La Salle de Ciencias Naturales. Apartado 144 Porlama,. Isla de Margarita, Venezuela. ABSTRACT Marine endolithic and wood-boring bivalve mollusks living in rocks, corals, wood, and shells were surveyed on the Caribbean coast of Venezuela at Isla Margarita between 2004 and 2008. These surveys were supplemented with boring mollusk data from malacological collections in Venezuelan museums. A total of 571 individuals, corresponding to 3 orders, 4 families, 15 genera, and 20 species were identified and analyzed. The species with the widest distribution were: Leiosolenus aristatus which was found in 14 of the 24 localities, followed by Leiosolenus bisulcatus and Choristodon robustus, found in eight and six localities, respectively. The remaining species had low densities in the region, being collected in only one to four of the localities sampled. The total number of species reported here represents 68% of the boring mollusks that have been documented in Venezuelan coastal waters. This study represents the first work focused exclusively on the examination of the cryptofaunal mollusks of Isla Margarita, Venezuela. KEY WORDS Shipworms, cryptofauna, Teredinidae, Pholadidae, Gastrochaenidae, Mytilidae, Petricolidae, Margarita Island, Isla Margarita Venezuela, boring bivalves, endolithic. INTRODUCTION The lithophagans (Mytilidae) are among the Bivalve mollusks from a range of families have more recognized boring mollusks. -
Biological Resources
BIOLOGICAL RESOURCES Wildlife The French Creek watershed contains a wealth of wildlife resources, both aquatic and terrestrial. There is an abundance of species of special concern, considered rare, threatened, or endangered in the state and in the nation, and also numerous game and non-game species. This amazing biodiversity leads to an enormous array of wildlife viewing and outdoor recreation opportunities. Perhaps more importantly, is the significance and importance this exceptional biodiversity places on conservation initiatives in the French Creek watershed. Terrestrial Mammals There are 63 extant species of mammals in the Commonwealth with another 10 species considered either uncertain or extirpated within Pennsylvania (Merritt, 1987). Fifty species of mammals have ranges that overlap with the French Creek watershed (Appendix F). No rare, threatened, or endangered mammals are listed for the French Creek watershed, although a few have general ranges that include the watershed. There have been unconfirmed reports of river otters (Lutra canadensis) seen on French Creek. These individuals, once common in the watershed, may be making their way back to French Creek due to reintroduction efforts in western New York and on the Allegheny River in Pennsylvania. Many of the mammals once common in the watershed and in other areas of the state have been lost due to the decline of large expanses of forested areas, these include the marten (Martes americana), fisher (Martes pennanti), and mountain lion (Felis concolor). The white-tailed deer (Odocoileus virginianus), eastern chipmunk (Tamias striatus), woodchuck (Marmota monax), striped skunk (Mephitis mephitis), porcupine (Erethizon dorsatum), eastern cottontail rabbit (Sylvilagus floridanus), short-tailed shrew (Blarina brevicauda), little brown bat (Myotis lucifugus), raccoon (Procyon lotor), muskrat (Ondatra zibethica), opossum (Didelphis marsupialis), and beaver (Castor canadensis), are some of the more common mammals found in the French Creek watershed (French Creek Project, web). -
Post-Drought Evaluation of Freshwater Mussel Communities
Post-drought evaluation of freshwater mussel communities in the upper Saline and Smoky Hill rivers with emphasis on the status of the Cylindrical Papershell (Anodontoides ferussacianus) Submitted to the Kansas Department of Wildlife, Parks and Tourism by Andrew T. Karlin, Kaden R. Buer, and William J. Stark Department of Biological Sciences Fort Hays State University Hays, Kansas 67601 February 2017 1 Abstract The distribution of the Cylindrical Papershell (Anodontoides ferussacianus) in Kansas historically included a large portion of the state but is now seemingly restricted to the upper Smoky Hill-Saline River Basin in western Kansas. The species is listed as a “Species in Need of Conservation” within Kansas, and a survey conducted in 2011 emphasizing the status of the Cylindrical Papershell detected the species at low densities and relative abundances. Drought since the completion of the 2011 survey raised questions regarding the current status of the Cylindrical Papershell. The primary objectives of this study were to evaluate the conservation status of the Cylindrical Papershell in Kansas and evaluate possible post-drought changes in the composition of freshwater mussel communities in the Saline and Smoky Hill rivers. Nineteen sites on the Saline River and 21 sites on the Smoky Hill River were qualitatively surveyed. Two and 5 of these sites on the Saline and Smoky Hill rivers, respectively, were also sampled quantitatively. Eighteen live Cylindrical Papershell, 7 in the Saline River and 11 in the Smoky Hill River, were collected. At qualitative sites surveyed in 2011 and 2015, significant decreases in species richness at each site and live Cylindrical Papershell abundance were documented, though overall abundance of live mussels per site remained similar. -
Population Genetics of a Common Freshwater Mussel, Amblema Plicata, in a Southern U.S
