Optimal Hurricane Overwash Thickness for Maximizing Marsh Resilience to Sea Level Rise

Total Page:16

File Type:pdf, Size:1020Kb

Optimal Hurricane Overwash Thickness for Maximizing Marsh Resilience to Sea Level Rise W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2016 Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise David C. Walters Virginia Institute of Marine Science Matthew L. Kirwan Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Walters, D. C. and Kirwan, M. L. (2016), Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise. Ecol Evol, 6: 2948–2956. doi:10.1002/ece3.2024 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise David C. Walters & Matthew L. Kirwan Department of Physical Sciences, Virginia Institute of Marine Science, College of William and Mary, PO Box 1346, Gloucester Point, Virginia 23062 Keywords Abstract Climate change, coastal geomorphology, disturbance event, ecosystem resiliency, press The interplay between storms and sea level rise, and between ecology and sedi- and pulse stresses, salt marsh, storm ment transport governs the behavior of rapidly evolving coastal ecosystems such deposition. as marshes and barrier islands. Sediment deposition during hurricanes is thought to increase the resilience of salt marshes to sea level rise by increasing Correspondence soil elevation and vegetation productivity. We use mesocosms to simulate burial David C. Walters, Department of Physical of Spartina alterniflora during hurricane-induced overwash events of various Sciences, Virginia Institute of Marine Science, thickness (0–60 cm), and find that adventitious root growth within the over- College of William and Mary, PO Box 1386, Gloucester Point, VA 23062. wash sediment layer increases total biomass by up to 120%. In contrast to most Tel: (804) 684-7131; previous work illustrating a simple positive relationship between burial depth Fax: (804) 684-7250; and vegetation productivity, our work reveals an optimum burial depth (5– E-mail: [email protected] 10 cm) beyond which burial leads to plant mortality. The optimum burial depth increases with flooding frequency, indicating that storm deposition ame- Funding Information liorates flooding stress, and that its impact on productivity will become more This work was supported by NSF LTER important under accelerated sea level rise. Our results suggest that frequent, #1237733, NSF Coastal SEES #1426981. low magnitude storm events associated with naturally migrating islands may Received: 16 November 2015; Revised: 7 increase the resilience of marshes to sea level rise, and in turn, slow island January 2016; Accepted: 23 January 2016 migration rates. Synthesis: We find that burial deeper than the optimum results in reduced growth or mortality of marsh vegetation, which suggests that future Ecology and Evolution 2016; 6(9): 2948– increases in overwash thickness associated with more intense storms and artifi- 2956 cial heightening of dunes could lead to less resilient marshes. doi: 10.1002/ece3.2024 Introduction from storms. Including storm protection, recent work val- ues ecosystem services provided by marshes at $10,000/ha Ecosystem resiliency is determined by responses to a com- (Barbier and Hacker 2011). Human populations on bar- bination of long-term press and short-term pulse distur- rier islands are more dense than in their mainland states bances. The interplay can be complex, where pulse (Zhang and Leatherman 2011) and have grown at an disturbances can either accelerate ecosystem change, or accelerated rate that is faster than the rest of the nation else enhance resiliency to long-term stresses. Coastal (Culliton 1998). As low-lying coastal landforms, climate ecosystems such as barrier islands and salt marshes face change threatens barrier-marsh systems, including the both long-term stresses associated with sea level rise that effects of sea level rise (Sallenger et al. 2012; IPCC 2014) threaten to drown low-lying coastal landscapes, as well as and storms (Bender et al. 2010). The response of barrier short-term disturbances from storms that result in pulses island