(12) United States Patent (10) Patent No.: US 8,168,417 B2 Berka Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,168,417 B2 Berka Et Al USOO81 68417B2 (12) United States Patent (10) Patent No.: US 8,168,417 B2 Berka et al. (45) Date of Patent: May 1, 2012 (54) BACILLUS LICHENIFORMIS CHROMOSOME OTHER PUBLICATIONS Kunst et al., 1997, PIR database Accession No. D69904, “butyrate (75) Inventors: Randy Berka, Davis, CA (US); Michael acetoacetate CoA-transferase (EC 2.8.3.9.) large chain homolog Rey, Davis, CA (US); Preethi Ramaiya, yodR-Bacillus subtilis”.* Walnut Creek, CA (US); Jens Tonne Claus, D. and Berkeley, R.C.W. (1986) in Bergey's Manual of Sys Andersen, Naerum (DK); Michael tematic Bacteriology, vol. 2., eds. Sneath, P.H.A. etal. (Williams and Dolberg Rasmussen, Vallensbaek (DK); Wilkins Co., Baltimore, MD.), pp. 1105-1139. Peter Bjarke Olsen, Copenhagen Ø Eveleigh, D.E. (1981) Scientific American 245, 155-178. (DK) Erickson, R.J. (1976) in Microbiology, ed. Schlesinger, D. (Am. Soc. Microbiol. Washington, DC), pp. 406-419. (73) Assignees: Novozymes A/S, Bagsvaerd (DK); Logan, N. A. and Berkeley, R.C.W. (1981), in The Aerobic Novozymes, Inc., Davis, CA (US) Endospore-Forming Bacteria. Classification and Identification, eds. Berkeley, R.C.W. and Goodfellow, M. (Academic Press, Inc., Lon (*) Notice: Subject to any disclaimer, the term of this don), pp. 106-140. patent is extended or adjusted under 35 O'Donnell, A.G., Norris, J.R., Berkeley, R.C.W., Claus, D., Kanero, U.S.C. 154(b) by 0 days. T., Logan, N. A., and Nozaki, R. (1980) Internat. J. Systematic Bacteriol. 30, 448-459. (21) Appl. No.: 12/972,306 Lapidus et al., (2002), Co-linear scaffold of the Bacillus licheniformis and Bacillus subtilis genomes and its use to compare (22) Filed: Dec. 17, 2010 their competence genes, FEMS Microbiology Letters, 209, pp. 23-30. (65) Prior Publication Data Kunst et al., Nature, 1997, vol. 390, pp. 249-266. NCBI submission of B. subtilis DNA, 180 kb region of repliation US 2011 FOO864O7 A1 Apr. 14, 2011 origin, ID BAC 180K, publicly available Jun. 2, 1999, at ncbi.nlm. nih.gov. Related U.S. Application Data Avita et al., Temporal Secretion of a multicellulolytic system in Division of application No. 12/322.974, filed on Feb. Myxobacter sp. AL-1 Molecular cloning and heterologous expres (62) sion of cel9 encoding a modular endocellulase clustered in an operon 9, 2009, now Pat. No. 7,863,032, which is a division of with ce148, an exocellobiohdrolase gene, Eur, J. Biochem., 2000, application No. 10/983,128, filedon Nov. 5, 2004, now v.267, 7058-7064. Pat. No. 7,494,798. Liu et al., 2004, Curr Microbiol 49, 234-238. (60) Provisional application No. 60/535.988, filed on Jan. Lloberas et al., 1991, Eur J. Biochem 197,337-343. Moriya et al., 2005, NCBI Access No. D26.185. 9, 2004, provisional application No. 60/561,059, filed O'Donnell et al., 2007, Geneseqp Access No. ADJ79377. on Apr. 8, 2004, provisional application No. Rey et al., 2004, Gen Biol 5(10), R77-1. 60/572,403, filed on May 18, 2004. Sanchez et al., 2003, Eur J Biochem 270(13), 2913-2919. Sneath et al., 1977, 1104-1139. (51) Int. C. Sook et al., 2002, J Microbiol Biotechnol 12(5), 773-779. CI2N 9/10 (2006.01) Veith et al., 2004, J Mol Microbiol Biotechnol 7(4), 204-211. CI2N 5/54 (2006.01) Xu et al., 2003, EMBL Access No. AF478085. (52) U.S. Cl. ....................................... 435/193: 536/23.2 Xu et al., 2003, Intl Sys Evo Micro 53(3), 695-704. (58) Field of Classification Search ........................ None Sinchaikul et al 2002, J Chromat 771,261-287. See application file for complete search history. * cited by examiner (56) References Cited Primary Examiner—Jon PWeber Assistant Examiner — William W. Moore U.S. PATENT DOCUMENTS (74) Attorney, Agent, or Firm — Eric J. Fechter; Robert L. 5,589,381 A 12/1996 Neyra et al. Starnes 5,665,354 A 9/1997 Neyra et al. 6,060.241 A * 5/2000 Corthesy-Theulaz ............ 