Cape Wrath Survey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meddelelser120.Pdf (2.493Mb)
MEDDELELSER NR. 120 IAN GJERTZ & BERIT MØRKVED Environmental Studies from Franz Josef Land, with Emphasis on Tikhaia Bay, Hooker Island '-,.J��!c �"'oo..--------' MikhalSkakuj NORSK POLARINSTITUTT OSLO 1992 ISBN 82-7666-043-6 lan Gjertz and Berit Mørkved Printed J uly 1992 Norsk Polarinstitutt Cover picture: Postboks 158 Iceberg of Franz Josef Land N-1330 Oslo Lufthavn (Ian Gjertz) Norway INTRODUCTION The Russian high Arctic archipelago Franz Josef Land has long been closed to foreign scientists. The political changes which occurred in the former Soviet Union in the last part of the 1980s resulted in the opening of this area to foreigners. Director Gennady Matishov of Murmansk Marine Biological Institute deserves much of the credit for this. In 1990 an international cooperation was established between the Murmansk Marine Biological Institute (MMBI); the Arctic Ecology Group of the Institute of Oceanology, Gdansk; and the Norwegian Polar Research Institute, Oslo. The purpose of this cooperation is to develope scientific cooperation in the Arctic thorugh joint expeditions, the establishment of a high Arctic scientific station, and the exchange of scientific information. So far the results of this cooperation are two scientific cruises with the RV "Pomor", a vessel belonging to the MMBI. The cruises have been named Sov Nor-Poll and Sov-Nor-Po12. A third cruise is planned for August-September 1992. In addition the MMBI has undertaken to establish a scientific station at Tikhaia Bay on Hooker Island. This is the site of a former Soviet meteorological base from 1929-1958, and some of the buildings are now being restored by MMBI. -
Download PDF Version
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Foliose seaweeds and coralline crusts in surge gully entrances MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Dr Heidi Tillin 2015-11-30 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/31]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tillin, H.M. 2015. Foliose seaweeds and coralline crusts in surge gully entrances. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on- line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.31.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2015-11-30 Foliose seaweeds and coralline -
New Zealand Oceanographic Institute Memoir 100
ISSN 0083-7903, 100 (Print) ISSN 2538-1016; 100 (Online) , , II COVER PHOTO. Dictyodendrilla cf. cavernosa (Lendenfeld, 1883) (type species of Dictyodendri/la Bergquist, 1980) (see page 24), from NZOI Stn I827, near Rikoriko Cave entrance, Poor Knights Islands Marine Reserve. Photo: Ken Grange, NZOI. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH The Marine Fauna of New Zealand: Index to the Fauna 2. Porifera by ELLIOT W. DAWSON N .Z. Oceanographic Institute, Wellington New Zealand Oceanographic Institute Memoir 100 1993 • This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Cataloguing in publication DAWSON, E.W. The marine fauna of New Zealand: Index to the Fauna 2. Porifera / by Elliot W. Dawson - Wellington: New Zealand Oceanographic Institute, 1993. (New Zealand Oceanographic Institute memoir, ISSN 0083-7903, 100) ISBN 0-478-08310-6 I. Title II. Series UDC Series Editor Dennis P. Gordon Typeset by Rose-Marie C. Thompson NIWA Oceanographic (NZOI) National Institute of Water and Atmospheric Research Received for publication: 17 July 1991 © NIWA Copyright 1993 2 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page ABSTRACT 5 INTRODUCTION 5 SCOPE AND ARRANGEMENT 7 SYSTEMATIC LIST 8 Class DEMOSPONGIAE 8 Subclass Homosclcromorpha .............................................................................................. -
Descriptions of New Serpulid Polychaetes from the Kimberleys Of