systems to climate change is also closely linked to of inundation, erosion, and deposition. Climate change is human impacts (McNamara et al. 2011; Kirwan and projected to increase hurricane intensity as well as the Megonigal 2013), through processes such as shoreline rate of sea level rise (Vermeer and Rahmstorf 2009; IPCC hardening and artificial dune-building which alter natural 2014), making the interplay between these drivers com- sedimentation processes. This creates a two-way coupling plex and important to landscape evolution and ecosystem whereby human behavior in response to coastal flooding function. and erosion can reduce ecosystem resiliency, thus dimin- Barrier islands and the marshes behind them play an ishing the very ecosystem services that protect the human important role in protecting valuable coastal property systems from flooding and erosion. 2948 ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. D. C. Walters & M. L. Kirwan Optimal Hurricane Overwash Thickness Traditional approaches study the response of barrier climate change will influence the coupled marsh-barrier islands and marshes to climate change separately. How- system. We find that shallow burial leads to enhanced ever, recent numerical modeling proposes a fundamental plant productivity, but that deep burial leads to reduced coupling between the behavior of marshes and barriers growth and mortality, so that subtle changes in the fre- (Lorenzo-Trueba and Ashton 2014; Walters et al. 2014). quency and magnitude of hurricane overwash will For example, backbarrier fringe marshes provide a plat- impact the resilience of marshes and barrier islands to form for barrier islands to migrate over that reduces the long-term sea level rise. rate of island migration, while sand from the island helps to maintain narrow fringe marshes under condi- Materials and Methods tions of suspended sediment supply and sea level rise that they would otherwise not be able to survive (Wal- Site description ters et al. 2014). Overwash, the transport of sand from the beach and dune to the backbarrier environment dur- We measured the response of marsh productivity to bur- ing storms, is the key process that links barrier islands ial by experimental overwash at Hog Island, Virginia and marshes. While episodic overwash provides an (USA) (Fig. 1). Hog Island is part of the VCR (Virginia important source of sediment to build the backbarrier Coast Reserve), an approximately 150 km barrier island vertically (Dolan and Godfrey 1973), burial can also lead coastline that evolves largely without human alteration. À to plant mortality and decades-long recovery (Osgood Local relative sea level rise rates exceed 3.0 mm year 1, et al. 1995; Wang and Horwitz 2007). Although storms where land subsidence and proximity to the Gulf Stream typically deposit sediment on marshes (Cahoon 2006; result in a mid-Atlantic hot spot of accelerated sea level Tweel and Turner 2012), they can also cause substantial rise (Sallenger et al. 2012). Overwash of nutrient poor erosion (Cahoon 2006; Nikitina et al. 2014). Alterna- barrier island sand frequently buries adjacent tidal tively, the subsidy of sediment provided by overwash marshes and, in some cases, leads to vegetation mortality could add nutrients and help stave off the negative and re-establishment that resembles primary succession impacts of sea level rise on backbarrier marsh vegeta- (Osgood et al. 1995). Our experiments are located in or tion, thus leading to enhanced productivity (Men- near a backbarrier fringe marsh that developed on an delssohn and Kuhn 2003). Here, we study the impact of overwash fan associated with a storm in 1962 (Walsh experimental hurricane overwash on marsh plant growth 1998), and immediately adjacent to long-term marsh bio- along an inundation gradient representative of sea level mass sampling sites associated with the VCR Long Term rise in an effort to understand how interacting facets of Ecological Research site (Fig. 1C). (A) Figure 1. (A) Location of Hog Island study site on the Atlantic coast of Virginia (USA). (B) Google Earth photography illustrates extensive marsh behind a sandy barrier island with vegetated dunes and (C) the location of experimental plots relative to long-term end of (B) (C) year biomasssampling transects. ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 2949 Optimal Hurricane Overwash Thickness D. C. Walters & M. L. Kirwan To explore the combined influences of overwash and wooden stakes so that approximately 1 cm of the bucket sea level rise, we conducted our experiment at a pair of was buried below the marsh surface, thus varying the low and high elevation marsh sites that are subject to dif- height of the bucket above the surface (Fig. 2). Experi- ferent periods of tidal inundation and different rates of ments began prior to the growing season in March, ambient plant productivity. Solinst Levelogger © pressure 2014 to simulate
Recommended publications
  • Stochastic Dynamics of Barrier Island Elevation
    Stochastic dynamics of barrier island elevation Orencio Duran´ Vinenta,1 , Benjamin E. Schafferb, and Ignacio Rodriguez-Iturbea,1 aDepartment of Ocean Engineering, Texas A&M University, College Station, TX 77843-3136; and bDepartment of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08540 Contributed by Ignacio Rodriguez-Iturbe, November 11, 2020 (sent for review June 29, 2020; reviewed by Carlo Camporeale and A. Brad Murray) Barrier islands are ubiquitous coastal features that create low- a marked Poisson process with exponentially distributed marks. energy environments where salt marshes, oyster reefs, and man- The mark of a HWE is defined as the maximum water level groves can develop and survive external stresses. Barrier systems above the beach during the duration of the event and charac- also protect interior coastal communities from storm surges and terizes its size and intensity. This result opens the way for a wave-driven erosion. These functions depend on the existence of probabilistic model of the temporal evolution of the barrier/dune a slowly migrating, vertically stable barrier, a condition tied to elevation, along the lines of the stochastic model of soil moisture the frequency of storm-driven overwashes and thus barrier ele- dynamics (4). The knowledge of the transient probability dis- vation during the storm impact. The balance between erosional tribution function of barrier elevation allows the calculation of and accretional processes behind barrier dynamics is stochastic in after-storm recovery times, overwash probability and frequency, nature and cannot be properly understood with traditional con- and the average overwash transport rate driving the landward tinuous models. Here we develop a master equation describing migration of barriers.
    [Show full text]
  • Historical Changes in the Mississippi-Alabama Barrier Islands and the Roles of Extreme Storms, Sea Level, and Human Activities
    HISTORICAL CHANGES IN THE MISSISSIPPI-ALABAMA BARRIER ISLANDS AND THE ROLES OF EXTREME STORMS, SEA LEVEL, AND HUMAN ACTIVITIES Robert A. Morton 88∞46'0"W 88∞44'0"W 88∞42'0"W 88∞40'0"W 88∞38'0"W 88∞36'0"W 88∞34'0"W 88∞32'0"W 88∞30'0"W 88∞28'0"W 88∞26'0"W 88∞24'0"W 88∞22'0"W 88∞20'0"W 88∞18'0"W 30∞18'0"N 30∞18'0"N 30∞20'0"N Horn Island 30∞20'0"N Petit Bois Island 30∞16'0"N 30∞16'0"N 30∞18'0"N 30∞18'0"N 2005 2005 1996 Dauphin Island 1996 2005 1986 1986 30∞16'0"N Kilometers 30∞14'0"N 0 1 2 3 4 5 1966 30∞16'0"N 1950 30∞14'0"N 1950 Kilometers 1917 0 1 2 3 4 5 1917 1848 1849 30∞14'0"N 30∞14'0"N 30∞12'0"N 30∞12'0"N 30∞12'0"N 30∞12'0"N 30∞10'0"N 30∞10'0"N 88∞46'0"W 88∞44'0"W 88∞42'0"W 88∞40'0"W 88∞38'0"W 88∞36'0"W 88∞34'0"W 88∞32'0"W 88∞30'0"W 88∞28'0"W 88∞26'0"W 88∞24'0"W 88∞22'0"W 88∞20'0"W 88∞18'0"W 89∞10'0"W 89∞8'0"W 89∞6'0"W 89∞4'0"W 88∞58'0"W 88∞56'0"W 88∞54'0"W 88∞52'0"W 30∞16'0"N Cat Island Ship Island 30∞16'0"N 2005 30∞14'0"N 1996 30∞14'0"N 1986 Kilometers 1966 0 1 2 3 30∞14'0"N 1950 30∞14'0"N 1917 1848 Fort 2005 Massachusetts 1995 1986 Kilometers 1966 0 1 2 3 30∞12'0"N 1950 30∞12'0"N 1917 30∞12'0"N 30∞12'0"N 1848 89∞10'0"W 89∞8'0"W 89∞6'0"W 89∞4'0"W 88∞58'0"W 88∞56'0"W 88∞54'0"W 88∞52'0"W Open-File Report 2007-1161 U.S.
