Each Trait That Mendel Studied Existed in 2 Discrete Forms. for Example

Total Page:16

File Type:pdf, Size:1020Kb

Each Trait That Mendel Studied Existed in 2 Discrete Forms. for Example Module 3C – Patterns of Inheritance Objective # 16 In this module, we will examine how Define the term “monohybrid cross”. studying the appearance of traits over Describe one of the monohybrid several generations has allowed crosses carried out by Mendel and scientists to discover the basic laws explain how the results of these that govern the transmission of genetic crosses led him to formulate the Law information from one generation to of Segregation and the Law of the next. Dominance. 1 2 Objective 16 Objective 16 So far, we have focused on how chromosomes However, over 50 years before scientists get passed from cell to cell during cell division, and from one generation to the next during understood the role that chromosomes eukaryotic life cycles. play in transmitting genetic information, an Austrian monk named Gregor Since chromosomes contain the genetic information, the study of chromosomes Mendel discovered the basic principles provides a key to understanding how the of transmission genetics by studying the genetic information is transmitted from one pattern of inheritance for 7 different generation to the next. traits in pea plants. 3 4 Objective 16 Mendel’s Seven Traits Each trait that Dominant Recessive Dominant Recessive 1. Flower Color 5. Pod Shape Mendel studied X X existed in 2 Purple White Inflated Constricted 2. Seed Color discrete forms. 6. Flower Position X Yellow Green For example, seed X 3. Seed Texture Axial Terminal shape could be 7. Plant Height X wrinkled or Round Wrinkled 4. Pod Color X round: Tall Short X Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 5 Green Yellow 6 1 Objective 16 Objective 16 Mendel was successful where many before him had failed because: ¾ He used statistics to mathematically ¾ He simplified the problem by first analyze the results of his crosses and examining just one trait at a time. help determine the general patterns of his results. ¾ He limited his study to traits that existed in 2 discrete forms. ¾ He kept quantitative data over several generations, and used large sample sizes. 7 8 Objective 16 Objective 16 Mendel’s success was also due to a Mendel began with crosses where he certain amount of luck. Each trait that followed the inheritance of one trait. he followed happened to be controlled Although he didn’t know it, each trait by a single gene locus. This produces he studied was controlled by one gene the simplest possible pattern of locus (a single pair of alleles.) This type inheritance. of cross is called a monohybrid cross. For example, Mendel followed the inheritance of flower color, which exists in 2 discrete forms: purple and white. 9 10 Objective 16 Objective 16 When he crossed some pure-breeding Next, he allowed the F1 plants to self- purple flowered plants with some fertilize in order to produce the F2 pure-breeding white flowered plants generation. Again, the results were (this is called the parental or P unexpected: generation) he got some surprising results: ¾ Out of 929 F2 plants, he found 705 ¾ all of the offspring (called the F1 with purple flowers and 224 with white generation) had purple flowers! flowers, a ratio of 3.15 to 1. 11 12 2 One of Mendel’s Monohybrid Crosses Objective 16 Purple White Mendel explained his results by proposing P generation the following 4-part hypothesis: Cross- fertilize 1)Each individual has two “hereditary factors” controlling a given trait. The F generation All Purple 1 pure-breeding purple parents have 2 Self-fertilize hereditary factors for purple flowers (AA), and the pure-breeding white plants have 2 hereditary factors for white F generation : 2 705 Purple 224 White 13 flowers (aa). 14 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Objective 16 Objective 16 Today we call Mendel’s “hereditary From chromosome studies we know factors” alleles. that the parents are diploid, so there The appearance of an organism is called are 2 sets of chromosomes in each cell, its phenotype (e.g. purple flowers), and and 2 alleles at each gene locus. the alleles the organism or gamete has is its genotype (e.g. AA). Because flower color is controlled by one gene locus, each parent must have 2 alleles controlling this trait. 