Characterization of Ricin and R. Communis Agglutinin Reference Materials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Makes Some Bacterial Toxins So Dangerous? the Most Poisonous Substances Known
Features Poisons and antidotes What makes some bacterial toxins so dangerous? The most poisonous substances known David Moss, Ajit Basak We are used to thinking of proteins as beneficial, so it is surprising to realize that the most toxic sub- and Claire Naylor stances known to man are also protein molecules. These are the bacterial exotoxins, proteins secreted (Birkbeck College, London) by pathogenic bacteria. Toxicity is measured by the median lethal dose (LD50). An LD50 value is defined as the mass of toxin per kg of body weight required to wipe out half of an animal population. Whereas Downloaded from http://portlandpress.com/biochemist/article-pdf/32/4/4/5064/bio032040004.pdf by guest on 02 October 2021 classic poisons, such as potassium cyanide or arsenic trioxide, have LD50 values in the range 5–15 mg/ kg, the causative agent of botulism, botulinum toxin, has an LD50 in the range 1–3 ng/kg, a million times more toxic! Highly pathogenic toxins have a catalytic ing. Treatment has to be repeated every few months. and a binding domain or subunit In the early 19th Century, it was thought that chol- era was caused by ‘bad air’. It was then discovered that Nearly all of the most potent toxins have two compo- cholera was the result of ingesting faecal-contaminated nents, A and B, that are either separate polypeptide water and we now know that the pathogenic agent is an chains or are separate domains. Component A is an 87 kDa toxin secreted by the bacterium Vibrio cholerae3,4. enzyme which modifies an important protein inside the This bacterium is the cause of many deaths in the de- host cell, whereas B is a protein that enables the toxin veloping world in the aftermath of flooding. -
Alpha1-Antitrypsin, a Reliable Endogenous Marker for Intestinal Protein Loss and Its Application in Patients with Crohn's Disease
Gut: first published as 10.1136/gut.24.8.718 on 1 August 1983. Downloaded from Gut, 1983, 24, 718-723 Alpha1-antitrypsin, a reliable endogenous marker for intestinal protein loss and its application in patients with Crohn's disease U KARBACH, K EWE, AND H BODENSTEIN From the I. Medizinische Klinik und Poliklinik, Mainz, FR Germany. SUMMARY Intestinal protein loss is generally determined by radio-labelled macromolecules. Alpha1-antitrypsin has been proposed as an endogenous marker for protein losing enteropathy, but different opinions exist about its reliability. In 25 patients with Crohn's disease faecal protein loss was studied with intestinal alpha1-antitrypsin (x1AT) clearance. Simultaneously, in 10 patients x1AT clearance was compared with faecal 51Cr clearance after intravenous 51Cr-albumin injection. There was a linear relation (p<0O05) between X1AT clearance and 51Cr clearance in these cases. In all patients ox1AT clearance was raised above control values. &1AT clearance, however, did not correlate with the activity index of Crohn's disease.1 This index does not contain direct critieria of intestinal inflammation, does not take into account localisation or extent of inflammation, and includes complications such as extraintestinal manifestations, fistuli, stenoses not necessarily related to actual mucosal involvement. It is concluded that x1AT is a reliable marker for intestinal protein loss and that the intestinal changes of Crohn's disease generally lead to an increased protein exudation into the gut. http://gut.bmj.com/ Gastrointestinal loss of plasma proteins can be clearance with the conventional 5 Cr-albumin detected by a variety of labelled macromolecules: method. According to Keaney and Kelleherl° the 59Fe-labelled dextran and 131I_PVP3 are not split by contradictory results could be caused by a difference digestive enzymes; the radioactive isotopes 51Cr- in methods and by comparison of different albumin,4 67Cu-ceruloplasmins or 95Nb-albumin6 are parameters. -
Albumin (Human) 25% Solution, Usp
