Enhancing the Light-Matter Interaction with Optical Antennas
Total Page:16
File Type:pdf, Size:1020Kb
ENHANCING THE LIGHT-MATTER INTERACTION WITH OPTICAL ANTENNAS Lukas Novotny The Institute of Optics, University of Rochester. www.nano-optics.org THE INSTITUTE OF OPTICS ANTENNA-COUPLED INTERACTIONS e - h + hn ANTENNA-COUPLED INTERACTIONS antenna e - h + hhnn ANTENNA-COUPLED INTERACTIONS hn hn hn hn - e - + e - h+ e h h+ LED photovoltaics spectroscopy Nature 455, 887 (2008) OPTICAL ANTENNAS IN NATURE PHOTOSYNTHESIS: COLLECTIVE RESPONSE OF CHLOROPHYLL MOLECULES RADIOWAVE ANTENNAS A DEVICE TO CATCH ELECTROMAGNETIC WAVES ETYMOLOGY AN-TENN-A ‘up’ Indo-European: ‘to stretch’ e.g. tension, pretend, tenacious, .. tan (Sanskrit) tendere (Latin) teinei (Greek) dehnen (German) tyanut (Russian) taanna (Hindi) ANTENNA = THE ‘THING’ STRETCHING UP Adv. Opt. Photon. 1, 438 (2009) OPTICAL ANTENNA A DEVICE TO CONVERT OPTICAL RADIATION TO LOCALIZED ENERGY, AND VICE VERSA. Adv. Opt. Photon. 1, 438 (2009) RECENT OPTICAL ANTENNA DESIGNS Half-wave Antenna : Yagi-Uda Antenna : Science 329, 930 (2010) Bowtie Antenna : JQE-132437 (2010) Particle Antenna : Slot Antenna : Nanotechnology 18, 044017 (2007) Opt. Eng. 44, 066401 (2005) arXiv:1004.1961 (2010) PROBLEM STATEMENT -> coupled system of 3 entities antenna receiver/transmitter (molecule, ion, quantum dot, ..) radiation www.nano-optics.org ANDRE BLONDEL www.nano-optics.org THE BLONDEL ANTENNA radiation A antenna u receiver signal www.nano-optics.org ANTENNA-COUPLED PHOTOEMISSION P. Anger P. Bharadwaj SiO2 Au molecule www.nano-optics.org ENHANCED PHOTOEMISSION PRL 96, 113002 (2006) LOCALIZATION without Au particle : with Au particle antenna: PRL 96, 113002 (2006) IMAGING OF SINGLE Ca+ ION CHANNEL PROTEINS IN ERYTHROCYTE MEMBRANES C. Hoeppener Nano Lett. 8, 642 (2008) IMAGING OF SINGLE Ca+ ION CHANNEL PROTEINS IN ERYTHROCYTE MEMBRANES C. Hoeppener Nano Lett. 8, 642 (2008) ENHANCED PHOTOEMISSION qa ANTENNA-COUPLED PHOTOEMISSION SiO2 Au molecule www.nano-optics.org ENHANCED PHOTOEMISSION qa QUANTUM YIELD (ANTENNA EFFICIENCY) energy transfer + intrinsic Fluorophore Nanotube Nano Lett. 5, 2310 (2006) METALLOFULLERENES Scandium, Lutetium, Holmium, Gadolinium, Yttrium, .. in C80 Y3N JPC C 114, 7444 (2010) ANTENNAS AND MICROSCOPY . l Dx = 0.61 NA 2p Dk l Dp NA h Dx Dp = 0.61h > h/2 Diffraction limit = Uncertainty principle Resolution limited by ~l/2 www.nano-optics.org ANTENNAS AND MICROSCOPY . Dd << l antenna l NA evanescent waves: Dk > NA 2p/l ~ 2p/Dd Resolution is diffraction unlimited !! www.nano-optics.org A BIT OF HISTORY Rep. Prog. Opt. 50, 137-180 (2007) A. EINSTEIN (1928) SYNGE DEVELOPS REVISED CONCEPT (APERTURE) ! SYNGE’s PUBLICATION ! E.H. Synge, Phil.Mag. 6, 356 (1928) Rep. Prog. Opt. 50, 137-180 (2007) 2001 FUJI-XEROX PATENT A. EINSTEIN (1928) Rep. Prog. Opt. 50, 137-180 (2007) 2001 FUJI-XEROX PATENT NEAR-FIELD OPTICAL SPECTROSCOPY Ultramicroscopy 71, 21 (1998). METAL TIP ANTENNAS PRL 82, 4014 (1999) www.nano-optics.org NEAR-FIELD RAMAN SCATTERING A. Hartschuh N. Anderson G. Cancado wo+- wN wo w N PRL 90, 95503 (2003) www.nano-optics.org NEAR-FIELD RAMAN IMAGING OF SERPENTINE NANOTUBES Confocal Raman: Near-field Raman: n = 1594cm-1 G+ RBM 15nm IFM 6mm G- PRL 103, 186101 (2009) 300 900 1200 0 1 2 3 4 cm-1 mm WHERE DO WE STAND ? e- e- www.nano-optics.org ANTENNA-COUPLED PHOTODETECTION hw Noise dark current ( A ) e- quantum yield Power consumption P A Speed t d transit time gap Implementations : 1) MSM (electron-hole pair generation) 2) MOM (tunnel junctions) www.nano-optics.org ANTENNA PARAMETERS EFFICIENCY : DIRECTIVITY : GAIN : APERTURE: RECIPROCITY: Adv. Opt. Photon. 1, 438 (2009) OPTICAL HALF-WAVE ANTENNA 220nm ~ l / 2 l / 5.6 ! www.nano-optics.org RADIATION RESISTANCE QL 1 p2 w4 +Q P = 3 4peo c L dQ p I = I = - iwQ = - iw dt L -Q 2 1/2 L mo 2 2 P = p [ ] [ ] I = Zrad I l eo l Optical half-wave antenna: L = eff 2 Zo = 377W p l 2 2 Z = [ eff] Z L rad o Zrad = p [ ] Zo 4 l l ~ 3 .. 5 W Adv. Opt. Photon. 1, 438 (2009) CONCLUSIONS OPTICAL ANTENNAS: 1) ENABLING TECHNOLOGY FOR SUBWAVELENGTH CONTROL OF OPTICAL FIELDS 2) IMPROVED SNR, SPEED, QUANTUM YIELD IN PHOTODETECTION 3) ENHANCED AND DIRECTIONAL PHOTOEMISSION 4) NONLINEAR PROPERTIES RELEVANT FOR SENSING, SWITCHING, INFORMATION PROCESSING www.nano-optics.org.