435/6 6,506,581 B1* 1/2003 Fleischmann et al. ....... 435/69.1 (57) ABSTRACT 6,528,289 B1* 3/2003 Fleischmann et al. ..... 435,9141 The present invention relates to an isolated polynucleotide of 6,593,114 B1* 7/2003 Kunsch et al. ............. 435,9141 6,846,651 B2 * 1/2005 Fleischmann et al ... 435/69.1 the complete chromosome of Bacillus licheniformis. The 7,018,794 B2* 3/2006 Berka et al. ... ... 435/6 present invention also relates to isolated genes of the chro 7.691,574 B2 * 4/2010 Berka et al. ....................... 435/6 mosome of Bacillus licheniformis which encode biologically 2002fO146721 Al 10/2002 Berka et al. ....................... 435/6 active Substances and to nucleic acid constructs, vectors, and FOREIGN PATENT DOCUMENTS host cells comprising the genes as well as methods for pro ducing biologically active substances encoded by the genes WO WOO2,29113 A2 4/2002 WO WOO229113 * 4, 2002 and to methods of using the isolated genes of the complete WO WOO3,OOO941 1, 2003 chromosome of Bacillus licheniformis. WO WOO3/O54163 A2 T 2003 WO WOO3,087.149 10, 2003 2 Claims, No Drawings US 8,168,417 B2 1. 2 BACILLUS LICHENIFORMS CHROMOSOME in the environment. Unlike most other bacilli that are pre dominantly aerobic, Bacillus licheniformis is a facultative CROSS-REFERENCE TO RELATED anaerobe which may allow it to grow in additional ecological APPLICATIONS niches. This species produces a diverse assortment of extra cellular enzymes that are believed to contribute to the process This application is a divisional of U.S. application Ser. No. of nutrient cycling in nature (Claus, D. and Berkeley, R. C.W., 12/322,974, filed Feb. 9, 2009, now U.S. Pat. No. 7,863,032, 1986. In Bergey's Manual of Systematic Bacteriology, Vol. 2., which is a divisional of U.S. application Ser. No. 10/983,128, eds. Sneath, P. H. A. et al., Williams and Wilkins Co., Balti filed Nov. 5, 2004, now U.S. Pat. No. 7,494,798, which claims more, Md., pp. 1105-1139). Certain Bacillus licheniformis the benefit of U.S. Provisional Application No. 60/535.988, 10 isolates are capable of denitrification, however, the relevance filed Jan. 9, 2004, U.S. Provisional Application No. 60/561, of this characteristic to environmental denitrification may be 059, filed Apr. 8, 2004, and U.S. Provisional Application No. Small since the species generally persists in soil as endospores 60/572.403, filed May 18, 2004, which applications are incor porated herein by reference. (Alexander, M., 1977, Introduction to Soil Microbiology. 15 John Wiley and Sons, Inc., New York). There are numerous industrial and agricultural uses for REFERENCE TO ASEQUENCE LISTING Bacillus licheniformis and its extracellular products. The spe This application contains a Sequence Listing in computer cies has been used for decades in the manufacture of indus readable form, which is incorporated herein by reference. trial enzymes including several proteases, C.-amylase, peni cillinase, pentosanase, cycloglucosyltransferase, BACKGROUND OF THE INVENTION B-mannanase, and several pectinolytic enzymes, owing largely to its ability to secrete sizeable amounts of degradative 1. Field of the Invention enzymes. Bacillus licheniformis is also used to produce pep The present invention relates to an isolated polynucleotide tide antibiotics such as bacitracin and proticin, in addition to molecule comprising the complete chromosome of Bacillus 25 a number of specialty chemicals such as citric acid, inosine, licheniformis. The present invention also relates to features inosinic acid, and poly-Y-glutamic acid. The proteases from (genes) of the complete chromosomal DNA molecule of Bacillus licheniformis are used in the detergent industry as Bacillus licheniformis which encode biologically active sub well as for dehairing and batting of