15 16 Objective 16 Objective 16 Homologous Chromosomes If the 2 alleles are identical, the individual is homozygous for that trait, White flowers Normal Cdk Normal Ras and if the 2 alleles are different, the individual is heterozygous for that trait: White flowers Normal Cdk Defective Ras 17 18 3 Objective 16 Objective 16 2) When the parents produce gametes, Today we know that homologous the 2 hereditary factors separate, and chromosomes separate during meiosis I, each gamete receives one of the 2 leading to formation of haploid gametes. factors. Therefore, all gametes Because gametes are haploid, each produced by the purple parent (AA) gamete has 1 set of chromosomes, and 1 have one purple allele (A), and all allele at every gene locus. gametes produced by the white parent Because flower color is controlled by one (aa) have 1 white allele (a). This is gene locus, each gamete must have 1 called Mendel’s Law of Segregation. 19 allele controlling this trait. 20 Objective 16 Objective 16 3) The offspring are formed when a Today we know the offspring are gamete from one parent joins with a diploid, so there are 2 sets of gamete from the other parent. chromosomes in each cell, and 2 alleles Therefore, each F1 offspring receives at each gene locus (one inherited from one purple hereditary factor (A) each parent). from the purple parent (AA) and one white hereditary factor (a) from the white parent (aa). 21 22 Objective 16 Objective 16 4) When an individual is heterozygous, Follow the procedure on the class only one of the 2 alleles is expressed. handout, “Predicting the Outcome of Mendel called the expressed allele Monohybrid and Dihybrid Crosses”, dominant, and the non-expressed to determine if Mendel’s 4-part allele recessive. Because purple is hypothesis can accurately predict the dominant to white, all the F1 plants outcome of the F2 generation. (Aa) have purple flowers. This is known as Mendel’s Law of Dominance. 23 24 4 Objective # 17 One of Mendel’s Monohybrid Crosses White Purple (aa) (Aa) Explain how a testcross can be Gametes Gametes aa A a used to determine whether an A Purple A individual with a dominant Gametes AaAa (Aa) Gametes AA Aa A a phenotype is homozygous or Aa Aa Aa aa Purple F generation (AA) F1 generation 2 heterozygous. All purple ¾ purple, ¼ white Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 25 26 Objective 17 Testcross Dominant Phenotype Alternative 1 – Plant with To determine whether an individual dominant phenotype is ? AA with a dominant phenotype is homozygous Gametes Recessive homozygous for the dominant allele or AA heterozygous, Mendel crossed the phenotype aa a Aa Aa individual in question with an Gametes individual that had the recessive a Aa Aa phenotype: If all offspring are purple; the unknown plant is homozygous. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 27 28 Testcross Alternative 2 – Plant with Objective # 18 dominant phenotype is Dominant homozygous Phenotype ? Define the term “dihybrid cross”. Aa Gametes Describe one of the dihybrid Aa crosses carried out by Mendel and Recessive phenotype a Aa aa explain how the results of these Gametes aa a Aa aa crosses led him to formulate the If half of offspring are Law of Independent Assortment. white; the unknown plant is heterozygous. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 29 30 5 Objective 18 Objective 18 Based on his monohybrid crosses with In a dihybrid cross: pea plants, Mendel proposed the Law of ¾ the parents are diploid, so there are 2 Segregation and the Law of Dominance. alleles at each gene locus = 4 alleles total Next, he conducted a series of dihybrid ¾ the gametes are haploid, so there is 1 crosses. allele at each gene locus = 2 alleles total A dihybrid cross is a cross where we ¾ the offspring are diploid, so there are 2 follow the inheritance of alleles at 2 alleles at each gene locus = 4 alleles total different gene loci simultaneously. 31 32 Objective 18 Objective 18 For example, in pea plants seed shape is In the F1 generation, Mendel found controlled by one gene locus where that all the offspring had round, yellow round (R) is dominant to wrinkled (r) seeds. while seed color is controlled by a In the F2 generation, the approximate different gene locus where yellow (Y) is proportions were as follows: dominant to green (y). 9/16 round, yellow Mendel crossed 2 pure-breeding plants: 3/16 round, green one with round yellow seeds and the 3/16 wrinkled, yellow other with green wrinkled seeds. 33 1/16 wrinkled, green 34 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Objective 18 Objective 18 R R r r In order to explain his results, Mendel Parents Y Y y y proposed the Law of Independent Assortment. Parental Gametes R r Y y Independent Assortment means alleles at F Offspring R r the 2 gene loci segregate independently of 1 Y y each other and are NOT transmitted as a F1 Offspring’s R R r r unit. Therefore, each plant can produce Gametes Y y Y y gametes with allele combinations that were not present in the gametes inherited from If the allele pairs assort independently, all 4 its parents: 35 types of gametes are equally likely.
