Downloaded 09/28/21 06:38 PM UTC

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 09/28/21 06:38 PM UTC 15 AUGUST 2006 S TARK ET AL. 4075 Reevaluating the Causes of Observed Changes in Indian Ocean Water Masses SHEILA STARK,RICHARD A. WOOD, AND HELENE T. BANKS Hadley Centre for Climate Prediction and Research, Met Office, Exeter, Devon, United Kingdom (Manuscript received 16 February 2005, in final form 8 December 2005) ABSTRACT The consistency between observed changes in Subantarctic Mode Water (SAMW) properties at 32°S in the Indian Ocean and model simulations is explored using the Third Hadley Centre Coupled Ocean– Atmosphere GCM (HadCM3). Hydrographic data collected in 2002 show that the water mass is warmer and saltier on isopycnals than in 1987, in contrast to the isopycnal freshening observed between 1962 and 1987. The response of HadCM3 under a range of forcing scenarios is explored and the observed freshening is only seen in experiments that include greenhouse gas forcing; however, there is no subsequent return to more saline conditions in 2002. The response of the model to greenhouse gas forcing is dominated by a persistent freshening trend, the simulated water mass variability agrees well with that suggested by the limited observations. Comparing model isopycnal changes from the forced experiments with a control run shows that the changes from the 1960s to 2002 are best explained by internal variability. This is in contrast to earlier work, which attributed the observed isopycnal freshening to anthropogenic forcing. Although the model shows that at present an anthropogenic climate change signal is not detectable in SAMW, the model water mass freshens on isopycnals during the twenty-first century under increased greenhouse gas forcing. This is consistent with recent heat content observations, which suggest that the salting is unlikely to persist. In HadCM3, this freshening is due to an increasing surface heat flux and Ekman heat and freshwater flux into the water mass formation region. This paper emphasizes the importance of higher-frequency obser- vations of SAMW if detection and attribution statements are to be made. 1. Introduction to global climate through the large-scale transport of heat and freshwater in the oceans. Despite the impor- The hydrological cycle is a fundamental component tant role of the ocean in the global hydrological cycle, of the planetary energy budget yet it remains one of the direct measurements of oceanic precipitation and least understood elements of the climate system. Over evaporation are too sparse to detect any patterns of recent years there has been a growing body of evidence change or variability in these fluxes. Interior water for a global-scale shift in the distribution of freshwater, masses, which are directly ventilated at the ocean sur- which may be linked to global warming and a possible face, are an attractive way to gauge changes in surface strengthening in the hydrological cycle [e.g., Curry et al. fluxes as they act to integrate highly variable surface (2003) in the Atlantic and Wong et al. (1999) in the changes in heat and freshwater improving the signal to Indo-Pacific]. Most ocean model simulations, under in- noise ratio. Despite this potential, the sparsity of oce- creasing greenhouse gas emissions, predict a weakening anic measurements makes it difficult to determine North Atlantic thermohaline circulation due to fresh- whether changes in water mass properties reflect inter- ening and warming in the subpolar seas (Houghton et nal climate variability and are “normal,” or reflect, for al. 2001), so an intensified hydrological cycle character- example, anthropogenic climate change, and are “un- ized by increased high-latitude precipitation could have usual.” For this reason, general circulation models pro- significant climatic impacts. vide a unique opportunity to understand the past and to The study of ocean water masses is intimately linked predict future ocean climatic changes. Subantarctic Mode Water (SAMW) is a globally im- portant water mass formed in large quantities in the Corresponding author address: Sheila Stark, Hadley Centre for Climate Prediction and Research, Met Office, Fitzroy Road, Ex- Southern Ocean (McCartney 1977). Along with Ant- eter, Devon EX1 3PB, United Kingdom. arctic Intermediate Water (AAIW), SAMW exported E-mail: [email protected] from the Southern Ocean forms an upper limb of the Unauthenticated | Downloaded 09/28/21 06:38 PM UTC JCLI3845 4076 JOURNAL OF CLIMATE VOLUME 19 Ϫ FIG. 1. Zonal mean isopycnal salinity in the range of the modeled mode waters (25.5–26.5 kg m 3) for 32°Sin the Indian Ocean for the 400 yr of the CTL run over which the ensemble members were run (a) before and (b) after the linear trend was removed from each isopycnal surface. global overturning circulation (Sloyan and Rintoul during the twentieth century, focusing primarily on the 2001). An