PRODUCT MONOGRAPH ALBUMIN (HUMAN) 25% SOLUTION, USP Albumin (Human) 25%, USP Intravenous Solution, 25% Manufacturer’s Standard Plasma Substitute/Blood Derivative Manufactured by: Imported and Distributed by: Date of Approval: Grifols Therapeutics Inc. Grifols Canada Ltd. December 19, 2011 8368 U.S. 70 Bus. Hwy West 5060 Spectrum Way, Clayton, North Carolina Suite 405 27520 Mississauga, Ontario U.S.A. L4W 5N5 Prepared for: Canadian Blood Services Ottawa, Ontario K1G 4J5 Prepared for: Héma-Québec Saint-Laurent, Québec H4R 2W7 Submission Control No: 152126 Page 1 of 19 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION..........................................................3 SUMMARY PRODUCT INFORMATION ........................................................................3 DESCRIPTION....................................................................................................................3 INDICATIONS AND CLINICAL USE..............................................................................3 CONTRAINDICATIONS ...................................................................................................6 WARNINGS AND PRECAUTIONS..................................................................................6 ADVERSE REACTIONS....................................................................................................7 DRUG INTERACTIONS ....................................................................................................8 DOSAGE AND ADMINISTRATION................................................................................8 -
Sex Hormone-Binding Globulin (SHBG) As an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome
International Journal of Molecular Sciences Review Sex Hormone-Binding Globulin (SHBG) as an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome Xianqin Qu 1,* and Richard Donnelly 2 1 School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia 2 School of Medicine, University of Nottingham, Derby DE22 3DT, UK; [email protected] * Correspondence: [email protected]; Tel.: +61-2-95147852 Received: 1 October 2020; Accepted: 28 October 2020; Published: 1 November 2020 Abstract: Human sex hormone-binding globulin (SHBG) is a glycoprotein produced by the liver that binds sex steroids with high affinity and specificity. Clinical observations and reports in the literature have suggested a negative correlation between circulating SHBG levels and markers of non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Decreased SHBG levels increase the bioavailability of androgens, which in turn leads to progression of ovarian pathology, anovulation and the phenotypic characteristics of polycystic ovarian syndrome (PCOS). This review will use a case report to illustrate the inter-relationships between SHBG, NAFLD and PCOS. In particular, we will review the evidence that low hepatic SHBG production may be a key step in the pathogenesis of PCOS. Furthermore, there is emerging evidence that serum SHBG levels may be useful as a diagnostic biomarker and therapeutic target for managing women with PCOS. Keywords: adolescents; hepatic lipogenesis; human sex hormone-binding globulin; insulin resistance; non-alcoholic fatty liver disease; polycystic ovary syndrome 1. Introduction Polycystic ovary syndrome (PCOS) is a complex, common reproductive and endocrine disorder affecting up to 10% of reproductive-aged women [1]. -
Bacterial Toxins
Chapter 12: Bacterial toxins a.a. 2017-18 Bacterial toxins Toxins: any organic microbial product or substance that is harmful or lethal to cells, tissue cultures, or organisms’. Diphtheria toxin was isolated by Roux and Yersin in 1888, and has been recognized as the first virulence factor(s) for a variety of pathogenic bacteria. Major symptoms associated with disease are all related to the activities of the toxins produced by pathogens. There are cases in which it has been difficult to discern benefits for the bacteria that product toxins and the role of toxins in the propagation of the bacteria is not so obvious. With the recognition of the central role of toxin in these and other diseases has come the application of inactive toxins (toxoids) as vaccines. Such toxoid vaccines have had an important positive impact on public health. Endotoxins and exotoxins