Recommended publications
  • OUTLINE 12 IV. Mendel's Work D. the Dihybrid Cross 1. Qualitative Results 2
    OUTLINE 12 IV. Mendel's Work D. The dihybrid cross 1. qualitative results 2. quantitative results E. Summary of Mendel's Rules V. Probability Theory and Patterns of Inheritance A. Definitions B. Rules for probability 1. independent outcomes 2. the product rule 3. single event; multiple outcomes 4. the addition rule C. Application to the dihybrid cross VI. Extensions of Mendel’s Rules Fig 14.2 A monohybrid cross Fig 14.3 P Homozygous P P Heterozygous p P p P PP Pp p Pp pp Genotypes: PP, Pp, pp genotype ratio: 1:2:1 Phenotypes: Purple, white phenotype ratio: 3:1 Fig. 14.6 A Test Cross Table 14.1 Fig. 14.7 A Dihybrid Cross Mendel’s Laws (as he stated them) Law of unit factors “Inherited characters are controlled by discrete factors in pairs” Law of segregation “When gametes are formed, the factors segregate…and recombine in the next generation.” Law of dominance: “of the two factors controlling a trait, one may dominate the other.” Law of independent assortment: “one pair of factors can segregate from a second pair of factors.” When all outcomes of an event are equally likely, the probability that a particular outcome will occur is #ways to obtain that outcome / total # possible outcomes Examples: In a coin toss P[heads] - 1/2 (or 0.5) In tossing one die P[2] = 1/6 In tossing one die P[even #] = 3/6 Drawing a card P[Queen of spades] = 1/52 The “AND” rule Probability of observing event 1 AND event 2 = the product of their independent probabilities.
    [Show full text]
  • INTRODUCTION to GENETICS Table of Contents Heredity, Historical
    INTRODUCTION TO GENETICS Table of Contents Heredity, historical perspectives | The Monk and his peas | Principle of segregation Dihybrid Crosses | Mutations | Genetic Terms | Links Heredity, Historical Perspective | Back to Top For much of human history people were unaware of the scientific details of how babies were conceived and how heredity worked. Clearly they were conceived, and clearly there was some hereditary connection between parents and children, but the mechanisms were not readily apparent. The Greek philosophers had a variety of ideas: Theophrastus proposed that male flowers caused female flowers to ripen; Hippocrates speculated that "seeds" were produced by various body parts and transmitted to offspring at the time of conception, and Aristotle thought that male and female semen mixed at conception. Aeschylus, in 458 BC, proposed the male as the parent, with the female as a "nurse for the young life sown within her". During the 1700s, Dutch microscopist Anton van Leeuwenhoek (1632-1723) discovered "animalcules" in the sperm of humans and other animals. Some scientists speculated they saw a "little man" (homunculus) inside each sperm. These scientists formed a school of thought known as the "spermists". They contended the only contributions of the female to the next generation were the womb in which the homunculus grew, and prenatal influences of the womb. An opposing school of thought, the ovists, believed that the future human was in the egg, and that sperm merely stimulated the growth of the egg. Ovists thought women carried eggs containing boy and girl children, and that the gender of the offspring was determined well before conception.