    [Show full text]
  • The Modified Bruun Rule Extended for Landward Transport
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Army Research U.S. Department of Defense 2013 The modified Bruun Rule extended for landward transport J.D. Rosati U. S. Army Corps of Engineers, [email protected] R.G. Dean University of Florida T.L. Walton Coastal Tech Corp Follow this and additional works at: https://digitalcommons.unl.edu/usarmyresearch Rosati, J.D.; Dean, R.G.; and Walton, T.L., "The modified Bruun Rule extended for landward transport" (2013). US Army Research. 219. https://digitalcommons.unl.edu/usarmyresearch/219 This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Army Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Marine Geology 340 (2013) 71–81 Contents lists available at SciVerse ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo The modified Bruun Rule extended for landward transport J.D. Rosati a,⁎, R.G. Dean b, T.L. Walton c a U. S. Army Corps of Engineers, Washington, DC 20314, United States b University of Florida, Gainesville, FL 32605, United States c Coastal Tech Corp., Tallahassee, FL, United States article info abstract Article history: The Bruun Rule (Bruun, 1954, 1962) provides a relationship between sea level rise and shoreline retreat, and Received 3 January 2013 has been widely applied by the engineering and scientific communities to interpret shoreline changes and to Received in revised form 24 April 2013 plan for possible future increases in sea level rise rates.
    [Show full text]
  • Modelling of Coastal Overwash
    Department of Water Resources Engineering Lund Institute of Technology (LTH) Lund University MODELLING OF COASTAL OVERWASH Nguyen Xuan Tinh LUND - 2006 TVRL 2006:1 Modelling of Coastal Overwash Review and application of state-of-art empirical, numerical and analytical methods Nguyen Xuan Tinh Department of Water Resources Engineering Supervised by Chantal Donnelly (Doctoral student) Professor Magnus Larson Lund Institute of Technology/Lund University January 2006 PREFACE This thesis work was done as a part of the MSc program in Water Resources (WaterLU) of the Department of Water Resources Engineering, Lund Institute of Technology (LTH), Lund University, Sweden, which was attended between August 2004 and December 2005. I would like to gratefully acknowledge the Swedish Institute (SI) for the financial support to carry out my studies. I owe special words of thanks to my supervisor Professor Magnus Larson for his help to bring me to this course, for the thesis ideas, for his patience, support, direction, and valuable advice. I would also like to express my great appreciation to my co-supervisor Chantal Donnelly for sharing the data, ideas, and knowledge from her PhD study, and for reviewing the English in this report. I would also like to sincerely thank my teacher in Vietnam, Associate Professor Nguyen Manh Hung for his faith, support, and advice. Additionally, I would like to thank Lee Butler and Veri-Tech Inc. for supplying us with the SBEACH model interface. I am very grateful to all the teachers who were involved in the Masters program for providing me with such valuable knowledge for my future career.
    [Show full text]
  • Sedimentological Characteristics and Internal Architecture of Two Overwash Fans from Hurricanes Ivan and Jeanne Mark H
    University of South Florida Masthead Logo Scholar Commons Geology Faculty Publications Geology 2005 Sedimentological Characteristics and Internal Architecture of Two Overwash Fans From Hurricanes Ivan and Jeanne Mark H. Horwitz University of South Florida Ping Wang University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/gly_facpub Part of the Geology Commons Scholar Commons Citation Horwitz, Mark H. and Wang, Ping, "Sedimentological Characteristics and Internal Architecture of Two Overwash Fans From Hurricanes Ivan and Jeanne" (2005). Geology Faculty Publications. 242. https://scholarcommons.usf.edu/gly_facpub/242 This Article is brought to you for free and open access by the Geology at Scholar Commons. It has been accepted for inclusion in Geology Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Sedimentological Characteristics and Internal Architecture of Two Overwash Fans from Hurricanes Ivan and Jeanne Horwitz, Mark1 and Wang, Ping2 1BCI Engineers and Scientists, Inc., Lakeland, Florida 33803 2Department of Geology, University of South Florida, Tampa, Florida 33620 Abstract Extensive overwash occurred along the Florida coast during the passage of four strong hur- ricanes in 2004, providing an excellent opportunity to study the spatial patterns and sedimentary architecture of washover deposits. Detailed 3D sedimentological characteristics of two of the over- wash fans were studied through coring, trenching, and ground penetration radar surveys. The first washover-fan complex, deposited by hurricanes Frances and Jeanne is located on the Atlan- tic facing Hutchinson Island in southeastern Florida. The second fan, deposited by hurricane Ivan is located on the Gulf-facing Santa Rosa Island in northwestern Florida.