observed cooling and freshening of SAMW last 50 yr. HadCM3 is a fully coupled ocean–atmo- on isopycnals between the 1960s and 1990s has been sphere model, without flux adjustments, which has been well documented (Bindoff and McDougall 2000; described in detail elsewhere (Gordon et al. 2000). All Johnson and Orsi 1997; Wong et al. 1999) and attrib- of the forced model runs are compared to a control uted to changes in surface dynamic forcing and the experiment (CTL), which was initialized with the hy- warming or freshening of surface waters. A coupled drography of the ocean given by Levitus and Boyer climate model study using the Third Hadley Centre (1994) and run with a fixed atmospheric composition ϭ Coupled Ocean–Atmosphere GCM (HadCM3) by representative of 1860 (pCO2 290 ppm). The first Banks et al. (2000) found that with anthropogenic forc- member of each forced ensemble is started from year ing SAMW became both cooler and fresher on isopy- 370 of CTL, by which time both the heat and freshwater cnals, and Banks and Bindoff (2003) classify the cooling budgets have come into balance (Pardaens et al. 2003). and freshening of midlatitude isopycnals in the Indo- We analyze ensembles forced with natural forcing Pacific as a possible fingerprint of anthropogenic cli- (NAT) from historical records of volcanic emissions mate change in the ocean. The most recent occupation and solar irradiance, with anthropogenic forcing (ANT) of the 32°S section in the Indian Ocean, however, has consisting of imposed historical changes in greenhouse shown the properties of SAMW return to near-1960s gases, ozone and sulfur, and with a combination of the conditions (Bryden et al. 2003; McDonagh et al. 2005), two (ALL). For each ensemble, four simulations are a reversal not seen in the HadCM3 simulations. In this carried out with the same forcing applied but different paper, the work of Banks et al. (2000) is continued, with initial conditions, generated by starting 100 yr apart in a more detailed analysis of SAMW in HadCM3 using a the control integration. Each ensemble covers different larger number of experiments than was available for time periods and we examine in detail the NAT en- the earlier study, and taking into account the recent semble from 1900 to 1996, the ANT ensemble from Bryden et al. (2003) results. The consistency between 1900 to 1999, and ALL from 1900 to 2002. the HadCM3 simulations and the observations is exam- ined using a range of forcing scenarios with a view to b. Control drift addressing what is driving the water mass changes and Examination of zonal mean isopycnal salinity at 32°S whether the observed isopycnal changes reflect anthro- in CTL at mode water densities reveals a freshening pogenic forcing. trend on all levels, as illustrated by Fig. 1. It is found that the drift on each isopycnal surface is linear (R2 Ͼ 2. Methods 0.95 for each level) and a unique trend is removed from each isopycnal individually. On the 25.7 kg mϪ3 isopy- a. Model runs cnal, the core of the model SAMW in the western A suite of ensemble runs using HadCM3 are used to mode, the drift has a magnitude of 0.0005 psu yrϪ1; the look at the changing properties of SAMW along 32°S trend in the eastern mode is of a similar magnitude. Unauthenticated | Downloaded 09/28/21 06:38 PM UTC 15 AUGUST 2006 S TARK ET AL. 4077 FIG. 2. (a) Potential vorticity along 32°S in the HadCM3 control run. Note that the plot shows the magnitude of PV, with the minimum values being those closest to 0, though for stable stratification PV is negative in the Southern Hemisphere. SAMW is clearly visible as a band of low PV between 25.5 and 26.0 kg mϪ3. (b) The temperature and salinity of the mid-depth PV minimum. From Fig. 1, it is evident that this procedure success- in HadCM3 at densities ranging from 25.5 to 26.0 kg fully removes the freshening drift on the mode water mϪ3. The modeled SAMW is both fresher and lighter isopycnals. To ensure that any patterns and trends in than observations because of the initial drift, as the each of the forced ensemble members represents water masses adjust to balance the freshwater budgets, changes due to the applied forcing the linear trend in during the model spinup (see Pardaens et al. 2003 for a CTL on each isopycnal is removed prior to all analyses. full discussion). Examination of temperature and salin- ity on the PV minimum (Fig. 2b) reveals that the model c. Differences from Banks et al. (2000) thermocline along this section contains modes whose The work presented here is complimentary to the characteristics fall into two broad categories. The west- earlier analysis described in Banks et al. (2000) where ern half of the section, to approximately 75°E, is occu- the observed isopycnal freshening of SAMW between pied by a water mass with an average temperature of 1962 and 1987 was compared with HadCM3 simula- 13.8°C while the mode water in the east of the section tions.