    [Show full text]
  • Lecture No. IV
    Course: Fundamentals of Genetics Class: - Ist Year, IInd Semester Lecture No. IV Title of topic: - Monohybrid crosses, Di-hybrid crosses, Test cross and Back cross Prepared by- Vinod Kumar, Assistant Professor, (PB & G) College of Agriculture, Powarkheda Monohybrid crosses:—Crosses between parents that differed in a single characteristic. The character (S) being studied in a monohybrid cross are governed by two or multiple variations for a single locus. The Mendel’s first law i.e. Law of segregation or purity of gametes can be explained by considering the monohybrid ratio i.e. by studying inheritance of only one character. For example: In pea, round seed shape is dominant over wrinkled seed shape. Generation Parental Parents Female X Male Phenotype Round X Wrinkled Genotype RR X rr Gametes R r Generation F1 Rr (Heterozygous) Round On selfing: Parents Female X Male Phenotype Round X round Genotype Rr X Rr Gametes R r R r Generation F2 ♂ R r ♀ RR Rr R Round Round r Rr rr Round Wrinkled Phenotype ratio: 3 round : 1 wrinkled Genotypic ratio: 1 RR : 2Rr : 1rr Two different alleles of the same gene i.e. ‘R’ and ‘r’ were brought together in the hybrid (F1). Even though the hybrid was round seeded in the next generation (F2) it produced both round and wrinkled seeded progeny. Thus both the alleles for round shape (R) and wrinkled shape (r) remained together in the hybrid without contaminating each other. In F2 generation (selfing of (F1) hybrid), the different phenotypes could be recovered because the two alleles in F1 remained pure and did not contaminate each other thus producing two types of gametes from F1 i.e.
    [Show full text]
  • ZOOLOGY GENETICS Topic: Back Cross & Test Cross
    ZOOLOGY GENETICS Topic: Back Cross & Test Cross Introduction The characteristics of the offspring of Mendel’s crosses can be predicted from the genotype of the parents through knowledge of dominant and recessive genes i.e., TT for tall and tt for dwarf traits. Mendel wanted to know whether the genotype of the individual be determined just from its phenotype. For recessive phenotype, it is possible, because it has only one genotype for example, tt for dwarf trait. But, the phenotypically dominant individuals show two types of genotypes – homozygous dominant (TT) and heterozygous dominant (Tt). In order to determine the genotypes of such phenotypes, Mendel employed two types of crosses viz., back cross and test cross. Without the knowledge of the genotype, just by crossing experiment, one can determine the genotype of the given phenotype with the help of these crosses. BACK CROSS Backcross is a cross of a hybrid (F1) with any one of its parents i.e. homozygous dominant or homozygous recessive parent. It is used in horticulture, animal breeding and in production of gene knockout organisms. These are performed in Monohybrid and Dihybrid crosses. 1. Monohybrid Back Cross:- In a monohybrid cross of homozygous tall (TT) and homozygous dwarf (tt) pea plants, the F1 progeny are heterozygous tall (Tt). When the F1 heterozygote (hybrid) is crossed either with its dominant parent or with its recessive parent, it is known as back cross and the results obtained from such a cross is as follows:- a. Back Cross with Homozygous Dominant Parent:- The F1 heterozygote (Tt) gives rise to two kinds of gametes viz., gametes with dominant factor for tall character (T) and gametes with recessive factor for dwarf character (t).
    [Show full text]
  • Learning Outcomes
    Week 12 Learning Outcomes Genetics: Patterns of Inheritance • Explain the scientific reasons for the success of Mendel’s experimental work. Describe Mendel’s contributions to understanding how traits are inherited and state Mendel’s laws. • Describe the expected outcomes of monohybrid crosses involving dominant and recessive alleles. • Explain the relationship between genotypes and phenotypes in dominant and recessive gene systems • Use a Punnett square and pedigrees to predict and calculate probabilities of genotypes and phenotypes in a monohybrid cross • Explain Mendel’s law of segregation and independent assortment in terms of genetics and the events of meiosis • Explain the purpose and methods of a test cross • Identify non-Mendelian inheritance patterns such as incomplete dominance, codominance, multiple alleles, and sex linkage from the results of crosses. Use monohybrid crosses and pedigrees to predict and calculate probabilities of genotypes and phenotypes. 