<<

ENHANCING THE LIGHT-MATTER INTERACTION WITH OPTICAL ANTENNAS

Lukas Novotny The Institute of , .

www.nano-optics.org THE INSTITUTE OF OPTICS ANTENNA-COUPLED INTERACTIONS

e - h +

hn ANTENNA-COUPLED INTERACTIONS

antenna

e - h +

hhnn ANTENNA-COUPLED INTERACTIONS

hn hn hn hn

- e - + e - h+ e h h+

LED photovoltaics spectroscopy

Nature 455, 887 (2008) OPTICAL ANTENNAS IN NATURE

PHOTOSYNTHESIS: COLLECTIVE RESPONSE OF CHLOROPHYLL MOLECULES RADIOWAVE ANTENNAS

A DEVICE TO CATCH ELECTROMAGNETIC WAVES ETYMOLOGY

AN-TENN-A

‘up’ Indo-European: ‘to stretch’

e.g. tension, pretend, tenacious, .. tan (Sanskrit) tendere (Latin) teinei (Greek) dehnen (German) tyanut (Russian) taanna (Hindi)

ANTENNA = THE ‘THING’ STRETCHING UP

Adv. Opt. Photon. 1, 438 (2009) OPTICAL ANTENNA

A DEVICE TO CONVERT OPTICAL RADIATION TO LOCALIZED ENERGY, AND VICE VERSA.

Adv. Opt. Photon. 1, 438 (2009) RECENT OPTICAL ANTENNA DESIGNS

Half-wave Antenna : Yagi-Uda Antenna :

Science 329, 930 (2010)

Bowtie Antenna : JQE-132437 (2010) Particle Antenna : Slot Antenna :

Nanotechnology 18, 044017 (2007) Opt. Eng. 44, 066401 (2005) arXiv:1004.1961 (2010) PROBLEM STATEMENT

-> coupled system of 3 entities

antenna receiver/transmitter (molecule, ion, quantum dot, ..) radiation

www.nano-optics.org ANDRE BLONDEL

www.nano-optics.org THE BLONDEL ANTENNA

radiation A antenna u

receiver

signal

www.nano-optics.org ANTENNA-COUPLED PHOTOEMISSION

P. Anger P. Bharadwaj

SiO2

Au molecule

www.nano-optics.org ENHANCED PHOTOEMISSION

PRL 96, 113002 (2006) LOCALIZATION

without Au particle : with Au particle antenna:

PRL 96, 113002 (2006) IMAGING OF SINGLE Ca+ ION CHANNEL PROTEINS IN ERYTHROCYTE MEMBRANES

C. Hoeppener

Nano Lett. 8, 642 (2008) IMAGING OF SINGLE Ca+ ION CHANNEL PROTEINS IN ERYTHROCYTE MEMBRANES

C. Hoeppener

Nano Lett. 8, 642 (2008) ENHANCED PHOTOEMISSION

qa ANTENNA-COUPLED PHOTOEMISSION

SiO2

Au molecule

www.nano-optics.org ENHANCED PHOTOEMISSION

qa QUANTUM YIELD (ANTENNA EFFICIENCY)

energy transfer + intrinsic

Fluorophore Nanotube

Nano Lett. 5, 2310 (2006) METALLOFULLERENES

Scandium, Lutetium, Holmium,

Gadolinium, Yttrium, .. in C80

Y3N

JPC C 114, 7444 (2010) ANTENNAS AND MICROSCOPY

. . . . . l Dx = 0.61 NA 2p Dk l Dp NA h

Dx Dp = 0.61h > h/2

Diffraction limit = Uncertainty principle Resolution limited by ~l/2

www.nano-optics.org ANTENNAS AND MICROSCOPY

. . . . . Dd << l

antenna l

NA

evanescent waves: Dk > NA 2p/l ~ 2p/Dd

Resolution is diffraction unlimited !!

www.nano-optics.org A BIT OF HISTORY

Rep. Prog. Opt. 50, 137-180 (2007) A. EINSTEIN (1928)

SYNGE DEVELOPS REVISED CONCEPT (APERTURE) !

SYNGE’s PUBLICATION !

E.H. Synge, Phil.Mag. 6, 356 (1928)

Rep. Prog. Opt. 50, 137-180 (2007) 2001 FUJI- PATENT A. EINSTEIN (1928)

Rep. Prog. Opt. 50, 137-180 (2007) 2001 FUJI-XEROX PATENT NEAR-FIELD OPTICAL SPECTROSCOPY

Ultramicroscopy 71, 21 (1998). METAL TIP ANTENNAS

PRL 82, 4014 (1999)

www.nano-optics.org NEAR-FIELD RAMAN SCATTERING

A. Hartschuh N. Anderson G. Cancado

wo+- wN wo

w N

PRL 90, 95503 (2003)

www.nano-optics.org NEAR-FIELD RAMAN IMAGING OF SERPENTINE NANOTUBES

Confocal Raman: Near-field Raman:

n = 1594cm-1

G+ RBM 15nm

IFM 6mm G-

PRL 103, 186101 (2009) 300 900 1200 0 1 2 3 4 cm-1 mm WHERE DO WE STAND ?

e-

e-

www.nano-optics.org ANTENNA-COUPLED PHOTODETECTION

hw Noise dark current ( A )

e-

quantum yield

 Power consumption P A Speed t d

transit time gap

Implementations : 1) MSM (electron-hole pair generation) 2) MOM (tunnel junctions) www.nano-optics.org ANTENNA PARAMETERS

EFFICIENCY :

DIRECTIVITY :

GAIN :

APERTURE:

RECIPROCITY:

Adv. Opt. Photon. 1, 438 (2009) OPTICAL HALF-WAVE ANTENNA

220nm

~ l / 2 l / 5.6 !

www.nano-optics.org RADIATION RESISTANCE

QL 1 p2 w4 +Q P = 3 4peo c

L dQ p I = I = - iwQ = - iw dt L -Q 2 1/2 L mo 2 2 P = p [ ] [ ] I = Zrad I l eo l Optical half-wave antenna: L = eff 2 Zo = 377W

p l 2 2 Z = [ eff] Z L rad o Zrad = p [ ] Zo 4 l l ~ 3 .. 5 W Adv. Opt. Photon. 1, 438 (2009) CONCLUSIONS

OPTICAL ANTENNAS:

1) ENABLING TECHNOLOGY FOR SUBWAVELENGTH CONTROL OF OPTICAL FIELDS

2) IMPROVED SNR, SPEED, QUANTUM YIELD IN PHOTODETECTION

3) ENHANCED AND DIRECTIONAL PHOTOEMISSION

4) NONLINEAR PROPERTIES RELEVANT FOR SENSING, SWITCHING, INFORMATION PROCESSING

www.nano-optics.org