Recommended publications
  • GSA TODAY • Southeastern Section Meeting, P
    Vol. 5, No. 1 January 1995 INSIDE • 1995 GeoVentures, p. 4 • Environmental Education, p. 9 GSA TODAY • Southeastern Section Meeting, p. 15 A Publication of the Geological Society of America • North-Central–South-Central Section Meeting, p. 18 Stability or Instability of Antarctic Ice Sheets During Warm Climates of the Pliocene? James P. Kennett Marine Science Institute and Department of Geological Sciences, University of California Santa Barbara, CA 93106 David A. Hodell Department of Geology, University of Florida, Gainesville, FL 32611 ABSTRACT to the south from warmer, less nutrient- rich Subantarctic surface water. Up- During the Pliocene between welling of deep water in the circum- ~5 and 3 Ma, polar ice sheets were Antarctic links the mean chemical restricted to Antarctica, and climate composition of ocean deep water with was at times significantly warmer the atmosphere through gas exchange than now. Debate on whether the (Toggweiler and Sarmiento, 1985). Antarctic ice sheets and climate sys- The evolution of the Antarctic cryo- tem withstood this warmth with sphere-ocean system has profoundly relatively little change (stability influenced global climate, sea-level his- hypothesis) or whether much of the tory, Earth’s heat budget, atmospheric ice sheet disappeared (deglaciation composition and circulation, thermo- hypothesis) is ongoing. Paleoclimatic haline circulation, and the develop- data from high-latitude deep-sea sed- ment of Antarctic biota. iments strongly support the stability Given current concern about possi- hypothesis. Oxygen isotopic data ble global greenhouse warming, under- indicate that average sea-surface standing the history of the Antarctic temperatures in the Southern Ocean ocean-cryosphere system is important could not have increased by more for assessing future response of the Figure 1.
    [Show full text]
  • Subantarctic and Polar Fronts of the Antarctic Circumpolar Current and Southern 1 Ocean Heat and Freshwater Content Variability: a View from Argo*
    MARCH 2016 G I G L I O A N D J O H N S O N 749 Subantarctic and Polar Fronts of the Antarctic Circumpolar Current and Southern 1 Ocean Heat and Freshwater Content Variability: A View from Argo*, DONATA GIGLIO Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington GREGORY C. JOHNSON NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington (Manuscript received 17 July 2015, in final form 6 November 2015) ABSTRACT Argo profiling floats initiated a revolution in observational physical oceanography by providing nu- merous, high-quality, global, year-round, in situ (0–2000 dbar) temperature and salinity observations. This study uses Argo’s unprecedented sampling of the Southern Ocean during 2006–13 to describe the position of the Antarctic Circumpolar Current’s Subantarctic and Polar Fronts, comparing and contrasting two different methods for locating fronts using the same dataset. The first method locates three fronts along dynamic height contours, each corresponding to a local maximum in vertically integrated shear. The second approach locates the fronts using specific features in the potential temperature field, following Orsi et al. Results from the analysis of Argo data are compared to those from Orsi et al. and other more recent studies. Argo spatial resolution is not adequate to resolve annual and interannual movements of the fronts on a circumpolar scale since they are on the order of 18 latitude (Kim and Orsi), which is smaller than the resolution of the gridded product analyzed. Argo’s four-dimensional coverage of the Southern Ocean equatorward of ;608S is used to quantify variations in heat and freshwater content there with respect to the time-mean front locations.
