The Role of Seagrass Meadows in Gazi Bay, Kenya As Carbon Sinks

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Seagrass Meadows in Gazi Bay, Kenya As Carbon Sinks THE ROLE OF SEAGRASS MEADOWS IN GAZI BAY, KENYA AS CARBON SINKS MICHAEL NJOROGE GITHAIGA A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier University, for award of Doctor of Philosophy School of Applied Sciences April 2017 Supervisors Director of Studies (DoS) Professor Mark Huxham School of Applied Sciences Edinburgh Napier University Signed _________________________________ Supervisor Dr. Linda Gilpin School of Applied Sciences Edinburgh Napier University Signed ________________________________ Supervisor Dr. James G. Kairo Hydrography and Oceanography Department Kenya Marine and Fisheries Research Institute Signed ________________________________ ii “We owe it to ourselves and to the next generation to conserve the environment so that we can bequeath our children a sustainable world that benefits all”. Prof. Wangari Maathai (2004). Front cover: Photo of Syringodium isoetifolium taken during low spring tide at Gazi Bay, Kenya. (Photo: Githaiga, 2016). iii Dedication To my family: Marion, Vanessa, Nelly, Diana & Eric and to all those that believed in me. iv Acknowledgement The road to this doctorate is one of the greatest and most fulfilling milestones in my life. It has been momentous, exciting and above all challenging but a lovely journey. I have utmost gratitude to the wonderful team that saw my passion, believed in me, nurtured my dream and above all was there to guide me in this academic endeavour. In particular, I am really grateful to my director of studies, Prof. Mark Huxham of Edinburgh Napier University for being such a tremendous mentor. Your financial support, the inspiration, the leadership and guidance throughout this research study are priceless. Dr. Linda Gilpin of the same university was instrumental in helping me nurture the writing skills through the regular review of my work, guided me and above all constantly reminded me of the basics that I ignored when writing but mattered most. I have special thanks to my local supervisor, Dr James Kairo of Kenya Marine and Fisheries Research Institute who introduced me into this field of marine ecology and was not only my academic mentor but provided me with the brotherly love and foresight during my academic sojourn in Gazi village. I sincerely thank the committee members at various stages during the development of this dissertation. In particular, the chair, Dr. Charlotte Chalmers of Edinburgh Napier University and the other panelist for the professional and brilliant comments plus all the suggestions that helped to develop a clear focus on the studies that culminated to the development of this thesis. I was lucky to work and learn from a team of experts: Professor Hillary Kennedy and Dr. Martin Skov, both of Bangor University, UK during our regular meetings and fieldwork activities in Zanzibar. The development of the thesis that culminated to the award of a doctorate would not have been possible without the dedication and able assistance of my two valuable field assistants, Laitani Suleiman and Tom Kisiengo. You ever remained my foot soldiers v in the field and laboratory work even during the periods I was away at Edinburgh, and for this, I salute you. My sincere thanks to the entire KMFRI fraternity both at Gazi station and at the headquarters for walking with me. Special thanks to Kimathi, Kathengi and Onduso for working tirelessly in processing the sediment samples. There are many of my colleagues that I want to thank in person, among them the UK team: Ankje Frouws, whom I shared a lot, Maria Potouroglou, Sasha Flannigan, Rose Adamson, Lucas Ruzowitsky, Connie McKay and the students from local Universities that I worked with: Reagan Okoth, Susan Gatune, Derrick Omollo and Jackline Mutisya. I am deeply indebted to the hospitable teams of Edinburgh Napier that ensured I enjoyed my stay during my regular visits. In particular, I salute Ann Akcan for the friendly welcome and for the arrangements on the logistics that made Edinburgh my second home. There are many friends both in social fraternity and in the field of academia who deserve mention and appreciation for the companionship and support, which made the walk enjoyable and fulfilling. My relatives were instrumental in prayers and moral support, which indeed strengthened my spirits and the drive to carry on. Though not mentioned in person, be assured that your support will be ingrained forever in my memory. I would be remiss if I fail to mention heartfully and by name the two extraordinary women in my life for their unequivocal and priceless service. First, my mother, Miriam Wairimu for her nurture as I grew up and role model on hard work, right from my childhood and above all the constant prayers for my success. Secondly, my dear wife, Marion Wambui who has not only remained a lifetime friend but a faithful and dedicated custodian of our home, the many years I was away. Lastly but not least is a big thank you to my offspring: Vanessa Wairimu, Nelius Njeri, Diana Njoki and Eric