12 Essential Vocabulary to get started… Mendel’s Pea Plant Experiments • Phenotype • Genotype • Mendel was the first person to • Pure-bred / true breeding / homozygous analyze patterns of inheritance to deduce the fundamental • Heterozygous principles of genetics • Gene (“heritable factor”) • Studied garden peas • Allele • Easily manipulated (control over fertilization) • Can self-fertilize • Reproduce quickly • Large numbers of offspring • Many distinct traits to study; most traits had only two possible variants 34 1 Traits of Mendel’s Pea Plants Self-Fertilization produces
    [Show full text]
  • Lecture 1 – Mendelian Inheritance
    Introduction – Mendelian inheritance Genetics 371B Lecture 1 27 Sept. 1999 The mechanism of inheritance… Some early hypotheses: Predetermination e.g., the homunculus theory Blending of traits Introducing a more systematic approach… Gregor Mendel (1822–1884) and his experiments with garden pea But first: Choosing a model organism What is it? Why bother? Features of a good model organism: Some commonly used model organisms: Mendel's organism of choice: garden pea His question: If a pair of plant lines showing a clear character difference are crossed, will the progeny show an intermediate phenotype? He established true-breeding lines… …that showed character differences Made crosses (matings) between each pair of lines Example: Character: Phenotypes: x “F1” F1 x F1 “F2” Mendelian Genetics – Monohybrid cross Genetics 371B Lecture 2 28 Sept. 1999 Interpreting Mendel’s experiment Parents: Gametes: F1 progeny: Gametes: F2 progeny: Conclusions: 1. Determinants are particulate 2. They occur in pairs; one member may be dominant 3. Determinants segregate randomly into gametes Prediction: The F2 “Purple” class consists of two subclasses: Testing the prediction: What Mendel did: What we would do today (hindsight!): Generality of Mendel's first law: (Not just for pea plants!) Fruit fly (Drosophila melanogaster) Normal (brown) body x black body Mice Agouti x Black Humans Albinism Pedigree analysis What are pedigrees? Why bother with them? Constructing pedigrees “The inability to smell methanethiol is a recessive trait in humans. Ashley, Perry, and Gus
    [Show full text]
  • Mendel's Experiments
    11/19/2019 BIOL 230: Cell & Molecular Biology Fall 2019 17-205 W, Nov. 20 http://accounts.smccd.edu/staplesn/biol230/ 1. Pre-Lab writeups due each Mon. (for both M&W!!) WRITTEN!!!: briefly, What? Why? How? for each expt. Question & Hypothesis?! 2. GENETICS PRIMER: http://anthro.palomar.edu/mendel/mendel_1.htm 3. Prelab: do Mendelian Genetics exercises (A-C for Wed., 11/20) – & Ch. 12 Homework Problems: a) http://sonic.net/~nbs/projects/anthro201/; *** http://sonic.net/~nbs/projects/anthro201/exper/ b) http://www.biology.arizona.edu/mendelian_genetics/mendelian_genetics.html *** c) https://www.ndsu.edu/pubweb/~mcclean/plsc431/mendel/mendel1.htm (see left side INDEX!) https://www.ndsu.edu/pubweb/~mcclean/plsc431/mendel/mendel9.htm (see left side INDEX!) d) https://concord.org/teaching-genetics/dragons/ DRAGONS!!! – see Geniverse & Genigames e) http://www.dnaftb.org/ Classical Genetics, and Genetic Organization. f) TURN IN your calculations of your D1S80 Genotype!! Also: ARE you an Alien Clone???? 4. LAB THIS week: Genotypes and Phenotypes!! PROBABILITIES!!! 5. Find Anastasia & Alien GEL DATA under ADDITIONAL MATERIALS. 6. Extra Credit: STEM SPEAKER SERIES, ALL DUE by THIS WEEK!!!! 7. ****NOTEBOOK/Lab MANUAL is due TODAY!! 8. RESEARCH Outlines will be reviewed by tonight!!! FINAL REPORT due week of Wed., Dec. 4th. NO EXCEPTIONS!!! REVIEW 1. Ch. 11: Describe and Diagram the 4 phases of the cell cycle, and how they are regulated by Cyclin/CDK complexes. 2. Diagram and compare the 4 main phases of Mitosis, Meiosis I & Meiosis II. – Chromosome, Chromatid, Centromere, Centriole, Spindle, Cortical MT’s, Spindle fibers/ MT’s, Sister Chromatid, Homologous Chromosome, Nuclear Envelope, Cytokinesis (plants/animals).