leather (Eveleigh, D. E., stances and to nucleic acid constructs, vectors, and host cells 1981, Scientific American 245, 155-178). Amylases from comprising the features as well as methods for producing 30 Bacillus licheniformis are deployed for the hydrolysis of biologically active Substances encoded by the features and to starch, desizing of textiles, and sizing of paper (Erickson, R. methods of using the isolated features derived from the com J., 1976. In Microbiology, ed. Schlesinger, D. (Am. Soc. plete chromosomal DNA molecule of Bacillus licheniformis. Microbiol. Washington, D.C.), pp. 406-419). Certain strains 2. Description of the Related Art of Bacillus licheniformis have shown efficacy to destroy fun Microbes, which make up most of the earth's biomass, 35 gal pathogens affecting maize, grasses, and vegetable crops have evolved for some 3.8 billion years. They are found in (U.S. Pat. No. 5,589,381; U.S. Pat. No. 5,665,354). As an virtually every environment, Surviving and thriving in endospore-forming bacterium, the ability of the organism to extremes of heat, cold, radiation, pressure, salt, acidity, and Survive under unfavorable environmental conditions may darkness. Often in these environments, no other forms of life enhance its potential as a natural control agent. are found and the only nutrients come from inorganic matter. 40 Bacillus licheniformis can be differentiated from other The diversity and range of their environmental adaptations bacillion the basis of metabolic and physiological tests (Lo indicate that microbes long ago 'solved’ many problems for gan, N. A. and Berkeley, R. C. W., 1981. In The Aerobic which scientists are still actively seeking Solutions. The value Endospore-Forming Bacteria Classification and Identifica in determining the complete genome sequence of microbes is tion, eds. Berkeley, R. C. W. and Goodfellow, M., Academic that it provides a detailed blueprint for the organism revealing 45 Press, Inc., London, pp. 106-140; O'Donnell, A.G., Norris, J. all of the biochemical pathways, Substrates, intermediates, R., Berkeley, R.
Recommended publications
  • Proteomic Analysis of Mycelial Proteins from Magnaporthe Oryzae Under Nitrogen Starvation
    Proteomic analysis of mycelial proteins from Magnaporthe oryzae under nitrogen starvation X.-G. Zhou1,2, P. Yu 2, C. Dong2, C.-X. Yao2, Y.-M. Ding2, N. Tao2 and Z.-W. Zhao1 1State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China 2Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture and Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China Corresponding author: Z.W. Zhao E-mail: [email protected] Genet. Mol. Res. 15 (2): gmr.15028637 Received March 23, 2016 Accepted April 11, 2016 Published May 13, 2016 DOI http://dx.doi.org/10.4238/gmr.15028637 ABSTRACT. Magnaporthe oryzae is an important model system in studies of plant pathogenic fungi, and nitrogen is a key nutrient source affecting microbial growth and development. In order to understand how nitrogen stress causes changes in mycelial proteins, we analyzed differentially expressed mycelial proteins from the M. oryzae virulent strain CH-63 using two-dimensional electrophoresis and mass spectrometry in complete medium or under nitrogen starvation conditions. A total of 975 ± 70 and 1169 ± 90 protein spots were detected in complete medium and under nitrogen starvation conditions, respectively. Forty-nine protein spots exhibited at least 2-fold up- regulation or down-regulation at the protein level according to PDQuest7.4. Moreover, 43 protein spots were successfully identified by matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight mass spectrometry. Among these spots, 6 proteins were functionally unknown and 37 proteins were categorized into 5 groups according to Genetics and Molecular Research 15 (2): gmr.15028637 ©FUNPEC-RP www.funpecrp.com.br X.-G.