Githaiga for their love and the incredible amount of perseverance they vi had to contend with during their formative years; a long period of eight years of my post graduate academic pursuit. This PhD thesis was funded by Coastal Ecosystem Services in East Africa (CESEA) NE/L001535/1, a research project that was funded by Ecosystem Services for Poverty Alleviation (ESPA) programme. The ESPA programme is funded by the Department for International Development (DFID), the Economic and Social Research Council (ESRC) and the Natural Environment Research Council (NERC). Additional support was made through Edinburgh Napier University and Kenya Marine and Fisheries Research Institute (KMFRI) while a research permit (no NACOSTI/2/14/2443/769) for this study was issued by the National Commission for Science Technology and Innovation (NACOSTI) in Nairobi, Kenya to whom I am grateful. vii Preface Conservation of marine ecosystems is of intrinsic interest as their health integrity underpins their ability to provide the biodiversity and ecosystem services. Despite this value, these ecosystems continue being degraded overtime. The increasing quest at present for understanding their functioning is driven by an urge to develop strategies for their conservation in order to ensure the continued provision of the ecosystem services to the ever-growing global population in the wake of climate change. In line with these noble goals, this study was conceived with an aim of developing a thesis, titled “The Role of Seagrass Meadows in Gazi Bay, Kenya as Carbon Sinks.” The scope and structure of the thesis constitutes six chapters that have been developed in line with the objectives of the study. Chapter I: Introduction: This chapter gives an introduction of the seagrass ecosystem. It opens with a short description of the seagrasses and their habit and an enumeration of the biodiversity and ecosystem services provided by the seagrasses. It links seagrasses to the blue carbon awareness thus underscoring the importance of sound management and conservation of the ecosystem. It also gives a short description of the seagrasses of Kenya, narrowing to Gazi Bay, the site where this study was conducted and winds up by giving overall objectives of the study. Chapter 2: Biomass and productivity of seagrasses in Africa: This review chapter briefly discusses the seagrass ecosystem, its invaluable role in climate change mitigation and for the provision of ecosystem services. It brings forth the status of knowledge of the biomass and productivity of seagrass in Africa by collating and synthesizing all published and available grey literature on the topic of carbon stocks and flows in African seagrass meadows. It compares this information with the global literature and identifies key gaps. viii The findings in this review work underscores the limited knowledge of biomass and productivity of seagrass in Africa with only 32 papers and 8 theses/reports from African sites having been found with the majority of the studies having been done along the E. African coast and with no published reports of sedimentary organic carbon from seagrasses in Africa. A paper has been published from this chapter. Chapter 3: Carbon storage in the seagrass meadows of Gazi Bay, Kenya: The chapter provides detailed estimates of the carbon storage of the four dominant seagrass species of Gazi Bay: Thalassia hemprichii, Thalassodendron ciliatum, Syringodium isoetifolium and Enhalus acoroides. It looks at the variability in Corg between the sediment and the species biomass, compares the vegetated and un-vegetated Corg and also the interspecies variability in the Corg. It also reports on the key above-ground parameters of the seagrasses that include the shoot density, canopy cover and height as well as exploring the relationships between the sediment organic carbon and the above-ground biomass as well as whether there are some above-ground predictors for below-ground carbon stores. Key findings from this study were that sediment organic carbon was highly significantly different between species, range: 160.7 – 233.8 Mg C ha-1 compared to the global range of 115.3 to 829.2 Mg C ha-1. Vegetated areas in all species had significantly higher sediment Corg compared with un-vegetated areas and revealed a degree of spatial consistency and longevity in relatively small patches of seagrass meadows and bare areas thus demonstrating an exceptionally powerful effect of seagrass on carbon sequestration. Chapter Four: Experimental test of the impact of seagrass loss on sediment dynamics and on the benthic faunal communities: The chapter is an experimentally based research work in which seagrass canopies were artificially removed in randomly selected patches with controls to simulate the natural seagrass loss and hence investigate ix the impact on sediment dynamics and benthic faunal communities. Sediment – Elevation Tables (SETs) were established and monitored monthly over an eighteen month period. Carbon density, effect of seagrass disturbance on hydrodynamic energy reduction, litter decay rates, grain sizes and impact on the faunal communities were investigated.