Freshwater Mollusk Biology and Conservation 23:124–133, 2020 Ó Freshwater Mollusk Conservation Society 2020 REGULAR ARTICLE POPULATION GENETICS OF A COMMON FRESHWATER MUSSEL, AMBLEMA PLICATA, IN A SOUTHERN U.S. RIVER Patrick J. Olson*1 and Caryn C. Vaughn1 1 Department of Biology and Oklahoma Biological Survey, University of Oklahoma, Norman, OK 73019 ABSTRACT Myriad anthropogenic factors have led to substantial declines in North America’s freshwater mussel populations over the last century. A greater understanding of mussel dispersal abilities, genetic structure, and effective population sizes is imperative to improve conservation strategies. This study used microsatellites to investigate genetic structure among mussel beds and estimate effective population sizes of a common North American mussel species, Amblema plicata, in the Little River, Oklahoma. We used five microsatellite loci to genotype 270 individuals from nine mussel beds distributed throughout the river and one of its tributaries, the Glover River. Our results indicate that subpopulations of A. plicata in the Little River are genetically similar. Upstream subpopulations had less genetic diversity than sites located downstream of the confluence of the Glover and Little rivers. Downstream subpopulations were primarily assigned to the same genetic group as upstream subpopulations, but they were admixed with a second genetic group. Low flows during droughts likely influenced the observed genetic structuring in A. plicata populations in the Little River. Additionally, downstream subpopulations may be admixed with a genetically distinct population of A. plicata, which may account for the increased genetic diversity. Estimates of effective population sizes (Ne) of large mussel beds were low compared to the total abundance (N)ofA. -
Molluscan Subfossil Assemblages Reveal the Long-Term Deterioration of Coral Reef Environments in Caribbean Panama ⇑ Katie L
Marine Pollution Bulletin xxx (2015) xxx–xxx Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul Molluscan subfossil assemblages reveal the long-term deterioration of coral reef environments in Caribbean Panama ⇑ Katie L. Cramer a,b, , Jill S. Leonard-Pingel c, Félix Rodríguez a, Jeremy B.C. Jackson b,a,d a Smithsonian Tropical Research Institute, Balboa, Panama b Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0244, United States c Washington and Lee University, Rm 123 Science Addition, Lexington, VA 24450, United States d Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, United States article info abstract Article history: Caribbean reef corals have declined sharply since the 1980s, but the lack of prior baseline data has hin- Received 24 February 2015 dered identification of drivers of change. To assess anthropogenic change in reef environments over the Revised 9 May 2015 past century, we tracked the composition of subfossil assemblages of bivalve and gastropod mollusks Accepted 12 May 2015 excavated from pits below lagoonal and offshore reefs in Bocas del Toro, Panama. The higher prevalence Available online xxxx of (a) infaunal suspension-feeding bivalves and herbivorous and omnivorous gastropods in lagoons and (b) epifaunal and suspension-feeding bivalves and carnivorous and suspension-feeding gastropods off- Keywords: shore reflected the greater influence of land-based nutrients/sediments within lagoons. Temporal Barbatia cancellaria changes indicated deteriorating environmental conditions pre-1960 in lagoons and post-1960 offshore, Bocas del Toro Dendostrea frons with offshore communities becoming more similar to lagoonal ones since 1960. -
Paléobiologie
REVUE DE VOLUME 36 (1 ) – 2017 PALÉOBIOLOGIE Une institution Ville de Genève www.museum-geneve.ch Revue de Paléobiologie, Genève (juin 2017) 36 (1) : 169-177 ISSN 0253-6730 Nouvelles données sur la paléobiogéographie des genres Septimaniceras Fauré, 2002 et Crassiceras Merla, 1932 (Ammonitina) du Toarcien moyen Romain JATTIOT1, 2, Louis RULLEAU3 & Benjamin LATUTRIE4 1 Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid Strasse 4, CH-8006 Zürich, Switzerland. E-mail : [email protected] 2 UMR CNRS 6282 Biogéosciences, Univ. Bourgogne Franche-Comté, 6 Boulevard Gabriel, F-21000 Dijon, France. 3 169 chemin de l’Herbetan, F-69380 Chasselay, France. E-mail : [email protected] 4 Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 Rue de la Couronne, G1K 9A9 Québec, Canada. E-Mail : [email protected] Résumé Depuis sa première description, le genre Septimaniceras Fauré, 2002 a été systématiquement considéré comme un genre endémique, avec une répartition géographique limitée à la région des Causses et du Languedoc (France, province nord-ouest européenne). De même, l’espèce Crassiceras bayani (Dumortier, 1874), d’affinités méditerranéennes, était interprétée comme une forme spécifiquement nord-ouest européenne cantonnée au sud-est de la France, et ne dépassant pas la région lyonnaise en latitude nord. Nous décrivons ici les présences inédites des espèces Septimaniceras pseudoyoungi (Guex, 1972) et Crassiceras bayani dans la sous-zone à Variabilis (Toarcien moyen) de la région de Thouars (ouest de la France). En conséquence, nous étendons considérablement la répartition géogra- phique de ces taxons. Au vu de ces nouvelles données, il est probable que le genre Septimaniceras ait été endémique du sud-est de la France dans la partie supérieure de la sous-zone à Bifrons puis ait étendu son aire de distribution jusqu’à la région de Thouars à la base de la zone à Variabilis.