    [Show full text]
  • Impacts of Climate Change on Antarctic Ecosystems
    IP 56 ! ! ! ! "#$%&'!()$*+ ",-.!/01! -23!45'6 ! 37$8$%)$&!9:+ ";<- ! <7=#=%'>+ 2%#>=8? ! ! Impacts of Climate Change on Antarctic Ecosystems ! ! ! ! ! / IP 56 ! ! Impacts of Climate Change on Antarctic Ecosystems Information paper submitted by ASOC to the XXXI ATCM, Kiev, 2-14 June 2008 ATCM item 13 and CEP item 9a Summary <@$7!)?$!A'8)!BC!:$'781!)?$!D$8)$7%!"%)'7E)=E!3$%=%8F>'!?'8!G'7*$&!*H7$!)?'%!IHF7!)=*$8!I'8)$7!)?'%!)?$!'@$7'#$! 7')$!HI!2'7)?J8!H@$7'>>!G'7*=%#1!*'K=%#!=)!H%$!HI!)?$!7$#=H%8!)?')!=8!$LA$7=$%E=%#!)?$!*H8)!7'A=&!G'7*=%#!H%!)?$! A>'%$)M!">)?HF#?!G'7*=%#!=8!%$=)?$7!$@=&$%)!%H7!F%=IH7*!'E7H88!)?$!"%)'7E)=E1!8F98)'%)='>!$@=&$%E$!=%&=E')$8!*'NH7! 7$#=H%'>!E?'%#$8!=%!)$77$8)7='>!'%&!*'7=%$!$EH8:8)$*8!=%!'7$'8!)?')!?'@$!$LA$7=$%E$&!G'7*=%#M!;FEE$88IF>! =%@'8=H%8!HI!%H%O=%&=#$%HF8!8A$E=$8!)H!8F9O"%)'7E)=E!=8>'%&8!?'@$!9$$%!=&$%)=I=$&!'8!'!>=K$>:!EH%8$PF$%E$!HI!)?$! EH%)=%F=%#!)7$%&!HI!=%E7$'8=%#!?F*'%!'E)=@=)=$8!'%&!=%E7$'8=%#!)$*A$7')F7$8M! ->=*')$!E?'%#$!=8!%H!>H%#$7!'%!=88F$!>=*=)$&!)H!)?$!&$@$>HA$&!'%&!*H7$!AHAF>')$&!A'7)8!HI!)?$!GH7>&M!,?$! -H%8F>)')=@$!3'7)=$8!)H!)?$!"%)'7E)=E!,7$'):!?'@$!EH**=))$&!)?$*8$>@$8!)H!A7H@=&$!EH*A7$?$%8=@$!A7H)$E)=H%!)H!)?$! "%)'7E)=E!$%@=7H%*$%)!'%&!=)8!&$A$%&$%)!$EH8:8)$*8!F%&$7!)?$!2%@=7H%*$%)'>!37H)HEH>M!,?$7$IH7$1!'%&!9'8$&!H%! )?$!A7$E'F)=H%'7:!A7=%E=A>$1!-H%8F>)')=@$!3'7)=$8!8?HF>&!7$EH#%=Q$!)?$!'&@$78$!=*A'E)8!HI!E>=*')$!E?'%#$!H%! "%)'7E)=E'!'%&!)?$!;HF)?$7%!<E$'%!'%&!)'K$!A7H'E)=@$!'E)=H%!G=)?=%!)?$!I7'*$GH7K!HI!)?$!,7$'):!;:8)$*!)H! EH%)7=9F)$!)HG'7&8!E>=*')$!E?'%#$!*=)=#')=H%!'%&!'&'A)')=H%!$IIH7)8M!! 1.
