Geomorphology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stochastic Dynamics of Barrier Island Elevation
Stochastic dynamics of barrier island elevation Orencio Duran´ Vinenta,1 , Benjamin E. Schafferb, and Ignacio Rodriguez-Iturbea,1 aDepartment of Ocean Engineering, Texas A&M University, College Station, TX 77843-3136; and bDepartment of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08540 Contributed by Ignacio Rodriguez-Iturbe, November 11, 2020 (sent for review June 29, 2020; reviewed by Carlo Camporeale and A. Brad Murray) Barrier islands are ubiquitous coastal features that create low- a marked Poisson process with exponentially distributed marks. energy environments where salt marshes, oyster reefs, and man- The mark of a HWE is defined as the maximum water level groves can develop and survive external stresses. Barrier systems above the beach during the duration of the event and charac- also protect interior coastal communities from storm surges and terizes its size and intensity. This result opens the way for a wave-driven erosion. These functions depend on the existence of probabilistic model of the temporal evolution of the barrier/dune a slowly migrating, vertically stable barrier, a condition tied to elevation, along the lines of the stochastic model of soil moisture the frequency of storm-driven overwashes and thus barrier ele- dynamics (4). The knowledge of the transient probability dis- vation during the storm impact. The balance between erosional tribution function of barrier elevation allows the calculation of and accretional processes behind barrier dynamics is stochastic in after-storm recovery times, overwash probability and frequency, nature and cannot be properly understood with traditional con- and the average overwash transport rate driving the landward tinuous models. Here we develop a master equation describing migration of barriers. -
Status of Conservation Planning for Watersheds of Southern Maine
watermark volume 26 issue 1 5 stewardship / conserving natural resources Status of Conservation Planning for Watersheds of Southern Maine The Wells Reserve has produced or assisted with every key conservation planning document prepared for What is a watershed? southern Maine watersheds over the past decade. Use this chart to learn which plans cover your town, then An area in which water, sediments, download the plan(s) from our website or read them at the Dorothy Fish Coastal Resource Library. and dissolved material drain to a To get involved in land or water protection in your area, contact the individuals or organizations named common outlet, such as a river, lake, in the plans. Key contacts for most towns and watersheds can also be found at swim.wellsreserve.org. If these bay, or ocean. avenues don’t work out, call the Wells Reserve stewardship coordinator, Tin Smith, at 646-1555 ext 119. U.S. Environmental Protection Agency Watershed A geographic area in which water flows on its way to a larger water body, such as a stream, river, estuary, lake, or Town Bridges Swamp Neddick River Cape River Works Great Josias River Kennebunk River Little River Mousam River Ogunquit River River Piscataqua River Salmon Falls Southside Brook Creek Spruce River Webhannet River York ocean. Coastal and ocean resources Acton 7 11 are affected not only by activities in Alfred 4 7 coastal areas but also by those in Arundel 4 7 upland watersheds. Berwick 2,3 2,11 U.S. Commission on Ocean Policy Eliot 2,11 2,11 2,13,14 2,16,17 Kennebunk 4 5,6 7 Kennebunkport 4 Why these watersheds? Kittery 11 11 0 13,14 16,17 The chart shows the Maine watersheds Lebanon 11 and towns that are included in the web- Lyman 4 7 based Seacoast Watershed Information North Berwick 2,3 2,11 Manager (swim.wellsreserve.org). -
Historical Changes in the Mississippi-Alabama Barrier Islands and the Roles of Extreme Storms, Sea Level, and Human Activities
