The Effect of Different Xylan Contents on the Strength Properties of Softwood Kraft Pulp
Total Page:16
File Type:pdf, Size:1020Kb
Institutionen för Kemiteknik Maria Svedinger Andersson The Effect of Different Xylan Contents on the Strength Properties of Softwood Kraft pulp Xylanhaltens påverkan på styrkeegenskaper hos barrvedssulfatmassa MSc Thesis in Chemical engineering 30 points Specialized in Pulp Technology Date/Sem: August 2013 Supervisor: Ulf Germgård Examiner: Lars Järnström Abstract The aim of this Master thesis was to investigate if the xylan content had any influence on the physical properties of softwood kraft pulps. To achieve pulps with different xylan content different kraft cooking conditions were used; two different temperatures and two different effective alkali levels. The cooking conditions used were 160°C with 30% effective alkali (EA) referred to as reference cook and 145°C with 17% effective alkali (EA) referred to as the mild cook. The first step in this study was to determine the cooking time needed for reaching a certain kappa number, i.e.30. It was also determined whether the difference in xylan content between the pulp samples was sufficient when these cooking conditions were used. When the correct cooking time and cooking conditions had been found new cooks were made using these conditions. All cooks were made at a liqour to wood ratio of 4:1. The difference in xylan content between the corresponding pulp samples was found to be 3%. The physical testing showed no significant difference in the tensile strength between the two pulps after beating. There was a difference in tear index however and the pulp with the highest content of xylan had the lowest tear index. Zero-span index was the same for the two pulps when unbeaten. After beating the zero-span index decreased for the pulp with highest xylan content but stayed unchanged for the pulp with the lower amount of xylan. These results can be explained by the results from the fibre analysis which showed that the fibres with high xylan content were longer, thicker and had a higher coarseness. Thicker fibres are probably stiffer than thinner fibres which gives the paper fewer bonding points and a lower strength. The result from the zero-span test indicated that the fibres with higher xylan content are affected more by beating than fibres with the lower xylan content. 2 Sammanfattning Målet med examensarbetet var att undersöka om och hur mycket xylaneti pappersmassan påverkar fiberns och därmed papperets fysikaliska egenskaper. Egenskaperna som undersöktes var drag- och rivstyrka samt zero-spanstyrka. Xylaninnehållet skulle varieras genom att kokförhållandena förändrades dels genom olika koktemperaturer dels olika satsningar av effektivt alkali vid given sulfiditet. Dessa var 160ºC med 30% effektivt alkali(EA) hädanefter benämnd referenskoket och 145ºC med 17% effektivt alkali(EA) som benämns det milda koket i fortsättningen.En bestämning av koktiden gjordes för att nå 30 i kappatal och två provkok, ett vid varje temperatur behövde göras.Skillnaden i xylanhalt mellan de slutliga massaproverna låg på c:a 3% enheter. Styrkeproverna gav inga entydiga svar på om skillnaden i xylanhalt gav någon effekt på massastyrkan. Dragproverna visade att för omald massa var massan från referenskoket starkast men att massan från det mildare koket reagerade kraftigare på malningen. Redan vid 1000 varv hade den i princip samma dragindex som referensmassan vid samma malgrad. Zero-span mätningarna visade att fibrerna hade samma styrka när de var omalda. Resultaten från fiberanalysenverifierade resultaten från styrketesterna eftersom en tjockare fiber bör ge en styvare fiber och därmed erhålls färre bindningspunkter. Färre bindningspunkter ger en lägre dragstyrka och det krävs mindre energi för att bryta bindningarna. Efter malningen kan man se att zero-span styrkan har minskat betydligt för massan med högre xylanhalt medan referensmassan behöll styrkan. Dessutom har dragstyrkan ökat för båda massorna men mest för massan med högre xylanhalt. Det kan förklaras med att malningen ger små fibriller på ytan av fibern och en mjukare och böjligare fiber. Därmed ökar bindningsstyrkan då bindningsarean ökar och fibern blir mjukare och böjligare. Den ökade bindningsgraden samt den minskade fiberstyrkan kan förklara varför rivindex fortfarande var lägre för massan med högre xylanhalt trots att dragindex ökade med ökad malning.En annan förklaring kan vara att vid ett långt kok med låg temperatur är det troligt att lignin adsorberas på fibrerna.Ligninet på ytan ger en sämre bindningsförmåga vilket leder till att de är lättare att dra ur nätverket med lägre energiåtgång som följd. 3 Preface The exprimental of this thesis was made in the cooking laboratories of Karlstad University and Metso Fiber. I want to thank my advisor at Karlstad University professor Ulf Germgård for his support and good advices. I also want to thank my colleagues for all there help and especially Frederica De Magistris and my supervisor Helena Håkansson. Pia Eriksson and GöranWalan are to be thanked for all there help with troubleshooting in the laboratory at Karlstad University. And a special thanks to Maria Gustavsson and Ulla Ekström at Metso Fiber for all their help. 4 Contents Abstract ............................................................................................................................... 2 Sammanfattning .................................................................................................................. 3 Preface................................................................................................................................. 4 1 Introduction ...................................................................................................................... 6 2 Background ...................................................................................................................... 7 2.1 Cellulose ................................................................................................................... 8 2.2 Hemicellulose ........................................................................................................... 8 2.2.1 Xylan .................................................................................................................. 9 2.2.2 Glucomannan ................................................................................................... 10 2.3 Lignin ...................................................................................................................... 10 2.4 Physical testing of laboratory sheets ....................................................................... 11 2.4.1 Tensile strength ................................................................................................ 11 2.4.2 Tear strength .................................................................................................... 11 2.4.3 Viscosity .......................................................................................................... 12 2.4.4 Zero span .......................................................................................................... 12 2.4.5.Fibre analysis ................................................................................................... 12 2.4.6. Beating ............................................................................................................ 12 2.5 Hemicellulose content effect on strength properties ............................................... 13 3 Materials and method ..................................................................................................... 14 3.1 Cooking ................................................................................................................... 14 3.2 Papermaking and physical testing ........................................................................... 14 4 Results ............................................................................................................................ 15 4.1 Pre-study ................................................................................................................. 15 4.2 Cooking parameters ................................................................................................ 16 4.3 Yield ........................................................................................................................ 17 4.4 Hemicellulose ......................................................................................................... 17 4.4.1. Xylan ............................................................................................................... 17 4.4.2 Glucomannan ................................................................................................... 19 4.5 Fibre analysis .......................................................................................................... 20 4.6 Viscosity andSchopper-Riegler .............................................................................. 20 4.7 Zerospan .................................................................................................................. 22 4.8. Tensile index .......................................................................................................... 22 4.9 Tear index ............................................................................................................... 23 4.10 Tear index vs tensile index ................................................................................... 24 5 Discussion .....................................................................................................................