    [Show full text]
  • New Zealand Subantarctic Islands Research Strategy
    New Zealand Subantarctic Islands Research Strategy SOUTHLAND CONSERVANCY New Zealand Subantarctic Islands Research Strategy Carol West MAY 2005 Cover photo: Recording and conservation treatment of Butterfield Point fingerpost, Enderby Island, Auckland Islands Published by Department of Conservation PO Box 743 Invercargill, New Zealand. CONTENTS Foreword 5 1.0 Introduction 6 1.1 Setting 6 1.2 Legal status 8 1.3 Management 8 2.0 Purpose of this research strategy 11 2.1 Links to other strategies 12 2.2 Monitoring 12 2.3 Bibliographic database 13 3.0 Research evaluation and conditions 14 3.1 Research of benefit to management of the Subantarctic islands 14 3.2 Framework for evaluation of research proposals 15 3.2.1 Research criteria 15 3.2.2 Risk Assessment 15 3.2.3 Additional points to consider 16 3.2.4 Process for proposal evaluation 16 3.3 Obligations of researchers 17 4.0 Research themes 18 4.1 Theme 1 – Natural ecosystems 18 4.1.1 Key research topics 19 4.1.1.1 Ecosystem dynamics 19 4.1.1.2 Population ecology 20 4.1.1.3 Disease 20 4.1.1.4 Systematics 21 4.1.1.5 Biogeography 21 4.1.1.6 Physiology 21 4.1.1.7 Pedology 21 4.2 Theme 2 – Effects of introduced biota 22 4.2.1 Key research topics 22 4.2.1.1 Effects of introduced animals 22 4.2.1.2 Effects of introduced plants 23 4.2.1.3 Exotic biota as agents of disease transmission 23 4.2.1.4 Eradication of introduced biota 23 4.3 Theme 3 – Human impacts and social interaction 23 4.3.1 Key research topics 24 4.3.1.1 History and archaeology 24 4.3.1.2 Human interactions with wildlife 25 4.3.1.3
    [Show full text]
  • Climate and Deep Water Formation Regions
    Cenozoic High Latitude Paleoceanography: New Perspectives from the Arctic and Subantarctic Pacific by Lindsey M. Waddell A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Oceanography: Marine Geology and Geochemistry) in The University of Michigan 2009 Doctoral Committee: Assistant Professor Ingrid L. Hendy, Chair Professor Mary Anne Carroll Professor Lynn M. Walter Associate Professor Christopher J. Poulsen Table of Contents List of Figures................................................................................................................... iii List of Tables ......................................................................................................................v List of Appendices............................................................................................................ vi Abstract............................................................................................................................ vii Chapter 1. Introduction....................................................................................................................1 2. Ventilation of the Abyssal Southern Ocean During the Late Neogene: A New Perspective from the Subantarctic Pacific ......................................................21 3. Global Overturning Circulation During the Late Neogene: New Insights from Hiatuses in the Subantarctic Pacific ...........................................55 4. Salinity of the Eocene Arctic Ocean from Oxygen Isotope
    [Show full text]
  • The Intergovernmental Panel on Climate Change: a Synthesis of the Fourth Assessment Report Harvey Stern* Bureau of Meteorology, Melbourne, Vic., Australia
    The Intergovernmental Panel on Climate Change: A Synthesis of the Fourth Assessment Report Harvey Stern* Bureau of Meteorology, Melbourne, Vic., Australia 1. Introduction The World Meteorological Organisation (WMO) and the United Nations Environment Programme (UNEP) established the Intergovernmental Panel on Climate Change (IPCC). The IPCC’s primary goal was to assess scientific, technical and socio-economic information relevant for the understanding of climate change, its potential impact and options for adaptation and mitigation. The purpose of the current paper is to provide a synthesis of the IPCC’s Fourth Assessment Report, which was released early in 2007. Much of the material presented is drawn directly from the summaries for policy makers prepared by the IPCC’s three Working Groups, namely: I. The Physical Science Basis (released February 2007); II. Impacts, Adaptation and Vulnerability (released April 2007); and, Fig A.1 The Rising Cost of Protection III. Mitigation (released May 2007). ___________________________________________ *Corresponding author address: Box 1636, Melbourne, Vic., 3001, Australia; email: [email protected] Dr Harvey Stern is a meteorologist with the Australian Bureau of Meteorology, holds a Ph. D. from the University of Melbourne (Earth Sciences), and currently heads the Climate Services Centre of the Bureau's Victorian Regional Office. Dr Stern's research into climate change includes evaluating costs associated with climate change and managing associated risks (Stern, 1992, 2005, 2006) – Fig A.1, and analysis of climate trends (Stern, 1980, 2000; Stern et al, 2004, 2005) – Fig A.2. His work has received praise in the Fig A.2 Trend in Melbourne’s annual extreme Victorian State Parliament (Hansard, Legislative minimum temperature (strong upward trend) Council, pp 1940-1941, 16 Nov., 2005).