    [Show full text]
  • Sea-Level Rise and Shoreline Retreat: Time to Abandon the Bruun Rule
    Global and Planetary Change 43 (2004) 157–171 www.elsevier.com/locate/gloplacha Sea-level rise and shoreline retreat: time to abandon the Bruun Rule J. Andrew G. Coopera,*, Orrin H. Pilkeyb aSchool of Environmental Studies, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK bNicholas School of the Environment and Earth Sciences, Division of Earth and Ocean Sciences, Duke University, Durham, North Carolina 27708, USA Received 9 February 2004; accepted 22 July 2004 Abstract In the face of a global rise in sea level, understanding the response of the shoreline to changes in sea level is a critical scientific goal to inform policy makers and managers. A body of scientific information exists that illustrates both the complexity of the linkages between sea-level rise and shoreline response, and the comparative lack of understanding of these linkages. In spite of the lack of understanding, many appraisals have been undertaken that employ a concept known as the bBruun RuleQ. This is a simple two-dimensional model of shoreline response to rising sea level. The model has seen near global application since its original formulation in 1954. The concept provided an advance in understanding of the coastal system at the time of its first publication. It has, however, been superseded by numerous subsequent findings and is now invalid. Several assumptions behind the Bruun Rule are known to be false and nowhere has the Bruun Rule been adequately proven; on the contrary several studies disprove it in the field. No universally applicable model of shoreline retreat under sea-level rise has yet been developed.
    [Show full text]
  • Overwash, Sandy Beach, and Dune Grassland Habitats by 2012, to Fine-Tune Protection Prescriptions
    Alternative B. The Service-preferred Alternative We would seek to expand the current office building to accommodate additional visitors for environmental education and interpretive programs. This office expansion would also provide needed space for storage of visitor services, supplies, and biological equipment. We would continue the use of travel trailers, which are used for interns, researchers, volunteers, and temporary employees. In the discussion that follows, we describe in detail the goals, objectives, and associated rationales and strategies that we would use to implement alternative B habitat management and public use objectives. We have provided additional discussion and strategies specifically regarding our response to climate change and sea level rise. GOAL 1. Barrier Beach Island and Coastal Salt Marsh Habitats Manage, enhance, and protect the dynamic barrier beach island ecosystem for migratory birds, breeding shorebirds, and other marine fauna and flora. Perpetuate the biological integrity, diversity, and environmental health of North Atlantic high and low salt marsh habitats. Objective 1.1 Barrier Beach Permit the natural evolution and functioning of sandy beach, overwash, dune Communities: Overwash, grassland, and mudflat habitats along approximately 1.5 miles of refuge coastline Sandy Beach, and Mudflat in Unit I to conserve spawning horseshoe crabs and listed BCR 30 migratory bird species. Over time, permit the development of these features and communities along an additional approximately 1.5 miles of the shore of Unit II, as salt marsh restoration is pursued. Barrier beach communities are characterized by the following attributes: ■ Plant species typical of overwash grasslands include a mixture of Cakile eduntula, Spartina patens, Schoenoplectus pungens, Cenchrus tribuloides, Triplasis purpurea, and scattered Baccharis halimifolia seedlings.