HISTORICAL CHANGES IN THE MISSISSIPPI-ALABAMA BARRIER ISLANDS AND THE ROLES OF EXTREME STORMS, SEA LEVEL, AND HUMAN ACTIVITIES Robert A. Morton 88∞46'0"W 88∞44'0"W 88∞42'0"W 88∞40'0"W 88∞38'0"W 88∞36'0"W 88∞34'0"W 88∞32'0"W 88∞30'0"W 88∞28'0"W 88∞26'0"W 88∞24'0"W 88∞22'0"W 88∞20'0"W 88∞18'0"W 30∞18'0"N 30∞18'0"N 30∞20'0"N Horn Island 30∞20'0"N Petit Bois Island 30∞16'0"N 30∞16'0"N 30∞18'0"N 30∞18'0"N 2005 2005 1996 Dauphin Island 1996 2005 1986 1986 30∞16'0"N Kilometers 30∞14'0"N 0 1 2 3 4 5 1966 30∞16'0"N 1950 30∞14'0"N 1950 Kilometers 1917 0 1 2 3 4 5 1917 1848 1849 30∞14'0"N 30∞14'0"N 30∞12'0"N 30∞12'0"N 30∞12'0"N 30∞12'0"N 30∞10'0"N 30∞10'0"N 88∞46'0"W 88∞44'0"W 88∞42'0"W 88∞40'0"W 88∞38'0"W 88∞36'0"W 88∞34'0"W 88∞32'0"W 88∞30'0"W 88∞28'0"W 88∞26'0"W 88∞24'0"W 88∞22'0"W 88∞20'0"W 88∞18'0"W 89∞10'0"W 89∞8'0"W 89∞6'0"W 89∞4'0"W 88∞58'0"W 88∞56'0"W 88∞54'0"W 88∞52'0"W 30∞16'0"N Cat Island Ship Island 30∞16'0"N 2005 30∞14'0"N 1996 30∞14'0"N 1986 Kilometers 1966 0 1 2 3 30∞14'0"N 1950 30∞14'0"N 1917 1848 Fort 2005 Massachusetts 1995 1986 Kilometers 1966 0 1 2 3 30∞12'0"N 1950 30∞12'0"N 1917 30∞12'0"N 30∞12'0"N 1848 89∞10'0"W 89∞8'0"W 89∞6'0"W 89∞4'0"W 88∞58'0"W 88∞56'0"W 88∞54'0"W 88∞52'0"W Open-File Report 2007-1161 U.S. -
Distribution and Abundance of Fishes and Invertebrates in North Atlantic Estuaries
A/MA. a/os NOAA's Estuarine Living Marine Resources Program Distribution and Abundance of Fishes and Invertebrates in North Atlantic Estuaries May 1 994 U.S. Department of Commerce QL. National Oceanic and Atmospheric Administration National Ocean Service NOAA's Estuarine Living Marine Resources Program The Strategic Environmental Assessments (SEA) Division of NOAA's Office of Ocean Resources Conservation and Assessment (ORCA) was created in response to the need for comprehensive information on the effects of human activities on the nation's coastal ocean. The SEA Division performs assessments of the estuarine and coastal environments and of the resources of the U.S. Exclusive Economic Zone (EEZ). In June 1 985, NOAA began a program to develop a comprehensive information base on the life history, relative abundance and distribution of fishes and invertebrates in estuaries throughout the nation (Monaco 1986). The Estuarine Living Marine Resources (ELMR) program has been conducted jointly by the SEA Division, the National Marine Fisheries Service (NMFS), and other agencies and institutions. The nationwide ELMR data base was completed in January 1 994, and includes data for 1 35 species found in 1 22 estuaries and coastal embayments. Eight reports and reprints are now available free upon request, and another is scheduled for completion in 1 994 (see below). This report, Distribution and Abundance of Fishes and Invertebrates in North Atlantic Estuaries, summarizes information on the distribution and abundance of 58 fish and invertebrate species in 1 7 North Atlantic estuaries. A national report summarizing the data and results from the program will be published in 1 995. -
The Modified Bruun Rule Extended for Landward Transport
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Army Research U.S. Department of Defense 2013 The modified Bruun Rule extended for landward transport J.D. Rosati U. S. Army Corps of Engineers, [email protected] R.G. Dean University of Florida T.L. Walton Coastal Tech Corp Follow this and additional works at: https://digitalcommons.unl.edu/usarmyresearch Rosati, J.D.; Dean, R.G.; and Walton, T.L., "The modified Bruun Rule extended for landward transport" (2013). US Army Research. 219. https://digitalcommons.unl.edu/usarmyresearch/219 This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Army Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Marine Geology 340 (2013) 71–81 Contents lists available at SciVerse ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo The modified Bruun Rule extended for landward transport J.D. Rosati a,⁎, R.G. Dean b, T.L. Walton c a U. S. Army Corps of Engineers, Washington, DC 20314, United States b University of Florida, Gainesville, FL 32605, United States c Coastal Tech Corp., Tallahassee, FL, United States article info abstract Article history: The Bruun Rule (Bruun, 1954, 1962) provides a relationship between sea level rise and shoreline retreat, and Received 3 January 2013 has been widely applied by the engineering and scientific communities to interpret shoreline changes and to Received in revised form 24 April 2013 plan for possible future increases in sea level rise rates. -