    [Show full text]
  • Rapid Acidification of Mode and Intermediate Waters in the Southwestern Atlantic Ocean Lesley A
    Rapid acidification of mode and intermediate waters in the southwestern Atlantic Ocean Lesley A. Salt, S. M. A. C. Heuven, M. E. Claus, E. M. Jones, H. J. W. Baar To cite this version: Lesley A. Salt, S. M. A. C. Heuven, M. E. Claus, E. M. Jones, H. J. W. Baar. Rapid acidification of mode and intermediate waters in the southwestern Atlantic Ocean. Biogeosciences, European Geosciences Union, 2015, 12 (5), pp.1387-1401. 10.5194/bg-12-1387-2015. hal-01251672 HAL Id: hal-01251672 https://hal.archives-ouvertes.fr/hal-01251672 Submitted on 6 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Biogeosciences, 12, 1387–1401, 2015 www.biogeosciences.net/12/1387/2015/ doi:10.5194/bg-12-1387-2015 © Author(s) 2015. CC Attribution 3.0 License. Rapid acidification of mode and intermediate waters in the southwestern Atlantic Ocean L. A. Salt1,*, S. M. A. C. van Heuven2,**, M. E. Claus3, E. M. Jones4, and H. J. W. de Baar1,3 1Royal Netherlands Institute for Sea Research, Landsdiep 4,
    [Show full text]
  • Enhanced Marine Sulphur Emissions Offset Global Warming and Impact Rainfall Received: 22 January 2015 1 1,2 Accepted: 13 July 2015 B
    www.nature.com/scientificreports OPEN Enhanced marine sulphur emissions offset global warming and impact rainfall Received: 22 January 2015 1 1,2 Accepted: 13 July 2015 B. S. Grandey & C. Wang Published: 21 August 2015 Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate. DMS is a product of dimethylsulfoniopropionate produced by many species of phytoplankton1. Much of the DMS emitted to the atmosphere is oxidised to sulphur dioxide then to sulphuric acid to form sulphate aerosol.
    [Show full text]
  • Geodetic Mass Balance of the South Shetland Islands Ice Caps, Antarctica, from Differencing Tandem-X Dems
    remote sensing Article Geodetic Mass Balance of the South Shetland Islands Ice Caps, Antarctica, from Differencing TanDEM-X DEMs Kaian Shahateet 1,* , Thorsten Seehaus 2 , Francisco Navarro 1 , Christian Sommer 2 and Matthias Braun 2 1 Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain; [email protected] 2 Institut für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany; [email protected] (T.S.); [email protected] (C.S.); [email protected] (M.B.) * Correspondence: [email protected] Abstract: Although the glaciers in the Antarctic periphery currently modestly contribute to sea level rise, their contribution is projected to increase substantially until the end of the 21st century. The South Shetland Islands (SSI), located to the north of the Antarctic Peninsula, are lacking a geodetic mass balance calculation for the entire archipelago. We estimated its geodetic mass balance over a 3–4-year period within 2013–2017. Our estimation is based on remotely sensed multispectral and interferometric SAR data covering 96% of the glacierized areas of the islands considered in our study and 73% of the total glacierized area of the SSI archipelago (Elephant, Clarence, and Smith Islands were excluded due to data limitations). Our results show a close to balance, slightly negative average −1 specific mass balance for the whole area of −0.106 ± 0.007 m w.e. a , representing a mass change of −238 ± 12 Mt a−1. These results are consistent with a wider scale geodetic mass balance estimation Citation: Shahateet, K.; Seehaus, T.; and with glaciological mass balance measurements at SSI locations for the same study period.