    [Show full text]
  • Part One Amino Acids As Building Blocks
    Part One Amino Acids as Building Blocks Amino Acids, Peptides and Proteins in Organic Chemistry. Vol.3 – Building Blocks, Catalysis and Coupling Chemistry. Edited by Andrew B. Hughes Copyright Ó 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32102-5 j3 1 Amino Acid Biosynthesis Emily J. Parker and Andrew J. Pratt 1.1 Introduction The ribosomal synthesis of proteins utilizes a family of 20 a-amino acids that are universally coded by the translation machinery; in addition, two further a-amino acids, selenocysteine and pyrrolysine, are now believed to be incorporated into proteins via ribosomal synthesis in some organisms. More than 300 other amino acid residues have been identified in proteins, but most are of restricted distribution and produced via post-translational modification of the ubiquitous protein amino acids [1]. The ribosomally encoded a-amino acids described here ultimately derive from a-keto acids by a process corresponding to reductive amination. The most important biosynthetic distinction relates to whether appropriate carbon skeletons are pre-existing in basic metabolism or whether they have to be synthesized de novo and this division underpins the structure of this chapter. There are a small number of a-keto acids ubiquitously found in core metabolism, notably pyruvate (and a related 3-phosphoglycerate derivative from glycolysis), together with two components of the tricarboxylic acid cycle (TCA), oxaloacetate and a-ketoglutarate (a-KG). These building blocks ultimately provide the carbon skeletons for unbranched a-amino acids of three, four, and five carbons, respectively. a-Amino acids with shorter (glycine) or longer (lysine and pyrrolysine) straight chains are made by alternative pathways depending on the available raw materials.
    [Show full text]
  • Oxdc Antibody Rabbit Polyclonal Antibody Catalog # ABV11223
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 OxdC Antibody Rabbit Polyclonal Antibody Catalog # ABV11223 Specification OxdC Antibody - Product Information Application WB Primary Accession O34714 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit IgG Calculated MW 43566 OxdC Antibody - Additional Information Gene ID 938620 Positive Control Western Blot: Recombinant protein Application & Usage Western blot: 1-4 Western blot of Oxalate decarboxylase µg/ml. antibody. Lane 1: rb- Oxalate decarboxylase - Other Names 10 ng. Lane 2: rb- Oxalate decarboxylase - 50 YvrK ng Target/Specificity OxdC OxdC Antibody - Background Antibody Form Oxalate decarboxylase (OxdC, EC4.1.1.2) is a Liquid manganese-containing enzyme, which decomposes oxalic acid and oxalate. With Appearance OxdC catalysis, oxalate is split into formate Colorless liquid and CO2. This enzyme belongs to the family of lyases, specifically the carboxy-lyases, which Formulation 100 µg (0.5 mg/ml) of antibody in PBS pH cleave carbon-carbon bonds. The systematic 7.2 containing 0.01 % BSA, 0.01 % name of this enzyme class is oxalate thimerosal, and 50 % glycerol. carboxy-lyase (formate-forming). This enzyme is also called oxalate carboxy-lyase. The Handling enzyme is composed of two cupin domains, The antibody solution should be gently each of which contains a Mn (II) ion. This mixed before use. enzyme participates in glyoxylate and dicarboxylate metabolism. This enzyme has Reconstitution & Storage been recognized for diagnostics in diverse -20 °C biotechnological applications such as the clinical assay of oxalate in blood and urine, Background Descriptions therapeutics, process industry, and agriculture to lower oxalate levels in foods and the environment.
    [Show full text]
  • Proteo-Metabolomic Investigation of Transgenic Rice Unravels Metabolic
    www.nature.com/scientificreports OPEN Proteo-metabolomic investigation of transgenic rice unravels metabolic alterations and Received: 27 November 2018 Accepted: 24 June 2019 accumulation of novel proteins Published: xx xx xxxx potentially involved in defence against Rhizoctonia solani Subhasis Karmakar1, Karabi Datta1, Kutubuddin Ali Molla2,3, Dipak Gayen4, Kaushik Das1, Sailendra Nath Sarkar1 & Swapan K. Datta1 The generation of sheath blight (ShB)-resistant transgenic rice plants through the expression of Arabidopsis NPR1 gene is a signifcant development for research in the feld of biotic stress. However, to our knowledge, regulation of the proteomic and metabolic networks in the ShB-resistant transgenic rice plants has not been studied. In the present investigation, the relative proteome and metabolome profles of the non–transformed wild-type and the AtNPR1-transgenic rice lines prior to and