Recommended publications
  • Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
    Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica.
    [Show full text]
  • Whitfield Et Al. 2017.Pdf
    Biological Conservation 212 (2017) 256–264 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Life-histories explain the conservation status of two estuary-associated MARK pipefishes ⁎ Alan K. Whitfielda, , Thomas K. Mkareb,1, Peter R. Teskeb, Nicola C. Jamesa, Paul D. Cowleya a South African Institute for Aquatic Biodiversity (SAIAB), Private Bag 1015, Grahamstown 6140, South Africa b Molecular Zoology Laboratory, Department of Zoology, University of Johannesburg, Aukland Park 2006, South Africa ABSTRACT Two endemic southern African pipefish species (Teleostei: Syngnathidae) co-occur in estuaries on the southeast coast of South Africa. The larger longsnout pipefish, Syngnathus temminckii, is abundant and has a wide range that comprises coastal and estuarine habitats in all three of the region's marine biogeographic provinces. In contrast, the smaller estuarine pipefish S. watermeyeri is critically endangered, and confined to a few warm- temperate estuaries. Here, we explore reasons for these considerable differences in conservation status. Fecundity is related to fish size, with large live-bearing S. temminckii males carrying up to 486 developing eggs/ embryos, compared to a maximum of only 44 recorded for S. watermeyeri. Loss of submerged seagrass habitats due to episodic river flooding appears to be correlated with the temporary absence of both species from such systems. Prolonged cessation in river flow to estuaries can cause a collapse in estuarine zooplankton stocks, a food resource that is important to pipefish species. The greater success of S. temminckii when compared to S. watermeyeri can be attributed to the former species' wider geographic distribution, fecundity, habitat selection and ability to use both estuaries and the marine environment as nursery areas.
    [Show full text]
  • The Botanical Importance Rating of the Estuaries in Former Ciskei / Transkei
    THE BOTANICAL IMPORTANCE RATING OF THE ESTUARIES IN FORMER CISKEI / TRANSKEI B.M. COLLOTY, J.B. ADAMS AND G.C. BATE FINAL REPORT TO THE WATER RESEARCH COMMISSION BY THE DEPARTMENT OF BOTANY UNIVERSITY OF PORT ELIZABETH WRC REPORT NO. TT 160/01 Obtainable from: Water Research Commission PO Box 824 Pretoria 0001 The publication of this report emanates from a project entitled: The Botanical Importance rating of Estuaries in former Ciskei and Transkei (WRC Project No K5/812) DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC, nor does mention of trade names or commercial products constitute ensoresement or recommendation for use. ISBN 1 86845 790 7 Printed in the Republic of South Africa ii The Jujura Estuary, one of several unique estuaries observed in this study. This small estuary had an above average depth of 2.8 m, remained open for extensive periods and was colonized by Zostera capensis. iii EXECUTIVE SUMMARY BACKGROUND AND MOTIVATION FOR THE RESEARCH There are an increasing number of people utilising the South African coastline. This is creating a need to evaluate estuary and coastal resources and to identify sensitive areas where careful planning and management must take place. Management tools such as importance rating systems and state or condition assessments have become necessary to summarise and express scientific information. The botanical importance rating system is one such method and was developed in a previous Water Research Commission Project (Adams et al.