    [Show full text]
  • Downloaded 09/25/21 10:31 AM UTC 15 JANUARY 1999 SEMILETOV 287
    286 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 56 Aquatic Sources and Sinks of CO2 and CH4 in the Polar Regions I. P. SEMILETOV Paci®c Oceanological Institute, Vladivostok, Russia (Manuscript received 2 September 1997, in ®nal form 15 June 1998) ABSTRACT The highest concentration and greatest seasonal amplitudes of atmospheric CO 2 and CH4 occur at 608±708N, outside the 308±608N band where the main sources of anthropogenic CO2 and CH4 are located, indicating that the northern environment is a source of these gases. Based on the author's onshore and offshore arctic experimental results and literature data, an attempt was made to identify the main northern sources and sinks for atmospheric CH4 and CO2. The CH4 ef¯ux from limnic environments in the north plays a signi®cant role in the CH 4 regional budget, whereas the role of the adjacent arctic adjacent seas in regional CH 4 emission is small. This agrees with the aircraft data, which show a 10%±15% increase of CH4 over land when aircraft ¯y southward from the Arctic Basin. Offshore permafrost might add some CH4 into the atmosphere, although the preliminary data are not suf®cient to estimate the effect. Evolution of the northern lakes might be considered as an important component of the climatic system. All-season data obtained in the delta system of the Lena River and typical northern lakes show that the freshwaters are supersaturated by CO2 with a drastic increase in the CO2 value during wintertime. The arctic and antarctic CO2 data presented here may be used to develop understanding of the processes controlling CO2 ¯ux in the polar seas.
    [Show full text]
  • Antarctic and Southern Ocean Influences on Late Pliocene Global Cooling
    Antarctic and Southern Ocean influences on Late Pliocene global cooling Robert McKaya,1, Tim Naisha, Lionel Cartera, Christina Riesselmanb,2, Robert Dunbarc, Charlotte Sjunneskogd, Diane Wintere, Francesca Sangiorgif, Courtney Warreng, Mark Paganig, Stefan Schoutenh, Veronica Willmotth, Richard Levyi, Robert DeContoj, and Ross D. Powellk aAntarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand; bDepartment of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305; cDepartment of Environmental Earth Systems Science, Stanford University, Stanford, CA 94305; dAntarctic Marine Geology Research Facility, Florida State University, Tallahassee, FL 32306; eRhithron Associates, Inc, Missoula, MT 59804; fDepartment of Earth Sciences, Faculty of Geosciences, Laboratory of Palaeobotany and Palynology, Utrecht University, U3584 CD Utrecht, The Netherlands; gDepartment of Geology and Geophysics, Yale University, New Haven, CT 06520; hNIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, 1790 AB Den Burg, Texel, The Netherlands; iGNS Science, Lower Hutt 5040, New Zealand; jDepartment of Geosciences, University of Massachusetts, Amherst, MA 01003; and kDepartment of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL 60115 Edited by* James P. Kennett, University of California, Santa Barbara, CA, and approved February 28, 2012 (received for review August 2, 2011) 18 The influence of Antarctica and the Southern Ocean
    [Show full text]
  • Environmental Science Processes & Impacts Accepted Manuscript
    Environmental Science Processes & Impacts Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. rsc.li/process-impacts Page 1 of 24 Environmental Science: Processes & Impacts 1 2 3 Environmental Impact Statement 4 5 6 7 To derive remediation targets and environmental quality guidelines, Species Sensitivity Distribution 8 (SSD) models require toxicity data from a minimum of eight species from at least four taxonomic 9 10 group. Prior to this study there was no toxicity data available for sensitive early life stages of native 11 subantarctic plants exposed to total petroleum hydrocarbons (TPH) from diesel fuel. The TPH 12 concentrations of contaminated soils required to inhibit germination and root and shoot growth in 13 early life stages was high, but due to the climate of subantarctic regions, the hydrocarbon Manuscript 14 15 concentrations at spill sites may persist over time, so these high concentrations remain 16 environmentally relevant.
    [Show full text]