Optimal Hurricane Overwash Thickness for Maximizing Marsh Resilience to Sea Level Rise
W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2016 Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise David C. Walters Virginia Institute of Marine Science Matthew L. Kirwan Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Walters, D. C. and Kirwan, M. L. (2016), Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise. Ecol Evol, 6: 2948–2956. doi:10.1002/ece3.2024 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise David C. Walters & Matthew L. Kirwan Department of Physical Sciences, Virginia Institute of Marine Science, College of William and Mary, PO Box 1346, Gloucester Point, Virginia 23062 Keywords Abstract Climate change, coastal geomorphology, disturbance event, ecosystem resiliency, press The interplay between storms and sea level rise, and between ecology and sedi- and pulse stresses, salt marsh, storm ment transport governs the behavior of rapidly evolving coastal ecosystems such deposition. as marshes and barrier islands. Sediment deposition during hurricanes is thought to increase the resilience of salt marshes to sea level rise by increasing Correspondence soil elevation and vegetation productivity. We use mesocosms to simulate burial David C. Walters, Department of Physical of Spartina alterniflora during hurricane-induced overwash events of various Sciences, Virginia Institute of Marine Science, thickness (0–60 cm), and find that adventitious root growth within the over- College of William and Mary, PO Box 1386, Gloucester Point, VA 23062. -
Maine's Recovery of Recreational Damages Due to Coastal Oil Spills Tanya Baker
The University of Maine DigitalCommons@UMaine Energy & the Environment Margaret Chase Smith Policy Center 2005 Maine's Recovery of Recreational Damages Due to Coastal Oil Spills Tanya Baker Kevin Boyle Deirdre Mageean Neil Pettigrew Jonathan Rubin See next page for additional authors Follow this and additional works at: https://digitalcommons.library.umaine.edu/ mcspc_energy_environ This Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Energy & the Environment by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Authors Tanya Baker, Kevin Boyle, Deirdre Mageean, Neil Pettigrew, Jonathan Rubin, and Jennifer Ward Maine’s Recovery of Recreational Damages Due to Coastal Oil Spills August, 2005 Tanya Baker Kevin Boyle Deirdre Mageean Neal Pettigrew Jonathan Rubin Jennifer L. Ward Disclaimer This report has been funded in part by the Maine Oil Spill Advisory Committee (MOSAC). The opinions and conclusions state the views of the authors and do not necessarily reflect the views of MOSAC or any other individual or organization. Acknowledgements We thank the following individuals and organizations for their assistance with the research in this project. All errors and omissions are the responsibility of the authors. Contact Agency / Organization Charlene Daniels Maine Bureau of Parks & Lands Tom DesJardin Maine Bureau of Parks & Lands Natalie Springuel Marine Extension Associate, Maine Sea Grant Amy Kersteen -
Groundwater Aquifers