    [Show full text]
  • The Global Distribution and Status of Seagrass Ecosystems
    The global distribution and status of seagrass ecosystems ^^ ^^^H Discussion paper prepared for tlie UNEP-WCWIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards WA.. WORLD CONSERVATION MONITORING CENTRE Digitized by tine Internet Archive in 2010 witii funding from UNEP-WCIVIC, Cambridge Iittp://www.archive.org/details/globaldistributi01spal The global distribution and status of seagrass ecosystems Discussion paper prepared for tlie UNEP-WCIVIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards With assistance from: Mark Taylor and Corinna Ravilious Table of Contents Introduction to the workshop 2 The global distribution and status of seagrass ecosystems 3 Introduction 3 Definitions 3 The diversity of seagrasses 3 Species distribution 4 Associated Species 6 Productivity and biomass 7 The distribution and area of seagrass habitat 8 The value of seagrasses 13 Threats to seagrasses 13 Management Interventions 14 Bibliography; 16 29 Annex 1 : Seagrass Species Lists by Country Annex 2 - Species distribution maps 34 Annex 3 - Seagrass distribution maps 68 74 Annex 4 -Full list of MPAs by country ; /4^ ] UNEP WCMC Introduction to the workshop The Global Seagrass Workshop of 9 November 2001 has been set up with the expressed aim to develop a global synthesis on the distribution and status of seagrasses world-wide. Approximately 20 seagrass experts from 14 counu-ies, representing all of the major seagrass regions of the world have been invited to share their knowledge and expertise.
    [Show full text]
  • 1 Phylogenetic Regionalization of Marine Plants Reveals Close Evolutionary Affinities Among Disjunct Temperate Assemblages Barna
    Phylogenetic regionalization of marine plants reveals close evolutionary affinities among disjunct temperate assemblages Barnabas H. Darua,b,*, Ben G. Holtc, Jean-Philippe Lessardd,e, Kowiyou Yessoufouf and T. Jonathan Daviesg,h aDepartment of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA bDepartment of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa cDepartment of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, United Kingdom dQuebec Centre for Biodiversity Science, Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada eDepartment of Biology, Concordia University, Montreal, QC, H4B 1R6, Canada; fDepartment of Environmental Sciences, University of South Africa, Florida campus, Florida 1710, South Africa gDepartment of Biology, McGill University, Montreal, QC H3A 0G4, Canada hAfrican Centre for DNA Barcoding, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa *Corresponding author Email: [email protected] (B.H. Daru) Running head: Phylogenetic regionalization of seagrasses 1 Abstract While our knowledge of species distributions and diversity in the terrestrial biosphere has increased sharply over the last decades, we lack equivalent knowledge of the marine world. Here, we use the phylogenetic tree of seagrasses along with their global distributions and a metric of phylogenetic beta diversity to generate a phylogenetically-based delimitation of marine phytoregions (phyloregions). We then evaluate their evolutionary affinities and explore environmental correlates of phylogenetic turnover between them. We identified 11 phyloregions based on the clustering of phylogenetic beta diversity values. Most phyloregions can be classified as either temperate or tropical, and even geographically disjunct temperate regions can harbor closely related species assemblages.
    [Show full text]
  • The Genus Ruppia L. (Ruppiaceae) in the Mediterranean Region: an Overview
    Aquatic Botany 124 (2015) 1–9 Contents lists available at ScienceDirect Aquatic Botany journal homepage: www.elsevier.com/locate/aquabot The genus Ruppia L. (Ruppiaceae) in the Mediterranean region: An overview Anna M. Mannino a,∗, M. Menéndez b, B. Obrador b, A. Sfriso c, L. Triest d a Department of Sciences and Biological Chemical and Pharmaceutical Technologies, Section of Botany and Plant Ecology, University of Palermo, Via Archirafi 38, 90123 Palermo, Italy b Department of Ecology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain c Department of Environmental Sciences, Informatics & Statistics, University Ca’ Foscari of Venice, Calle Larga S. Marta, 2137 Venice, Italy d Research Group ‘Plant Biology and Nature Management’, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium article info abstract Article history: This paper reviews the current knowledge on the diversity, distribution and ecology of the genus Rup- Received 23 December 2013 pia L. in the Mediterranean region. The genus Ruppia, a cosmopolitan aquatic plant complex, is generally Received in revised form 17 February 2015 restricted to shallow waters such as coastal lagoons and brackish habitats characterized by fine sediments Accepted 19 February 2015 and high salinity fluctuations. In these habitats Ruppia meadows play an important structural and func- Available online 26 February 2015 tional role. Molecular analyses revealed the presence of 16 haplotypes in the Mediterranean region, one corresponding to Ruppia maritima L., and the others to various morphological forms of Ruppia cirrhosa Keywords: (Petagna) Grande, all together referred to as the “R. cirrhosa s.l. complex”, which also includes Ruppia Aquatic angiosperms Ruppia drepanensis Tineo.
