The Roles of Xylan and Lignin in Oxalic Acid Pretreated Corncob During Separate Enzymatic Hydrolysis and Ethanol Fermentation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent Office Patented Feb
3,646,061 United States Patent Office Patented Feb. 29, 1972 2 3,646,061 Since the alcohol such as methanol, ethanol, propanol, METHOD OF PREPARENG N-ALKOXALYL AND N-FORMYL DERVATIVES OF oz-AMNO ACID iso-propanol and n-butanol, acts as a reagent as well as a ESTERS solvent, the alcohol is used in an excess amount, usually Itsutoshi Maeda, Kanagawa-ken, Hideshi Miyayashiki, 10-50 moles per mole of amino acid. Tokyo, and Ryonosuke Yoshida, Kanagawa-ken, Japan, 5 Formic acid or oxalic acid is usually employed in an assignors to Ajinomoto Co., Inc., Tokyo, Japan amount of 1-5 moles, preferably 2-3 moles per mole of No Drawing. Filed May 29, 1969, Ser. No. 829,139 amino acid. Claims priority, application Japan, June 10, 1968, The reaction proceeds easily when the mixture of amino 43/39,796; Aug. 10, 1968, 43/56,916 acid, alcohol and formic or oxalic acid is heated at a Int, CI, C07d 27/60; C07c 101/00 10 temperature within the range of 80 to 200° C. U.S. C. 260-326.14 T 6 Claims When formic acid is used, the product is a formylamino acid ester, however, when oxalic acid is used esters of the N-formylamino acid are also formed. At a ratio of which ABSTRACT OF THE DISCLOSURE depends mainly on the reaction temperature. Alkyl esters of alkoxalylamino or N-formylamino acids In general, the yield of alkoxalylamino acid ester de are produced in high yields directly by heating the acids creases and that of N-formylamino acid ester increases with oxalic acid or formic acid and a lower alkyl alcohol with increasing reaction temperature, when the reaction at 80-200 C. -
Oxalic Acid 1
MSDS Number: O6044 * * * * * Effective Date: 03/28/11 * * * * * Supercedes: 11/21/08 OXALIC ACID 1. Product Identification Synonyms: Ethanedioic acid, dihydrate; oxalic acid dihydrate CAS No.: 144-62-7 (Anhydrous); 6153-56-6 (Dihydrate) Molecular Weight: 126.07 Chemical Formula: HOOCCOOH.2H2O Product Codes: J.T. Baker: 0229, 0230 Macron: 2752, 7296 2. Composition/Information on Ingredients Ingredient CAS No Percent Hazardous --------------------------------------- ------------ ------------ --------- Oxalic Acid 144-62-7 99 - 100% Yes 3. Hazards Identification Emergency Overview -------------------------- POISON! DANGER! MAY BE FATAL IF SWALLOWED. CORROSIVE. CAUSES SEVERE IRRITATION AND BURNS TO SKIN, EYES, AND RESPIRATORY TRACT. HARMFUL IF INHALED OR ABSORBED THROUGH SKIN. MAY CAUSE KIDNEY DAMAGE. SAF-T-DATA(tm) Ratings (Provided here for your convenience) ----------------------------------------------------------------------------------------------------------- Health Rating: 4 - Extreme (Poison) Flammability Rating: 1 - Slight Reactivity Rating: 1 - Slight Contact Rating: 3 - Severe (Corrosive) Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES Storage Color Code: White (Corrosive) ----------------------------------------------------------------------------------------------------------- Potential Health Effects ---------------------------------- Oxalic acid is corrosive to tissue. When ingested, oxalic acid removes calcium from the blood. Kidney damage can be expected as the calcium is removed from the -
Xylan Utilization in Human Gut Commensal Bacteria Is Orchestrated by Unique Modular Organization of Polysaccharide-Degrading Enzymes
Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes Meiling Zhanga,b,c,1,2, Jonathan R. Chekand,1, Dylan Dodda,b,e,1,3, Pei-Ying Hongc,4, Lauren Radlinskia,b,e, Vanessa Revindrana,b, Satish K. Nairb,d,5, Roderick I. Mackiea,b,c,5, and Isaac Canna,b,c,e,5 aEnergy Biosciences Institute, bInstitute for Genomic Biology, and Departments of cAnimal Sciences, dBiochemistry, and eMicrobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 Edited by Arnold L. Demain, Drew University, Madison, NJ, and approved July 29, 2014 (received for review April 19, 2014) Enzymes that degrade dietary and host-derived glycans represent One of the most important functional roles specific to the lower the most abundant functional activities encoded by genes unique gut microbiota is the degradation and fermentation of dietary fiber to the human gut microbiome. However, the biochemical activities that is resistant to digestion by human enzymes. The enzymes in- of a vast majority of the glycan-degrading enzymes are poorly volved in breaking down polysaccharides are members of carbo- understood. Here, we use transcriptome sequencing to under- hydrate active enzymes (CAZymes) and are categorized