    [Show full text]
  • Detailed Investigation of Overwash on a Gravel Barrier
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Plymouth Electronic Archive and Research Library DETAILED INVESTIGATION OF OVERWASH ON A GRAVEL BARRIER Ana Matias1, Chris E Blenkinsopp2, Gerd Masselink3 1 CIMA-Universidade do Algarve, 8000 Faro, Portugal, [email protected] 2Department of Architecture and Civil Engineering, University of Bath, Bath, BA2 7AY, United Kingdom, [email protected] 3School of Marine Science and Engineering, University of Plymouth, PL4 8AA, U.K., [email protected] “NOTICE: this is the author’s version of a work that was accepted for publication in Marine Geology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Marine Geology, [VOL 350, (01.04.14)] DOI 10.1016/j.margeo.2014.01.009” Abstract This paper uses results obtained from a prototype-scale experiment (Barrier Dynamics Experiment; BARDEX) undertaken in the Delta flume, the Netherlands, to investigate overwash hydraulics and morphodynamics of a prototype gravel barrier. Gravel barrier behaviour depends upon a number of factors, including sediment properties (porosity, permeability, grain-size) and wave climate. Since overwash processes are known to control short-term gravel barrier dynamics and long-term barrier migration, a detailed quantification of overwash flow properties 1 and induced bed-changes is crucial. Overwash hydrodynamics of the prototype gravel barrier focused on the flow velocity, depth and discharge over the barrier crest, and the overwash flow progression across and the infiltration through the barrier.
    [Show full text]
  • Estuarine Shorelines Behind Simple Overwash Barrier Islands 1
    Teacher background information – Estuarine shorelines behind simple overwash barrier islands 1 Figures 1-13, 1-14, and 1-16 (see pg. 2) illustrate the difference between simple overwash barrier islands (narrow and low) and complex barrier islands (wide and high). The North Carolina Outer Banks consist of both types. Back-barrier shorelines associated with simple overwash-dominated barrier islands, such as major portions of Pea Island, Ocracoke Island, and the Avon-Buxton site, are greatly affected by events occurring on the ocean side. Because these barrier segments tend to be sediment poor, they are extremely dynamic with severe erosion on the ocean side (between five to twelve feet per year, based on the N.C. Division of Coastal Management’s long-term average annual erosion rates). The consequence is extensive formation of both overwash fans and inlets in response to storm surge events (figures 1-21 and 1-15 – see pg. 3). Sediments eroded from the ocean side are supplied through overwash and inlet processes to the continuous building of the back-barrier portion of the island at the expense of the ocean side. These deposits form extensive shallow-water sand platforms in the back-barrier estuaries that are quickly colonized by salt marsh and aquatic grasses. The growth of aquatic, inter-tidal, and subaerial vegetation stabilizes the sand platforms and continues to trap more sand with time. The heavy growth of vegetation helps to stabilize the newly developed estuarine shoreline. When a storm directly impacts a narrow and weak portion of the simple overwash barrier islands, a new inlet will frequently form.