    [Show full text]
  • 10 Lockyear.Qxp
    African Journal of Aquatic Science 2006, 31(2): 275–283 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved AFRICAN JOURNAL OF AQUATIC SCIENCE EISSN 1727–9364 The distribution and abundance of the endangered Knysna seahorse Hippocampus capensis (Pisces: Syngnathidae) in South African estuaries Jacqueline F Lockyear1, Thomas Hecht1, Horst Kaiser1* and Peter R Teske2 1 Department of Ichthyology and Fisheries Science, Rhodes University, PO Box 94, Grahamstown 6140, South Africa 2 Molecular Ecology and Systematics Group, Botany Department, Rhodes University, PO Box 94, Grahamstown 6140, South Africa * Corresponding author, e-mail: [email protected] Received 7 July 2005, accepted 23 March 2006 The occurrence, distribution and abundance of the endangered Knysna seahorse Hippocampus capensis in 10 estuaries on South Africa’s warm temperate south coast, were investigated. Seahorses were found only in the Knysna, Swartvlei and Keurbooms estuaries. Sex ratios were even and, in most cases, more adults were found than juveniles. During the first year of study, seahorse densities were higher in the Swartvlei and Keurbooms estuaries than in the comparatively larger Knysna Estuary but, during the second year, seahorses were absent from the Keurbooms estuary, and the population size in the Swartvlei Estuary had decreased by more than 80%. These results suggest that, although the two smaller estuaries are able to support comparatively high densities of seahorses, population sizes may fluctuate considerably. Population size estimates for the Knysna Estuary were similar to those obtained in a previous study, suggesting that this estuary may represent a more stable environment and may thus be particularly important for the survival and conservation of this species.
    [Show full text]
  • Thesis Sci 2020 Lawrence Cloverley Mercia.Pdf
    Ecology and Ecophysiology of Zostera capensis: Responses and Acclimation to Temperature Cloverley Mercia Lawrence Thesis presented for the degree of Doctor of Philosophy in the Department of Biological Sciences Faculty of Science University of Cape Town 2019 University of Cape Town Supervisors Dr Deena Pillay, Professor Astrid Jarre, Emer. Professor John Bolton The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town This thesis is dedicated to my parents. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Declaration I, hereby declare that all the work presented in this thesis is my original work in both concept and execution (except where otherwise indicated), and that this thesis has not been submitted in whole or in part for another degree in this or any other university. Cloverley Mercia Lawrence Table of Contents Acknowledgements………………………………………………………………………………….iii Summary.…………………………………………………………………………………………….…v Chapter One General overview and background ……………… ……... ………………………………. .. 1 1.1. Seagrass Ecosystems…………………………………………………………… …… …... 3 1.1.1. Glo bal importance and distribution of seagrasses…………………… ……... 3 1.1.2. Biodiversity in seagrass ecosystems ……………………………… ….… ….…. 6 1.2. Threats to seagrasses………………………………………………………… ….. .…. …. 8 1.2.1. The influenc e of temperature on seagrasses……………………… ……….. .. 9 1.2.2. Epiphytes and fou ling in seagrass ecosystems……………………… …….. .. 12 1.3. Respo nses of seagrasses to threats………………………………………… ….. ….. …. 12 1.3.1. Acclimations in seagrasses…… .. ………………………………… …… ….. …… 12 1.3.2.