subsequent to the R. solani infection were investigated. Total proteins from wild type and transgenic plants were investigated using two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). The metabolomics study indicated an increased abundance of various metabolites, which draws parallels with the proteomic analysis. Furthermore, the proteome data was cross-examined using network analysis which identifed modules that were rich in known as well as novel immunity-related prognostic proteins, particularly the mitogen-activated protein kinase 6, probable protein phosphatase 2C1, probable trehalose-phosphate phosphatase 2 and heat shock protein. A novel protein, 14–3– 3GF14f was observed to be upregulated in the leaves of the transgenic rice plants after ShB infection, and the possible mechanistic role of this protein in ShB resistance may be investigated further.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation
    catalysts Article Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation 1, 2 2,3 2 Marco Rabuffetti y, Teodora Bavaro , Riccardo Semproli , Giulia Cattaneo , Michela Massone 1, Carlo F. Morelli 1 , Giovanna Speranza 1,* and Daniela Ubiali 2,* 1 Department of Chemistry, University of Milan, via Golgi 19, I-20133 Milano, Italy; marco.rabuff[email protected] (M.R.); [email protected] (M.M.); [email protected] (C.F.M.) 2 Department of Drug Sciences, University of Pavia, viale Taramelli 12, I-27100 Pavia, Italy; [email protected] (T.B.); [email protected] (R.S.); [email protected] (G.C.) 3 Consorzio Italbiotec, via Fantoli 15/16, c/o Polo Multimedica, I-20138 Milano, Italy * Correspondence: [email protected] (G.S.); [email protected] (D.U.); Tel.: +39-02-50314097 (G.S.); +39-0382-987889 (D.U.) Present address: Department of Food, Environmental and Nutritional Sciences, University of Milan, y via Mangiagalli 25, I-20133 Milano, Italy. Received: 7 March 2019; Accepted: 8 April 2019; Published: 12 April 2019 Abstract: Despite the impressive progress in nucleoside chemistry to date, the synthesis of nucleoside analogues is still a challenge. Chemoenzymatic synthesis has been proven to overcome most of the constraints of conventional nucleoside chemistry. A purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) has been used herein to catalyze the synthesis of Ribavirin, Tecadenoson, and Cladribine, by a “one-pot, one-enzyme” transglycosylation, which is the transfer of the carbohydrate moiety from a nucleoside donor to a heterocyclic base. As the sugar donor, 7-methylguanosine iodide and its 20-deoxy counterpart were synthesized and incubated either with the “purine-like” base or the modified purine of the three selected APIs.
    [Show full text]
  • Arginine Enzymatic Deprivation and Diet Restriction for Cancer Treatment
    Brazilian Journal of Pharmaceutical Sciences Review http://dx.doi.org/10.1590/s2175-97902017000300200 Arginine enzymatic deprivation and diet restriction for cancer treatment Wissam Zam* Al-Andalus University for Medical Sciences, Faculty of Pharmacy, Analytical and Food Chemistry, Tartous, Syrian Arab Republic Recent findings in amino acid metabolism and the differences between normal, healthy cells and neoplastic cells have revealed that targeting single amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. Arginine is derived from dietary protein intake, body protein breakdown, or endogenous de novo arginine production and several studies have revealed disturbances in its synthesis and metabolism which could enhance or inhibit tumor cell growth. Consequently, there has been an increased interest in the arginine-depleting enzymes and dietary deprivation of arginine and its precursors as a potential antineoplastic therapy. This review outlines the most recent advances in targeting arginine metabolic pathways in cancer therapy and the different chemo- and radio-therapeutic approaches to be co-applied. Key words: Arginine-depleting enzyme/antineoplastic therapy. Dietary deprivation. INTRODUCTION variety of human cancer cells have been found to be auxotrophic for arginine, depletion of which results in Certain cancers may be auxotrophic for a particular cell death (Tytell, Neuman, 1960; Kraemer, 1964; Dillon amino acid, and amino acid deprivation is one method to et al., 2004). Arginine can be degraded by three enzymes: treat these tumors. The strategy of enzymatic degradation arginase, arginine decarboxylase and arginine deiminase of amino acids to deprive malignant cells of important (ADI). Both arginine decarboxylase and ADI are not nutrients is an established component of induction therapy expressed in mammalian cells (Morris, 2007; Miyazaki of several tumor cells.