Water Resources - Town of Wells Comprehensive Plan Update Town of Wells 2021 Comprehensive Plan Update Chapter 3 Update – Natural Resource Policies and Strategies Appendix A Inventory and Analysis Section 2 Update – Water Resources How to Read this Document: The consultants hired to work with the Town of Wells are committed to a transparent planning process and aim to comply with the Town of Wells Chapter 12 Ordinance and other state requirements. To clearly show what has been updated from the 2005 Comprehensive Plan, “tracked changes” was used to show what has been deleted from the 2005 section, new information that has been added, and clarifying questions and comments. New language and data are shown in red. Deleted language is shown with a strikethrough in red. Old tables are shown with a red strikethrough and new tables of information were inserted. Questions and comments are shown in purple. Please note that the analysis sub-section at the end of each updated Appendix section will be reviewed again once all sections are updated. Cross- referencing sections will help the consultants better revise these analysis findings. Data Sources and References 1. Kennebunk-Kennebunkport Wells Water District 2. Beginning with Habitat Guidebook, 2012. (Maine Depart. of Inland Fisheries and Wildlife Beginning with Habitat Program) 3. Aquifers - Source is the Maine Geological Survey. 4. Center for Watershed Protection, 1997. "Impacts of Impervious Cover on Aquatic Systems" Watershed Protection Research Monograph No. 1. https://owl.cwp.org/mdocs-posts/impacts-of-impervious-cover-on-aquatic-systems- 2003/. 5. May, C., R. Horner, J. Karr, B. Mar and E. -
Modelling of Coastal Overwash
Department of Water Resources Engineering Lund Institute of Technology (LTH) Lund University MODELLING OF COASTAL OVERWASH Nguyen Xuan Tinh LUND - 2006 TVRL 2006:1 Modelling of Coastal Overwash Review and application of state-of-art empirical, numerical and analytical methods Nguyen Xuan Tinh Department of Water Resources Engineering Supervised by Chantal Donnelly (Doctoral student) Professor Magnus Larson Lund Institute of Technology/Lund University January 2006 PREFACE This thesis work was done as a part of the MSc program in Water Resources (WaterLU) of the Department of Water Resources Engineering, Lund Institute of Technology (LTH), Lund University, Sweden, which was attended between August 2004 and December 2005. I would like to gratefully acknowledge the Swedish Institute (SI) for the financial support to carry out my studies. I owe special words of thanks to my supervisor Professor Magnus Larson for his help to bring me to this course, for the thesis ideas, for his patience, support, direction, and valuable advice. I would also like to express my great appreciation to my co-supervisor Chantal Donnelly for sharing the data, ideas, and knowledge from her PhD study, and for reviewing the English in this report. I would also like to sincerely thank my teacher in Vietnam, Associate Professor Nguyen Manh Hung for his faith, support, and advice. Additionally, I would like to thank Lee Butler and Veri-Tech Inc. for supplying us with the SBEACH model interface. I am very grateful to all the teachers who were involved in the Masters program for providing me with such valuable knowledge for my future career. -
Maine Revised Statutes 38 §468
Presented below are water quality standards that are in effect for Clean Water Act purposes. EPA is posting these standards as a convenience to users and has made a reasonable effort to assure their accuracy. Additionally, EPA has made a reasonable effort to identify parts of the standards that are not approved, disapproved, or are otherwise not in effect for Clean Water Act purposes. Maine Revised Statutes 38 §468 Maine Revised Statutes Title 38: WATERS AND NAVIGATION Chapter 3: PROTECTION AND IMPROVEMENT OF WATERS Subchapter 1: ENVIRONMENTAL PROTECTION BOARD Article 4-A: WATER CLASSIFICATION PROGRAM §468. Classifications of minor drainages All surface waters lying within the boundaries of the State that are in basins having a drainage area less than 100 square miles that are not classified as lakes or ponds are classified in this section. [1989, c. 764, §20 (AMD).] 1. Cumberland County. Those waters draining directly or indirectly into tidal waters of Cumberland County, with the exception of the Androscoggin River Basin, the Presumpscot River Basin, the Royal River Basin and tributaries of the Androscoggin River Estuary and Merrymeeting Bay, entering above the Chops - Class B unless otherwise specified. A. Freeport. (1) Frost Gully Brook - Class A. [1989, c. 764, §21 (RPR).] A-1. Cape Elizabeth. (1) Trout Brook, those waters that form the town boundary with South Portland - Class C. [2009, c. 163, §13 (NEW).] B. Portland. (1) All minor drainages unless otherwise specified - Class C. (2) Stroudwater River from its origin to tidewater, including all tributaries - Class B. [2009, c. 163, §14 (AMD).] C. Scarborough. (1) All minor drainages - Class C unless otherwise specified. -