Endotoxins: Lipopolysaccharide (LPS) of Gram-negative outer membrane and LTA (lipoteichoic acid). They are cell-associated substances that are structural components of bacteria. They may be released from growing bacteria or from cells that are lysed as a result of effective host defense mechanisms or by the activities of certain antibiotics. Their toxicity is due to the promotion of the secretion of proinflammatory cytochines. Exotoxins: extracellular diffusible proteins. Most exotoxins act at tissue sites remote from the original point of bacterial invasion or growth. However, some bacterial exotoxins act at the site of pathogen colonization. Exotoxins are generally produced by a particular strain and show a specific cytotoxic activity. The target cell may be narrow (e.g. -
Impact of Bacterial Toxins in the Lungs
toxins Review Impact of Bacterial Toxins in the Lungs 1,2,3, , 4,5, 3 2 Rudolf Lucas * y, Yalda Hadizamani y, Joyce Gonzales , Boris Gorshkov , Thomas Bodmer 6, Yves Berthiaume 7, Ueli Moehrlen 8, Hartmut Lode 9, Hanno Huwer 10, Martina Hudel 11, Mobarak Abu Mraheil 11, Haroldo Alfredo Flores Toque 1,2, 11 4,5,12,13, , Trinad Chakraborty and Jürg Hamacher * y 1 Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; hfl[email protected] 2 Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 3 Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 4 Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland; [email protected] 5 Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland 6 Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland; [email protected] 7 Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; [email protected] 8 Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland; [email protected] 9 Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany; [email protected] 10 Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 -
Serum Albumin
Entry Serum Albumin Daria A. Belinskaia 1,*, Polina A. Voronina 1, Anastasia A. Batalova 1 and Nikolay V. Goncharov 1,2 1 Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia; [email protected] (P.A.V.); [email protected] (A.A.B.); [email protected] (N.V.G.) 2 Research Institute of Hygiene, Occupational Pathology and Human Ecology, p/o Kuzmolovsky, 188663 Leningrad Region, Russia * Correspondence: [email protected] Definition: Being one of the most abundant proteins in human and other mammals, albumin plays a crucial role in transporting various endogenous and exogenous molecules and maintaining of colloid osmotic pressure of the blood. It is not only the passive but also the active participant of the pharmacokinetic and toxicokinetic processes possessing a number of enzymatic activities. A free thiol group of the albumin molecule determines the participation of the protein in redox reactions. Its activity is not limited to interaction with other molecules entering the blood: of great physiological importance is its interaction with the cells of blood, blood vessels and also outside the vascular bed. This entry contains data on the enzymatic, inflammatory and antioxidant properties of serum albumin. Keywords: albumin; blood plasma; enzymatic activities; oxidative stress 1. Introduction: Physico-Chemical, Evolutionary and Genetic Aspects Albumin is a family of globular proteins, the most common of which are the serum albumins. All the proteins of the albumin family are water-soluble and moderately soluble Citation: Belinskaia, D.A.; Voronina, in concentrated salt solutions. The key qualities of albumin are those of an acidic, highly P.A.; Batalova, A.A.; Goncharov, N.V. -
Monoclonal Anti-Albumin Antibody Produced in Mouse (A2672