© The Author, 2009. Journal compilation © Australian Museum, Sydney, 2009 Records of the Australian Museum (2009) Vol. 61: 93–199. ISSN 0067-1975 doi:10.3853/j.0067-1975.61.2009.1489 Descriptions of New Serpulid Polychaetes from the Kimberleys of Australia and Discussion of Australian and Indo-West Pacific Species of Spirobranchus and Superficially Similar Taxa T. Gottfried Pillai Zoology Department, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom absTracT. In 1988 Pat Hutchings of the Australian Museum, Sydney, undertook an extensive polychaete collection trip off the Kimberley coast of Western Australia, where such a survey had not been conducted since Augener’s (1914) description of some polychaetes from the region. Serpulids were well represented in the collection, and their present study revealed the existence of two new genera, and new species belonging to the genera Protula, Vermiliopsis, Hydroides, Serpula and Spirobranchus. The synonymy of the difficult genera Spirobranchus, Pomatoceros and Pomatoleios is also dealt with. Certain difficult taxa currently referred to as “species complexes” or “species groups” are discussed. For this purpose it was considered necessary to undertake a comparison of apparently similar species, especially of Spirobranchus, from other locations in Australia and the Indo-West Pacific region. It revealed the existence of many more new species, which are also described and discussed below. Pillai, T. Gottfried, 2009. Descriptions of new serpulid polychaetes from the Kimberleys of Australia and discussion of Australian and Indo-West Pacific species ofSpirobranchus and superficially similar taxa.Records of the Australian Museum 61(2): 93–199. Table of contents Introduction ................................................................................................................... 95 Material and methods .................................................................................................. -
Coastal and Marine Ecological Classification Standard (2012)
FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ...................................................... -
Phylum MOLLUSCA
285 MOLLUSCA: SOLENOGASTRES-POLYPLACOPHORA Phylum MOLLUSCA Class SOLENOGASTRES Family Lepidomeniidae NEMATOMENIA BANYULENSIS (Pruvot, 1891, p. 715, as Dondersia) Occasionally on Lafoea dumosa (R.A.T., S.P., E.J.A.): at 4 positions S.W. of Eddystone, 42-49 fm., on Lafoea dumosa (Crawshay, 1912, p. 368): Eddystone, 29 fm., 1920 (R.W.): 7, 3, 1 and 1 in 4 hauls N.E. of Eddystone, 1948 (V.F.) Breeding: gonads ripe in Aug. (R.A.T.) Family Neomeniidae NEOMENIA CARINATA Tullberg, 1875, p. 1 One specimen Rame-Eddystone Grounds, 29.12.49 (V.F.) Family Proneomeniidae PRONEOMENIA AGLAOPHENIAE Kovalevsky and Marion [Pruvot, 1891, p. 720] Common on Thecocarpus myriophyllum, generally coiled around the base of the stem of the hydroid (S.P., E.J.A.): at 4 positions S.W. of Eddystone, 43-49 fm. (Crawshay, 1912, p. 367): S. of Rame Head, 27 fm., 1920 (R.W.): N. of Eddystone, 29.3.33 (A.J.S.) Class POLYPLACOPHORA (=LORICATA) Family Lepidopleuridae LEPIDOPLEURUS ASELLUS (Gmelin) [Forbes and Hanley, 1849, II, p. 407, as Chiton; Matthews, 1953, p. 246] Abundant, 15-30 fm., especially on muddy gravel (S.P.): at 9 positions S.W. of Eddystone, 40-43 fm. (Crawshay, 1912, p. 368, as Craspedochilus onyx) SALCOMBE. Common in dredge material (Allen and Todd, 1900, p. 210) LEPIDOPLEURUS, CANCELLATUS (Sowerby) [Forbes and Hanley, 1849, II, p. 410, as Chiton; Matthews. 1953, p. 246] Wembury West Reef, three specimens at E.L.W.S.T. by J. Brady, 28.3.56 (G.M.S.) Family Lepidochitonidae TONICELLA RUBRA (L.) [Forbes and Hanley, 1849, II, p. -
Role of Reef-Building, Ecosystem Engineering Polychaetes in Shallow Water Ecosystems
diversity Review Role of Reef-Building, Ecosystem Engineering Polychaetes in Shallow Water Ecosystems Martín Bruschetti 1,2 1 Instituto de Investigaciones Marinas y Costeras (IIMyC)-CONICET, Mar del Plata 7600, Argentina; [email protected] 2 Laboratorio de Ecología, Universidad Nacional de Mar del Plata, FCEyN, Laboratorio de Ecología 7600, Argentina Received: 15 June 2019; Accepted: 15 September 2019; Published: 17 September 2019 Abstract: Although the effect of ecosystem engineers in structuring communities is common in several systems, it is seldom as evident as in shallow marine soft-bottoms. These systems lack abiotic three-dimensional structures but host biogenic structures that play critical roles in controlling abiotic conditions and resources. Here I review how reef-building polychaetes (RBP) engineer their environment and affect habitat quality, thus regulating community structure, ecosystem functioning, and the provision of ecosystem services in shallow waters. The analysis focuses on different engineering mechanisms, such as hard substrate production, effects on hydrodynamics, and sediment transport, and impacts mediated by filter feeding and biodeposition. Finally, I deal with landscape-level topographic alteration by RBP. In conclusion, RBP have positive impacts on diversity and abundance of many species mediated by the structure of the reef. Additionally, by feeding on phytoplankton and decreasing water turbidity, RBP can control primary production, increase light penetration, and might alleviate the effects of eutrophication -