    [Show full text]
  • In This Lesson, You Will Learn How to Predict the Probable Genetic Makeup and Appearance of Offspring Resulting from Specific Cr
    In this lesson, you will learn how to predict the probable genetic makeup and appearance of offspring resulting from specific crosses.! Probability! n Predicts the likelihood that a specific event will occur.! n May be expressed a a decimal, a percentage, or a fraction.! n Determined by the following formula:! Probability = number of times an event is expected to happen! number of opportunities for an event to happen! Why probability is important to genetics! n Mendel used probability to determine how likely the dominant trait would appear over the recessive trait.! n The yellow pea appeared 6,022 times in the F2 generation. The green pea appeared 2,001 times. ! n The total number of individual was 8023 (6022+2001)! n Using the formula: ! n 6022 ÷ 8023 = 0.75 ! n 2001 ÷ 8023 = 0.25 ! n Percentage: 75% green peas 25% yellow peas! n Ratio: 3:1 ratio of yellow to green peas! n Fraction: 1/4 chance of green peas and 3/4 chance of yellow peas! ! ! Results of the F1 generation! PP Pp x 2 pp ratio: 1:2:1 or 3:1 purple to white! 75% purple to 25% white! F1 generation yielded 100% purple flowers, heterozygous for the purple trait.! white (pp) x purple(PP) ! ! ! ! yields! ! ! ! 100% purple flowers that are heterozygous for the purple flower trait (Pp).! Punnett Square! n A diagram used to predict the probability of certain traits by offspring.! n The following examples will illustrate the outcome of different types of crosses.! How to set up and work a Punnett square! n Draw a four-square box.! n Place one set of alleles on the side of the box as shown at right.! How to set up and work a Punnett square! n One set of alleles for a trait go on top of the box (usually male) and the other set of alleles go on the side of the box.! n Each letter from the set of alleles is placed on top of the square.! Filling in the boxes…! n Fill in the top left box with the alleles from top left and upper left.! n The dominant letter is placed first.
    [Show full text]
  • Lecture 4: Introduction to Genetics
    Lecture 4: Introduction to Genetics. Human Genetics 1. Heredity and Genetics: Definitions 2. The origin of genetics. Gregor Mendel’s experiments 3. Monohybrid Crosses 4. Dihybrid Crosses 5. Mendel’s Laws of Inheritance 6. Rediscovery of Mendel’s Laws 7. Genetics of Human Diseases 8. Modes of Inheritance For much of human history people were unaware of the scientific details of how babies were conceived and how heredity worked. Clearly they were conceived, and clearly there was some hereditary connection between parents and children, but the mechanisms were not readily apparent. Heredity is the genetic transmission of traits from one generation to the next, from parents to offspring Genetics is a branch of Biology devoted to understanding how characteristics are transmitted from generation to generation; it is scientific study of heredity and hereditary variations. The origin of genetics: The study of genetics begins when Gregor Mendel, in 1865, addressed the question "How are characters passed on from one generation to the next?" Mendel was the first to make a serious attempt of experimentally answering the question of heredity and not only his answers were correct, they were a complete and compelling proof. G. Mendel’s Biography G.Mendel (1822-1884) grew up on his parent’s small farm in a region of Austria that is now part of Czech Republic. In 1843, Mendel entered an Augustinian monastery. He studied Science and Mathematics (including Statistics) at the University of Vienna (1851-1853). Mendel’s knowledge of Statistics later proved valuable in his research on Heredity. Mendel was interested in understanding variances in plants and between 1856 and 1863 he cultivated and tested some 28,000 pea plants.