MONOCLONAL ANTI-HUMAN SERUM ALBUMIN CLONE HSA-9 Mouse Ascites Fluid Product No. A 2672 Monoclonal anti-Human Serum Albumin (mouse IgG1 albumin levels may indicate disease states such as isotype) is derived from the hybridoma produced by the malnutrition, cirrhosis, nephrotic syndrome, diabetes, fusion of mouse myeloma cells and splenocytes from an gastrointestinal and hepatic diseases, thermal burns and immunized mouse. A releasate of human platelets was pulmonary disease. used as the immunogen. The isotype is determined by a double diffusion assay using immunoglobulin and Reagents subclass specific antisera. The product is provided as ascites fluid with 0.1% sodium azide as a preservative. Monoclonal anti-Human Serum Albumin is specific for human serum albumin and shows cross reactivity with Precautions rhesus monkey and baboon albumins when tested in an Due to the sodium azide content a material safety data immunoblot procedure under non-reducing conditions. sheet (MSDS) for this product has been sent to the The product detects an epitope present under attention of the safety officer of your institution. Consult non-reducing conditions. The antibody shows no cross the MSDS for information regarding hazards and safe reactivity with serum albumin from bovine, cat, catfish, handling practices. chicken, dog, donkey, gibbon, goat, guinea pig, hamster, horse, marmoset, mouse, pig, pigeon, rabbit, rat, sheep Product Profile or turkey. A minimum dilution of 1:500 was determined by ELISA using human serum albumin at 50mg/ml as the coating Monoclonal anti-Human Serum Albumin may be used for solution. the determination of albumin in human body fluids by ELISA. The antibody may be used in immunoblotting In order to obtain best results it is recommended that under non-reducing conditions. -
Wednesday Slide Conference 2008-2009
PROCEEDINGS DEPARTMENT OF VETERINARY PATHOLOGY WEDNESDAY SLIDE CONFERENCE 2008-2009 ARMED FORCES INSTITUTE OF PATHOLOGY WASHINGTON, D.C. 20306-6000 2009 ML2009 Armed Forces Institute of Pathology Department of Veterinary Pathology WEDNESDAY SLIDE CONFERENCE 2008-2009 100 Cases 100 Histopathology Slides 249 Images PROCEEDINGS PREPARED BY: Todd Bell, DVM Chief Editor: Todd O. Johnson, DVM, Diplomate ACVP Copy Editor: Sean Hahn Layout and Copy Editor: Fran Card WSC Online Management and Design Scott Shaffer ARMED FORCES INSTITUTE OF PATHOLOGY Washington, D.C. 20306-6000 2009 ML2009 i PREFACE The Armed Forces Institute of Pathology, Department of Veterinary Pathology has conducted a weekly slide conference during the resident training year since 12 November 1953. This ever- changing educational endeavor has evolved into the annual Wednesday Slide Conference program in which cases are presented on 25 Wednesdays throughout the academic year and distributed to 135 contributing military and civilian institutions from around the world. Many of these institutions provide structured veterinary pathology resident training programs. During the course of the training year, histopathology slides, digital images, and histories from selected cases are distributed to the participating institutions and to the Department of Veterinary Pathology at the AFIP. Following the conferences, the case diagnoses, comments, and reference listings are posted online to all participants. This study set has been assembled in an effort to make Wednesday Slide Conference materials available to a wider circle of interested pathologists and scientists, and to further the education of veterinary pathologists and residents-in-training. The number of histopathology slides that can be reproduced from smaller lesions requires us to limit the number of participating institutions. -
(HCII) Heparin Cofactor II Antigen
Supplied Materials: 1.1.1. Capture Antibody (HCII(HCII----EIAEIAEIAEIA----C):C):C):C): One yellow-capped vial ** REPRESENTATIVE DATA SHEETS** containing 0.4 ml of polyclonal affinity purified anti-HCII antibody for coating plates. MatchedMatchedMatched-Matched---PairPair Antibody Set 2.2.2. Detecting Antibody (HCII(HCII----EIAEIAEIAEIA----D):D):D):D): Four neutral-capped for ELISA of human tubes each containing 10 ml of pre-diluted peroxidase conjugated polyclonal anti-HCII antibody for detection of Heparin Cofactor II antigen (HCII) captured HCII. °°° Sufficient reagent for 4 x 96 wellwell4 plates Store reagents at 22----8888 CCC Product #: HCII-HCII-EIAEIA Product #:Product #: HCIIHCII-- EIAEIA Materials Required but not Provided: Lot # SAMPLE Expiry Date:Expiry Date: SAMPLE 1. Coating Buffer: 50 mM Carbonate 1.59g of Na2CO3 and 2.93g of NaHCO3 up to 1 litre. Adjust pH to 9.6. Store at 2-8°C up to 1 month. 222. PBS: (base for wash buffer and blocking buffer) PBS:PBS: 8.0g NaCl, 1.15g Na2HPO4, 0.2g KH2PO4 and 0.2g KCl, up to Store atStore at 2 2----8888°°°CCC 1 litre. Adjust pH to 7.4, if necessary. Store up to 1 month at 2-8°C, discard if there is evidence of microbial growth. For Research Use Only Not for use in diagnostic procedures. 333. Wash Buffer: PBS-Tween (0.1%,v/v) To 1 litre of PBS add 1.0 ml of Tween-20. Check that the pH is 7.4. Store at 2-8°C up to 1 week. Description of Heparin Cofactor II (HCII) Heparin Cofactor II (HCII), also known as heparin cofactor A 4. -