Assess-Env0196
Advisory Committee on Fishery Management and ICES CM 1996/AssesslEnv:l Advisory Committee on the Marine Environment Ref.: G REPORT OF THE WORKING GROUP ON ECOSYSTEM EFFECTS OF FISHING ACTIVITIES ICES Headquarters 13-21 March 1996 This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. International Council for the ExpJoration of the Sea ConseiJ International pour J'Exploration de la Mer Palregade 2-4 DK-1261 Copenhagen K Denmark TABLE OF CONTENTS Section Page OPENING OF THE MEETING 1 2 ADOPTION OF THE AGENDA 1 3 COMMUNITIES AND ASSEMBLAGES 1 3.1 Introduction : 1 3.2 Theory ofCommunity and Assemblage Dynamics 2 3.2.1 Review of literature in community ecology and community metrics 2 3.2.2 Theory of the effect offishing on size and diversity spectra 3 3.3 Intersessional Analyses of Species Diversity and Ordinations 4 3.3.1 Hypotheses and analysis framework 4 3.3.2 Surveys analysed 4 3.3.3 Results · 4 3.4 Data Analyses: North Sea as a Whole 5 3.4.1 Data sets , 5 3.4.2 Variables and data preparation steps 5 3.4.3 Statistical analyses 5 304.4 Annual size spectra of the North Sea numbers and diversity 6 3.4.5 Area;.effects on the annual size and diversity spectra 7 3.4.6 Trends over years in the size spectra of numbers and diversity ~ 8 3.4.7 Analysis of frequencies of species by abundance and biomass class 10 3.5 Contrasts Among Selected -
ICES Marine Science Symposia
ICES mar. Sei. Symp., 199: 189-199. 1995 Distribution and abundance of molluscs and decapod crustaceans in trawl samples from the Galician Shelf (NW Spain) A. C. Farina and F. J. Pereiro Farina, A. C., and Pereiro, F. J. 1995. Distribution and abundance of molluscs and decapod crustaceans in trawl samples from the Galician Shelf (NW Spain). - ICES mar. Sei. Symp., 199: 189-199. This study presents the community composition and structure of molluscs and decapod crustaceans from trawl samples taken on the Galician Shelf in Northwest Spain. Spatial and temporal distribution, as well as the biomass and density of the main species, are presented in relation to depth and substrate type. A. C. Farina: Instituto Espanol Oceanografia, Apdo 130, 15080 La Coruna, Spain. F. J. Pereiro: Instituto Espanol Oceanografia, Apdo 1552, 36280 Vigo, Spain [tel: (+34) 98120 53 62, fax: (+34) 981 229077], Introduction with recruitment to the area (in the autumn) and the spawning season of the majority of the demersal and Two main groups of invertebrates (crustaceans and mol benthic species (in the spring). A stratified sampling luscs) are caught when trawling for fish on the Galician design was used and selection of the trawls was random. Shelf, which lies off northwestern Spain, reaching a The area is divided into three geographic sectors (Mino depth of 500 m 30 km from the coast along its southern to Finisterre, Finisterre to Estaca, and Estaca to Riba- part and broadening to 65 km from the coast in the deo), and each sector is divided into two strata by depth northern part. -
Comparison of Some Interesting Molluscs, Trawled by the Belgian Fishery in the Bay of Biscay, with Similar Representatives from Adjacent Waters: Part III
Comparison of some interesting molluscs, trawled by the Belgian fishery in the Bay of Biscay, with similar representatives from adjacent waters: part III Frank Nolf 1 & Jean-Paul Kreps 2 1 Pr. Stefanieplein, 43/8 – B-8400 Oostende [email protected] 2 Rode Kruisstraat, 5 – B-8300 Knokke-Heist [email protected] Keywords: Bay of Biscay, W France, Belgian XLIV, Fig. 248; Pl. XLV, Figs 249-254), the North fishery, Mollusca, Gastropoda, Bivalvia. Sea (Pl. XLVI, Figs 255-257) and the English Channel south to the Bay of Biscay (Pl. XLIV, Abstract: In the third part of the report on the Figs 243-244) and Portugal (Pl. XLVI, Figs 260- molluscs collected by the Belgian fishery in the 261). Bay of Biscay during the last decade, the Specimens reported from the