    [Show full text]
  • Laboratory Investigation of the Bruun Rule and Beach Response to Sea Level Rise
    1 Laboratory investigation of the Bruun Rule and beach response to sea level rise 2 Alexander L. Atkinson1*, Tom. E. Baldock1, Florent Birrien1, David P. Callaghan1, Peter 3 Nielsen1, Tomas Beuzen2, Ian L. Turner2, Chris E. Blenkinsopp3, Roshanka Ranasinghe1,4,5,6. 4 1 School of Civil Engineering, University of Queensland, St Lucia, QLD, 4072, Australia. 5 2 Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia. 6 3 Water, Environment and Infrastructure Resilience Research Unit, Department of Architecture and Civil Engineering, 7 University of Bath, Bath BA2 7AY, UK. 8 4 Department of Water Science and Engineering, UNESCO-IHE, PO Box 3015, 2610 DA Delft, The Netherlands. 9 [email protected] (Ph: +31 646 843 096) 10 5 Water Engineering and Management, Faculty of Engineering Technology, University of Twente, PO Box 217, 7500 AE 11 Enschede, The Netherlands 12 6 Harbour, Coastal and Offshore Engineering, Deltares, PO Box 177, 2600 MH Delft, The Netherlands. 13 14 Abstract 15 Beach response to sea level rise is investigated experimentally with monochromatic and random 16 waves in medium scale laboratory wave flumes. Beach profile development from initially planar 17 profiles, and a 2/3 power law profile, exposed to wave conditions that formed barred or bermed profiles 18 and subsequent profile development following rises in water level and the same wave conditions are 19 presented. Experiments assess profile response to a step-change in water level as well as the influence 20 of sediment deposition above the still water level (e.g. overwash). A continuity based profile translation 21 model (PTM) is applied to both idealised and measured shoreface profiles, and is used to predict 22 overwash and deposition volumes above the shoreline.
    [Show full text]
  • Quantifying Overwash Flux in Barrier Systems
    Marine Geology 343 (2013) 15–28 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Quantifying overwash flux in barrier systems: An example from Martha's Vineyard, Massachusetts, USA Emily A. Carruthers 1, D. Philip Lane 2, Rob L. Evans ⁎, Jeffrey P. Donnelly, Andrew D. Ashton Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States article info abstract Article history: Coastal barriers are particularly susceptible to the effects of accelerated sea-level rise and intense storms. Over Received 18 September 2012 centennial scales, barriers are maintained via overtopping during storms, which causes deposition of washover Received in revised form 28 May 2013 fans on their landward sides. Understanding barrier evolution under modern conditions can help evaluate the Accepted 31 May 2013 likelihood of future barrier stability. This study examines three washover fans on the undeveloped south shore Available online 14 June 2013 of Martha's Vineyard using a suite of vibracores, ground penetrating radar, high resolution dGPS, and LiDAR 4 3 Communicated by J.T. Wells data. From these data, the volumes of the deposits were determined and range from 2.1 to 2.4 × 10 m .Two of these overwash events occurred during Hurricane Bob in 1991. The water levels produced by this storm 3 Keywords: have a calculated return interval of ~28 years, implying an onshore sediment flux of 2.4–3.4 m /m/yr. The overwash flux third washover was deposited by a nor'easter in January 1997, which has a water level return interval of barrier system ~6 years, suggesting a flux of 8.5 m3/m/yr.
    [Show full text]
  • Redalyc.Overwash Hazard Assessment
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España RODRIGUES, B.A.; MATIAS, A.; FERREIRA, Ó. Overwash hazard assessment Geologica Acta: an international earth science journal, vol. 10, núm. 4, diciembre, 2012, pp. 427-437 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50524834008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.10, Nº 4, December 2012, 427-437 DOI: 10.1344/105.000001743 Available online at www.geologica-acta.com Overwash hazard assessment B.A. RODRIGUES A. MATIAS Ó. FERREIRA FCMA/CIMA, Universidade do Algarve, Campus de Gambelas 8005-139, Faro, Portugal. Fax: +351 289 800696. Rodrigues E-mail: [email protected] Matias E-mail: [email protected] Ferreira E-mail: [email protected] ABS TRACT Overwash is a natural storm-related process that occurs when wave runup overcomes the dune crest. Because coastlines are globally occupied, overwash is a hazardous process and there is a need to identify vulnerable areas. This study proposes a method to detect overwash-prone areas in the Ancão peninsula, Portugal, and eventually outlines a vulnerability map. Dune base (DLOW) and crest (DHIGH) topography were surveyed. Three different storm scenarios (5-, 10- and 25- year return period storms) and associated waves and sea level were determined. Accord- ing to these data, extreme wave runup (RHIGH) was calculated by a parameterisation set for intermediate-reflective beaches.
    [Show full text]