Understanding Your Lab Results: Comprehensive Metabolic Screening Panel
Understanding Your Lab Results: Comprehensive Metabolic Screening Panel CHOLESTEROL and TRIGLYCERIDES are fats necessary for normal cell function. However, elevated levels of these fats have been associated with an increased risk of developing coronary disease, arteriosclerosis, and heart attack. A patient’s dietary status, medications, presence of illness, lifestyle, and family history may represent factors influencing cholesterol levels. The signifi- cance of cholesterol levels should be determined within the context of each individual patient. If your cholesterol level is 200 mg/dl or greater, please consult your physician. Triglyceride levels greater than 150 mg/dl, in a true fasting specimen, are considered elevated. In this case, please consult your physician. HDL (High-Density Lipoprotein) CHOLESTEROL, commonly known as the “GOOD” cholesterol, picks up cholesterol and transports it for removal from the body. The higher the HDL value, the lower the risk of developing coronary disease, arterioscle- rosis, and heart attack. LDL (Low-Density Lipoprotein) CHOLESTEROL, commonly known as the “BAD” cholesterol, picks up cholesterol and transports it to the cells of the body for storage. Desirable LDL levels are less than 130 mg/dl. The higher the LDL value, the greater the risk of developing coronary disease, arteriosclerosis, and heart attack. CHOLESTEROL/HDL RATIO is a calculation used to predict an increased or decreased risk of cardiovascular disease relative to a normal. The higher the ratio, the greater the risk of developing coronary disease, arteriosclerosis, and heart attack. GLUCOSE, commonly called a blood sugar, is the transport form of carbohydrates in the body as they move to storage or to utiliza- tion. -
Albumin (Human) 25%, USP Plasbuminw-25
3056465 (Rev. 8/2020) Albumin (Human) 25%, USP Plasbuminw-25 DESCRIPTION Albumin (Human) 25%, USP (Plasbumin®-25) is made from large pools of human venous plasma by the Cohn cold ethanol fractionation process. Part of the fractionation may be performed by another licensed manufacturer. It is prepared in accordance with the applicable requirements established by the U.S. Food and Drug Administration. Plasbumin-25 is a 25% sterile solution of albumin in an aqueous diluent. The preparation is stabilized with 0.02 M sodium caprylate and 0.02 M acetyltryptophan. The aluminum content of the product is not more than 200 µg/L. The approximate sodium content of the product is 145 mEq/L. Plasbumin-25 is clear, slightly viscous, almost colorless to yellow, amber or green. It contains no preservative. Plasbumin-25 must be administered intravenously. 3056465 Each vial of Plasbumin-25 is heat-treated at 60° C for 10 hours against the possibility of transmitting the hepatitis viruses. Additionally, the manufacturing process was investigated for its capacity to decrease the infectivity of an experimental agent of transmissible spongiform encephalopathy (TSE), considered as a model for the variant Creutzfeldt-Jakob disease (vCJD) and Creutzfeldt-Jakob disease (CJD) agents.(11-14) The production steps from Pooled Plasma to Effluent IV-1 in the Plasbumin-25 manufacturing process have been shown to decrease TSE infectivity of that experimental model agent (a total of Ն7.0 logs). These studies provide reasonable assurance that low levels of vCJD/CJD agent infectivity, if present in the starting material, would be removed. CLINICAL PHARMACOLOGY Each 20 mL vial of Plasbumin-25 supplies the oncotic equivalent of approximately 100 mL citrated plasma; 50 mL supplies the oncotic equivalent of approximately 250 mL citrated plasma.