Mediterranean are remaining gastropods and a first series of erroneous identifications and have to be bivalves are briefly described, figured and attributed to Colus jeffreysianus (P. Fischer, compared with similar specimens from North 1868). The species lives on muddy and sandy Atlantic waters, the Mediterranean Sea or West bottoms, usually from 30 to 800 m deep. It is less Africa. common and lives deeper in the south of its range. Abbreviations: This is a rather variable species with respect to FN: private collection of Frank Nolf. its shell, especially in relation to the H.: height. breadth/height ratio, the size of the aperture and JPK: private collection of Jean-Paul Kreps. the length of the siphonal canal. This is probably JV: private collection of Johan Verstraeten. due to its occurrence in several different L.: length. -
A New Species of the Calcareous Sponge Genus Leuclathrina (Calcarea: Calcinea: Clathrinida) from the Maldives
Zootaxa 4382 (1): 147–158 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4382.1.5 http://zoobank.org/urn:lsid:zoobank.org:pub:B222C2D8-82FB-414C-A88F-44A12A837A21 A new species of the calcareous sponge genus Leuclathrina (Calcarea: Calcinea: Clathrinida) from the Maldives OLIVER VOIGT1,5, BERNHARD RUTHENSTEINER2, LAURA LEIVA1, BENEDETTA FRADUSCO1 & GERT WÖRHEIDE1,3,4 1Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Rich- ard-Wagner-Str. 10, 80333 München, Germany 2 SNSB - Zoologische Staatssammlung München, Sektion Evertebrata varia, Münchhausenstr. 21, 81247 München, Germany 3 GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany 4SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, 80333 München, Germany 5Corresponding author. E-mail: [email protected], Tel.: +49 (0) 89 2180 6635; Fax: +49 (0) 89 2180 6601 Abstract The diversity and phylogenetic relationships of calcareous sponges are still not completely understood. Recent integrative approaches combined analyses of DNA and morphological observations. Such studies resulted in severe taxonomic revi- sions within the subclass Calcinea and provided the foundation for a phylogenetically meaningful classification. However, several genera are missing from DNA phylogenies and their relationship to other Calcinea remain uncertain. One of these genera is Leuclathrina (family Leucaltidae). We here describe a new species from the Maldives, Leuclathrina translucida sp. nov., which is only the second species of the genus. Like the type species Leuclathrina asconoides, the new species has a leuconoid aquiferous system and lacks a specialized choanoskeleton. -
NPWS Inishmore Island SAC (Site Code: 213) Conservation Objectives
NPWS Inishmore Island SAC (site code: 213) Conservation objectives supporting document - Marine Habitats Version 1 January 2015 Introduction Inishmore Island SAC is designated for the marine Annex I qualifying interests of Reefs and Submerged or partially submerged sea caves (Figures 1 and 2). A BioMar survey of this site was carried out in 1993 (Picton and Costello, 1997), a seacave survey and intertidal and subtidal reef surveys were undertaken in 2012 (MERC, 2012 and MERC, 2013); these data were used to determine the physical and biological nature of this SAC. The distribution and ecology of intertidal or subtidal seacaves has not previously been the subject of scientific investigation in Ireland and the extents of very few individual caves have been mapped in detail. Whilst surveys undertaken in the UK indicate the structure and functions of seacaves are largely influenced by hydrodynamic forces and water quality, no such information is yet available for Ireland. Aspects of the biology and ecology of the Annex I habitat are provided in Section 1. The corresponding site-specific conservation objectives will facilitate Ireland delivering on its surveillance and reporting obligations under the EU Habitats Directive (92/43/EC). Ireland also has an obligation to ensure that consent decisions concerning operations/activities planned for Natura 2000 sites are informed by an appropriate assessment where the likelihood of such operations or activities having a significant effect on the SAC cannot be excluded. Further ancillary information concerning the practical application of the site-specific objectives and targets in the completion of such assessments is provided in Section 2.