into stand the diversity of genes expressed by the human gut bacteria families of carbohydrate-binding modules (CBMs), carbohydrate Bacteroides intestinalis and Bacteroides ovatus grown in monocul- esterases (CEs), glycoside hydrolases (GHs), glycoside transferases ture with the abundant dietary polysaccharide xylan. The most (GTs), or polysaccharide lyases (PLs) (14). The CAZy gene cat- highly induced carbohydrate active genes encode a unique glycoside alog of the human genome pales in comparison with that of the gut hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 microbiota, which exceeds the total number of human CAZymes and BACOVA_04390) that is highly conserved in the Bacteroidetes by at least 600-fold (15). -
Production of Oxalic Acid by Aspergillus Niger
ProductionINDONESIAN of Oxalic MINING Acid By JOURNAL Aspergillus Vol. Niger, 12, No.Sri 2,Handayani June 2009 and : 85 Suratman - 89 PRODUCTION OF OXALIC ACID BY ASPERGILLUS NIGER Sri Handayani and Suratman R&D Centre for Mineral and Coal Technology Jl. Jend. Sudirman 623 Bandung 40211 Ph.62-22-6030483, fax. 62-22-6003373, e-mail: [email protected] ABSTRACT Oxalic acid has been suggested to be essential in the metal leaching processes by Aspergillus niger. The ability of Aspergillus niger strain to produce a high amount of oxalic acid on glucose and sucrose media was investigated. The experimental results show that glucose is favorable for oxalic acid biosynthesis which can produce 14.47 g/L oxalic acid compared to 7.09 g/L oxalic acid on sucrose medium. The production pattern, however, were identical on both substrates. The main drawback of this fermentation was the low yield attained (75.47 % from theoretical yield) probably because some of glucose was oxidized to gluconic acid at the beginning of fermentation, and due to some limitation of growing the A. niger in shake flask condition because pH of the culture cannot be fully controlled in shake flask system. Therefore, batch culture in fully controlled fermentor can be carried out as further steps of experiment after shake flask. Keywords : oxalic acid, biosynthesis, Aspergillus niger, glucose, sucrose search was conducted to get an optimum condi- INTRODUCTION tion for oxalic acid production by the strain of As- pergillus niger, which obtained from the quartz Oxalic acid is known as organic acid used as pre- sample of the Karimum island. -
Oxalic Acid Metabolism of Microbial
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows DOWNLOADED FROM MICROBIAL METABOLISM OF OXALIC ACID William B. Jakoby and J. V. Bhat 1958. MICROBIAL METABOLISM OF OXALIC ACID. Microbiol. Mol. Biol. mmbr.ASM.ORG - Rev. 22(2):75-80. Updated information and services can be found at: http://mmbr.asm.org July 19, 2010 These include: CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more>> Information about commercial reprint orders: http://journals.asm.org/misc/reprints.dtl To subscribe to an ASM journal go to: http://journals.asm.org/subscriptions/ DOWNLOADED FROM MICROBIAL METABOLISM OF OXALIC ACID WILLIAM B. JAKOBYl AND J. V. BHAT2 Although the synthesis of urea by Wbhler in study of compounds supporting bacterial growth, 1828 is credited with dispelling the notion of Den Dooren de Jong (7) and Ayers et al. (8) vital forces involved in the synthesis of organic were unable to obtain growth of a variety of chemicals, the first organic compound to be as- saprophytic bacteria when oxalate was the sole mmbr.ASM.ORG - sembled from inorganic matter is the subject of carbon source. Much of the literature pertaining the present review. Legend has it that because to attempts at demonstrating bacterial utiliza- of the empirical formula, written as C203 H20 tion of oxalate has been reviewed (9). at the time, oxalic acid prepared from cyanogen To date several organisms have been isolated by W6hler in 1824 was judged to be "inorganic." which are able to grow on a medium containing More pertinent here is the interest of the micro- only inorganic salts, a nitrogen source, and biologist and biochemist in oxalic acid as the oxalate. -
APPENDIX G Acid Dissociation Constants
harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants § ϭ 0.1 M 0 ؍ (Ionic strength ( † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form. -
Content of Capsaicinoids and Physicochemical Characteristics of Manzano Hot Pepper Grown in Greenhouse