    [Show full text]
  • Genome-Scale Fitness Profile of Caulobacter Crescentus Grown in Natural Freshwater
    Supplemental Material Genome-scale fitness profile of Caulobacter crescentus grown in natural freshwater Kristy L. Hentchel, Leila M. Reyes Ruiz, Aretha Fiebig, Patrick D. Curtis, Maureen L. Coleman, Sean Crosson Tn5 and Tn-Himar: comparing gene essentiality and the effects of gene disruption on fitness across studies A previous analysis of a highly saturated Caulobacter Tn5 transposon library revealed a set of genes that are required for growth in complex PYE medium [1]; approximately 14% of genes in the genome were deemed essential. The total genome insertion coverage was lower in the Himar library described here than in the Tn5 dataset of Christen et al (2011), as Tn-Himar inserts specifically into TA dinucleotide sites (with 67% GC content, TA sites are relatively limited in the Caulobacter genome). Genes for which we failed to detect Tn-Himar insertions (Table S13) were largely consistent with essential genes reported by Christen et al [1], with exceptions likely due to differential coverage of Tn5 versus Tn-Himar mutagenesis and differences in metrics used to define essentiality. A comparison of the essential genes defined by Christen et al and by our Tn5-seq and Tn-Himar fitness studies is presented in Table S4. We have uncovered evidence for gene disruptions that both enhanced or reduced strain fitness in lake water and M2X relative to PYE. Such results are consistent for a number of genes across both the Tn5 and Tn-Himar datasets. Disruption of genes encoding three metabolic enzymes, a class C β-lactamase family protein (CCNA_00255), transaldolase (CCNA_03729), and methylcrotonyl-CoA carboxylase (CCNA_02250), enhanced Caulobacter fitness in Lake Michigan water relative to PYE using both Tn5 and Tn-Himar approaches (Table S7).
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection.
    [Show full text]
  • Revealing 29 Sets of Independently Modulated Genes in Staphylococcus Aureus, Their Regulators, and Role in Key Physiological Response
    Revealing 29 sets of independently modulated genes in Staphylococcus aureus, their regulators, and role in key physiological response Saugat Poudela, Hannah Tsunemotob, Yara Seifa, Anand V. Sastrya, Richard Szubina, Sibei Xua, Henrique Machadoa, Connor A. Olsona, Amitesh Ananda, Joe Poglianob, Victor Nizetc,d, and Bernhard O. Palssona,c,1 aDepartment of Bioengineering, University of California San Diego, La Jolla, CA 92093; bDepartment of Biology, University of California San Diego, La Jolla, CA 92093; cCollaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093; and dSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 Edited by Jeff F. Miller, University of California, Los Angeles, CA, and approved June 1, 2020 (received for review May 6, 2020) The ability of Staphylococcus aureus to infect many different tis- modulated sets of genes (called i-modulons) and calculates the sue sites is enabled, in part, by its transcriptional regulatory net- activity level of each i-modulon in the input expression profile. work (TRN) that coordinates its gene expression to respond to ICA analysis of expression profiles in E. coli have been used to different environments. We elucidated the organization and activ- describe undefined regulons, link strain-specific mutations with ity of this TRN by applying independent component analysis to a changes in gene expression, and understand rewiring of TRN compendium of 108 RNA-sequencing expression profiles from two during adaptive laboratory evolution (ALE) (7, 9). Given the S. aureus clinical strains (TCH1516 and LAC). ICA decomposed the deeper insights it provided into the TRN of E.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • A Phosphopantetheinylating Polyketide Synthase Producing a Linear Polyene to Initiate Enediyne Antitumor Antibiotic Biosynthesis
    A phosphopantetheinylating polyketide synthase producing a linear polyene to initiate enediyne antitumor antibiotic biosynthesis Jian Zhang†, Steven G. Van Lanen‡, Jianhua Ju‡, Wen Liu‡, Pieter C. Dorrestein§, Wenli Li‡, Neil L. Kelleher§, and Ben Shen†‡¶ʈ †Department of Chemistry, ‡Division of Pharmaceutical Sciences, and ¶University of Wisconsin National Cooperative Drug Discovery Group, University of Wisconsin, Madison, WI 53705; and §Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801 Communicated by Arnold L. Demain, Drew University, Madison, NJ, December 11, 2007 (received for review November 29, 2007) The enediynes, unified by their unique molecular architecture and can have anywhere from all to none of these activities, resulting mode of action, represent some of the most potent anticancer drugs in a product with various levels of oxidation. ever discovered. The biosynthesis of the enediyne core has been Bacterial PKSs are often categorized by domain architecture predicted to be initiated by a polyketide synthase (PKS) that is distinct and the iterative or noniterative nature during polyketide for- from all known PKSs. Characterization of the enediyne PKS involved mation, and this classification has led to three groupings (17). in C-1027 (SgcE) and neocarzinostatin (NcsE) biosynthesis has now Noniterative type I PKS are large proteins with multiple domains revealed that (i) the PKSs contain a central acyl carrier protein domain forming modules, a minimal module consisting of a KS, AT, and and C-terminal phosphopantetheinyl transferase domain; (ii) the PKSs ACP domain, wherein each domain catalyzes a single event are functional in heterologous hosts, and coexpression with an during polyketide biosynthesis (18).
    [Show full text]