    [Show full text]
  • Ch 14 Review Questions
    Genetics I Answered Review Questions 1. Who discovered the laws of heredity and with what specific organism was this person working? “Modern genetics had its genesis in an abbey garden, where a monk named Gregor Mendel documented a particulate mechanism of inheritance. The painting in the figure below, depicts Mendel working with his experimental organism, garden peas. Mendel developed his theory of inheritance several decades before the behavior of chromosomes was observed in the microscope and their significance understood.” (Text quoted from page 251 of the textbook) 2. What are alleles and where would they be located in a cell? “…alternative versions of genes account for variations in inherited characters. The gene for flower color in pea plants, for example, exists in two versions, one for purple flowers and the other for white. These alternative versions of a gene are now called alleles (see table below). Today, we can relate this concept to chromosomes and DNA. As noted in Chapter 13, each gene resides at a specific locus on a specific chromosome. The DNA at that locus, however, can vary somewhat in its sequence of nucleotides and hence in its information content. The purple-flower allele and the white-flower allele are two DNA variations possible at the flower-color locus on one of a pea plant’s chromosomes.” (Text quoted from pages 253 and 254 of the textbook.) 3. Contrast dominant and recessive alleles. “if the two alleles at a locus differ, then one, the dominant allele, determines the organism’s appearance; the other, the recessive allele, has no noticeable effect on the organism’s appearance.” (Text quoted from page 254 of the textbook) A dominant allele may be expressed when only one dominant allele is present.
    [Show full text]
  • Genetics Complete Notes.Pdf
    GENETICS History of genetics Genetics- study of inheritance Trait- characteristic that can be passed from parent to child Ex. Hair color, eye color, etc. Ex. Pea plants- seed shape, height, flower color In the past, people explained heredity by saying that traits from parents were “blended” (blending hypothesis) We now know that during cell division, chromosomes are distributed through gametes Mendel’s experiments Gregor Mendel Father of genetics Austrian monk Began work in 1860’s Used 20,000 pea plants to study how traits are passed from one generation to the next Found that his results did not support the “blending hypothesis” (Why was this? How did he know it wasn’t right?) Mendel’s experiments (cont.) Purebred Organism with same genetic info from parents Pea plants: self-fertilization or true breeding (sperm and egg from same plant) Also called homozygous (GG or gg) Hybrid Organism with different forms of a genetic trait from each parent Pea plants: crossbreeding (sperm and egg from different plant) Also called heterozygous (Gg) Mendel’s observations Started by crossing 2 different purebred plants (called parent or P generation) by cross pollination 1st generation of offspring (what he got from crossing two parent plants) called F1 generation All hybrid offspring only had the character of ONE of the parents (NO BLENDING!) Allowed F1 plants to self-fertilize to produce F2 generation Mendel’s observations (cont.) Generation Cross (pea color) Results P Yellow x Green All yellow F1 Yellow x Yellow 3 Yellow 1 Green F2 Differs Differs Mendel’s observations (cont.) Repeated experiment with 6 other traits Flower color (purple/white) Flower position (axial/terminal) Pea shape (round/wrinkled) Pod color (green/yellow) Pod shape (inflated/constricted) Height (tall/short) Defined each form as dominant (75% of F2) or recessive (25% of F2) Gene Section of a chromosome that codes for a trait Allele Different form of a gene (usually two) Represented by a letter Ex.
    [Show full text]
  • Module I – Genetics According to Mendel
    Educators Lesson Module I – Genetics According to Mendel his teaching license because of a disagreement with Genetics According examiners about the nature of heredity. Ironically, Mendel’s failure to become a teacher is what drove him to Mendel to discover the principal rules of genetics. I Bent on proving his ideas correct, Mendel began his famous pea experiments. In 1865, he presented the Part I results of his experiments to the Brunn Society of Natural History, one of the most prestigious scientific BACKGROUND INFORMATION societies in the world. In 1866, the society published his paper in their proceedings. Even though the journal reached 120 universities and other societies, Introduction Mendel’s paper was mostly ignored by the science It has been known for thousands of years that biological community of the time. It was not until 1900 that traits are passed to offspring by their parents who Mendel’s paper was rediscovered and viewed as a received these traits from past generations. This fact significant scientific achievement. was most successfully applied by farmers who recog- nized the importance of saving the seeds of the best How did Mendel succeed where earlier scientists plants for the next year’s crop and using the best failed to understand heredity? Mendel kept his animals for breeding. But until recent times, the experiments simple. scientific mechanisms that drive inheritance were not understood. Today, we call the scientific study of Mendel had many years of plant breeding experience. inheritance genetics. As a result, he selected the garden pea because it grew well in small gardens, produced a large number of In 1866, an Augustinian priest named Gregor Mendel seeds, and was easily pollinated.
    [Show full text]