Available online: www.notulaebotanicae.ro Print ISSN 0255-965X; Electronic 1842-4309 Notulae Botanicae Horti AcademicPres Not Bot Horti Agrobo, 2019, 47(1):119-127. DOI:10.15835/nbha47111241 Agrobotanici Cluj-Napoca Original Article Content of Capsaicinoids and Physicochemical Characteristics of Manzano Hot Pepper Grown in Greenhouse Mario PÉREZ-GRAJALES 1, María T. MARTÍNEZ-DAMIÁN 1*, Oscar CRUZ-ALVAREZ 2, Sandra M. POTRERO-ANDRADE 1, Aureliano PEÑA-LOMELÍ 1, Víctor A. GONZÁLEZ-HERNÁNDEZ 3, Angel VILLEGAS-MONTER 3 1Autonomous University Chapingo, Department of Plant Science, Km. 38.5 Mexico-Texcoco Highway, CP 56230 Chapingo, State of Mexico, Mexico; [email protected] ; [email protected] ; [email protected] ; [email protected] (*corresponding author) 2Autonomous University of Chihuahua, Faculty of Agrotechnological Sciences, Pascual Orozco Avenue, Campus 1, Santo Niño, CP 31350 Chihuahua, Mexico; [email protected] 3Postgraduate College, Campus Montecillo, Texcoco, CP 56230 Montecillo, State of Mexico, Mexico; [email protected] ; [email protected] Abstract The hotness of the chili fruit ( Capsicum spp.) is mainly due to the presence of capsaicinoids (capsaicin, nordihydrocapsaicin and dihydrocapsaicin). The aim of the present research was to evaluate the content of capsaicinoids and characteristics of physicochemical quality in fruits of manzano hot pepper grown in the greenhouse. The experimental design used was completely randomized with 3 and 4 replications. The parameters evaluated were total capsaicinoids, vitamin C, total carotenoids (TC), total soluble solids (TSS), titratable acidity, pH, firmness and color of the fruit. Among the hybrids with the highest content of total capsaicinoids and vitamin C, L4XL8 and L5XL7 (27 371 and 21 700 SHU, respectively) stand out as well as L2XL5 with 809.35 mg 100 g -1. -
Dissociation Constants of Oxalic Acid in Aqueous Sodium Chloride and Sodium Trifluoromethanesulfonate Media to 175 °C
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 1998 Dissociation Constants of Oxalic Acid in Aqueous Sodium Chloride and Sodium Trifluoromethanesulfonate Media to 175 °C Richard Kettler University of Nebraska-Lincoln, [email protected] David J. Wesolowski Oak Ridge National Laboratory Donald A. Palmer Oak Ridge National Laboratory Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Kettler, Richard; Wesolowski, David J.; and Palmer, Donald A., "Dissociation Constants of Oxalic Acid in Aqueous Sodium Chloride and Sodium Trifluoromethanesulfonate Media to 175 °C" (1998). Papers in the Earth and Atmospheric Sciences. 135. https://digitalcommons.unl.edu/geosciencefacpub/135 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Chem. Eng. Data 1998, 43, 337-350 337 Dissociation Constants of Oxalic Acid in Aqueous Sodium Chloride and Sodium Trifluoromethanesulfonate Media to 175 °C Richard M. Kettler*,† Department of Geology, University of Nebraska, Lincoln, Nebraska 68588-0340 David J. Wesolowski‡ and Donald A. Palmer§ Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 The first and second molal dissociation constants of oxalic acid were measured potentiometrically in a concentration cell fitted with hydrogen electrodes. -
Atmospheric Production of Oxalic Acid/Oxalate and Nitric Acid/Nitrate in the Tampa Bay Airshed: Parallel Pathways
ARTICLE IN PRESS Atmospheric Environment 41 (2007) 4258–4269 www.elsevier.com/locate/atmosenv Atmospheric production of oxalic acid/oxalate and nitric acid/nitrate in the Tampa Bay airshed: Parallel pathways P. Kalyani Martinelango, Purnendu K. DasguptaÃ, Rida S. Al-Horr1 Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA Received 9 February 2006; received in revised form 1 May 2006; accepted 2 May 2006 Abstract Oxalic acid is the dominant dicarboxylic acid (DCA), and it constitutes up to 50% of total atmospheric DCAs, especially in non-urban and marine atmospheres. A significant amount of particulate H2Ox/oxalate (Ox) occurred in the coarse particle fraction of a dichotomous sampler, the ratio of oxalate concentrations in the PM10 to PM2.5 fractions ranged from 1 to 2, with mean7sd being 1.470.2. These results suggest that oxalate does not solely originate in the gas phase and condense into particles. Gaseous H2Ox concentrations are much lower than particulate Ox concentrations and are well correlated with HNO3, HCHO, and O3, supporting a photochemical origin. Of special relevance to the Bay Region Atmospheric Chemistry Experiment (BRACE) is the extent of nitrogen deposition in the Tampa Bay estuary. Hydroxyl radical is primarily responsible for the conversion of NO2 to HNO3, the latter being much more easily deposited. Hydroxyl radical is also responsible for the aqueous phase formation of oxalic acid from alkenes. Hence, we propose that an estimate of dOH can be obtained from H2Ox/Ox production rate and we accordingly show that the product of total oxalate concentration and NO2 concentration approximately predicts the total nitrate concentration during the same period. -