COASTAL MAINE S If R Nahraflve REPORT Jal^UARY - DECEMBER 1966 COASTAL MINE NATIONAL WILDLIFE REFUGE
7^ COASTAL MAINE S If R NAHRAflVE REPORT JAl^UARY - DECEMBER 1966 COASTAL MINE NATIONAL WILDLIFE REFUGE Newburyport, I-fes sachusett s NARRATIVE REPORT Jan. - Dec. 1966 REFUGE PERSONNEL During this period of initial acquisition, the Coastal Maine National Wildlife Refuge was administered "by personnel of the Parker River National Wildlife Refuge. NARRATIVE REPORT COASTAL MAINE NATIONAL WILDLIFE REFUGE Jan. - Dec. 1966 General On July 26, 1966 the MBCC authorized the acquisition of the three southern-most units of the Coastal Maine National Wildlife Refuge, specifically the Lower Wells Marsh, the Moody Beach Marsh, and the Brave Boat Harbor Marsh. The refuge was officially established on December 16, 1966 when the first land tract totaling l6 acres on the Lower Wells unit was acquired by the Government. The ultimate acreage to be acquired with duck stamp monies will form a National Wildlife Refuge of approximately 4,308 acres. Since no data was taken for this period, no weather information, wildlife population figures, or narrative report forms will be included in this report. However, an initial section on history, not ordinarily included in a narrative report, will be presented. The Coastal Maine National Wildlife Refuge, lying along the south ern coast of Maine will consist of ten units. All are located be tween Kittery Point and Portland, Maine along the Atlantic coast east of U.S. Route 1. The southern-most unit is 35 miles north of the Parker River National Wildlife Refuge and the northern-most unit is 235 miles southwest of the Moosehorn National Wildlife Refuge. The individual units are as follows: 1. -
Morphodynamics of Tidal Inlet Systems in Maine
Maine Geological Survey Studies in Maine Geology: Volume 5 1989 Morphodynamics of Tidal Inlet Systems in Maine 1 2 Duncan M. FitzGeraui, Jonathan M. Lincoln • 3 1 L. Kenneth Fink, Jr. , and Dabney W. Caldwel/ 1Departm ent of Geology Boston University Boston, Massachusetts 02215 2Department of Geological Sciencies Northwestern University Evanston, Illinois 60201 3Department of Geology University of Maine Orono, Maine 04469 ABSTRACT The occurrence of tidal inlets along the coast of Maine is tied closely to the structural geology and glacial history of this region. Most of the inlets are found along the southern arcuate-embayment shoreline where sand sources, consisting of glaciomarine sediments and other glacial deposits, were sufficient to build swash-aligned barriers between pronounced bedrock headlands. Along the peninsula coast of Maine, tidal inlets also occur at the mouths of the Kennebec and Sheepscot Rivers where large quantities of glaciofluvial sands were deposited during deglacia tion. The remainder of the southeastward facing coast was stripped of its preglacial sediment cover by the southerly moving glaciers. The thin tills that were left behind yield little sand and, thus, barriers and inlets are generally absent. Small to large-sized inlets (width= 50-200 m) in Maine are anchored next to bedrock outcrops and are bordered on their opposite sides by sandy spits. Despite the ubiquitous name "river inlet," they normally have little fresh water discharge compared to their salt water tidal prisms. The backbarriers of these inlets are expansive and would produce relatively large tidal prisms if high Spartina marshes had not filled most of the region, leaving little open water area.