Electrochemical Reduction of CO2 to Oxalic Acid Electrochemical Conversion, Down- Stream Processing and Techno- Economic Analysis
Electrochemical reduction of CO2 to Oxalic Acid Electrochemical conversion, down- stream processing and techno- economic analysis Technische Universiteit Delft V.S. Boor Electrochemical reduction of CO2 to Oxalic Acid Electrochemical conversion, downstream processing and techno-economic analysis by V.S. Boor to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday April 9, 2020 at 14:30. Student number: 4394062 Project duration: September 2, 2019 – April 9, 2020 Thesis committee: Prof. dr. ir. T.J.H. Vlugt, TU Delft, supervisor Dr. M. A. Van Der Veen, TU Delft Dr. T. E. Burdyny, TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Abstract Rising CO2 levels in the atmosphere are becoming increasingly problematic, due to the effect of CO2 on cli- mate change. CO2 capture and utilization has high potential as strategy to close the carbon cycle. An ex- ample of utilization of CO2 is the electrochemical reduction of CO2 to more valuable compounds. This the- sis discusses the electrochemical reduction of CO2 to oxalic acid. Until now, oxalic acid as target product of the electrochemical CO2 reduction has not been studied in great depth, mainly because it only forms in non-aqueous solutions. The influence on several parameters, namely cathode material, applied potential, anolyte, catholyte, membrane, supporting electrolyte, and temperature, on the electrochemical conversion of CO2 to oxalic acid has been studied. The first step in scaling-up has been taken, from a batch reactor (H-cell reactor) to a semi-continuous system (flow-cell reactor). -
MYB Transcription Factors and Its Regulation in Secondary Cell Wall Formation and Lignin Biosynthesis During Xylem Development
International Journal of Molecular Sciences Review MYB Transcription Factors and Its Regulation in Secondary Cell Wall Formation and Lignin Biosynthesis during Xylem Development Ruixue Xiao 1,2, Chong Zhang 2, Xiaorui Guo 2, Hui Li 1,2 and Hai Lu 1,2,* 1 Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; [email protected] (R.X.); [email protected] (H.L.) 2 College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; [email protected] (C.Z.); [email protected] (X.G.) * Correspondence: [email protected] Abstract: The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, Citation: Xiao, R.; Zhang, C.; Guo, X.; hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary Li, H.; Lu, H. -
Investigating Termite Behavior and Application Methods of Non-Repellent Termiticides for the Control of Eastern Subterranean Termites (Isoptera: Rhinotermitidae)
Investigating Termite Behavior and Application Methods of Non-repellent Termiticides for the Control of Eastern Subterranean Termites (Isoptera: Rhinotermitidae) by Znar Barwary A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 3rd, 2014 Keywords: Reticulitermes flavipes, dry (RTU) Termidor, Altriset, Termidor H.E., localize treatment, above-ground tunnels Copyright 2014 by Znar Barwary Approved by Xing Ping Hu Professor of Entomology and Plant Pathology Arthur Appel Professor of Entomology and Plant Pathology Nannan Liu Professor of Entomology and Plant Pathology John McCreadie Professor of Biology Abstract The effects of three non-repellent termiticides were evaluated in the laboratory against the eastern subterranean termites, Reticulitermes flavipes Kollar, to determine their efficiency in controlling this species. Treating above-ground tunnels and soil treatment were used to evaluate the termiticides. The three termiticides that were used in this study include dry ready-to-use (RTU) Termidor (active ingredient: fipronil 0.5%), Altriset (active ingredient: chlorantraniliprole 18.4%), and Termidor H.E. Termiticide Copack (active ingredient: fipronil 9.1%). The non-repellent termiticide (Dry RTU Termidor) caused a decreased in termite population movement and 100% mortality at day 5 and 7 for the 0.30 and 0.15 mg dose treatments, respectively. Termites constructed significantly fewer tunnels post-treatment compared to control termites; this provided strong evidence that locally treating a single tunnel with dry RTU fipronil near feeding sites was effective for the control of termite group population. Altriset caused 100% termite mortality in 19 days post-treatment at 100 and 50 µg/g and 27% termite mortality at 25 µg/g when treating the soil contiguously to established foraging tunnels at a fixed 1m distance.