    [Show full text]
  • Extinction Risk Assessment of the World's Seagrass Species
    Author version: Biol. Conserv.: 144(7); 2011; 1961-1971. Extinction risk assessment of the world’s seagrass species Frederick T. Short a,*, Beth Polidoro b, Suzanne R. Livingstone b, Kent E. Carpenter b, Salomao Bandeira c, Japar Sidik Bujang d, Hilconida P. Calumpong e, Tim J.B. Carruthers f, Robert G. Coles g, William C. Dennison f, Paul L.A. Erftemeijer h, Miguel D. Fortes i, Aaren S. Freeman a, T.G. Jagtap j, Abu Hena M. Kamal k, Gary A. Kendrick l, W. Judson Kenworthy m, Yayu A. La Nafie n, Ichwan M. Nasution o, Robert J. Orth p, Anchana Prathep q, Jonnell C. Sanciangco b, Brigitta van Tussenbroek r, Sheila G. Vergara s, Michelle Waycott t, Joseph C. Zieman u *Corresponding author. Tel.: +1 603 862 5134; fax: +1 603 862 1101. [email protected] (F.T. Short), a University of New Hampshire, Department of Natural Resources and the Environment, Jackson Estuarine Laboratory, 85 Adams Point Road, Durham, NH 03824, USA b IUCN Species Programme/SSC/Conservation International, Global Marine Species Assessment, Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA c Universidade Eduardo Mondlane, Department of Biological Sciences, 1100 Maputo, Mozambique d Universiti Putra Malaysia Bintulu Sarawak Campus, Faculty of Agriculture and Food Sciences, Sarawak, Malaysia e Silliman University, Institute of Environmental and Marine Sciences, Dumaguete City 6200, Philippines f University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA g Northern Fisheries Centre, Fisheries Queensland, Cairns, Queensland 4870, Australia h Deltares (Formerly Delft Hydraulics), 2600 MH Delft, The Netherlands i University of the Philippines, Marine Science Institute CS, Diliman, QC 1101, Philippines j National Institute of Oceanography, Donapaula, Goa-403 004, India k University of Chittagong, Institute of Marine Sciences and Fisheries, Chittagong 4331, Bangladesh l The University of Western Australia, Oceans Institute and School of Plant Biology Crawley, 6009, W.
    [Show full text]
  • Short Et Al 2011 Redlist
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Biological Conservation 144 (2011) 1961–1971 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Extinction risk assessment of the world’s seagrass species ⇑ Frederick T. Short a, , Beth Polidoro b, Suzanne R. Livingstone b,1, Kent E. Carpenter b, Salomão Bandeira c, Japar Sidik Bujang d, Hilconida P. Calumpong e, Tim J.B. Carruthers f, Robert G. Coles g, William C. Dennison f, Paul L.A. Erftemeijer h, Miguel D. Fortes i, Aaren S. Freeman a,2, T.G. Jagtap j, Abu Hena M. Kamal k,3, Gary A. Kendrick l, W. Judson Kenworthy m, Yayu A. La Nafie n, Ichwan M. Nasution o, Robert J. Orth p, Anchana Prathep q, Jonnell C. Sanciangco b, Brigitta van Tussenbroek r, Sheila G. Vergara s, Michelle Waycott t, Joseph C. Zieman u a University of New Hampshire, Department of
    [Show full text]
  • Knysna Basin Project Annual Report November 2019
    ANNUAL REPORT 2019 0 | P a g e TABLE OF CONTENTS Table of contents .................................................................................................................................................................. 1 Introduction .......................................................................................................................................................................... 3 Our mission ....................................................................................................................................................................... 3 Our Year: A rising tide lifts all boats ...................................................................................................................................... 4 2019 Overview ...................................................................................................................................................................... 5 Research ........................................................................................................................................................................... 5 Marine debris research ................................................................................................................................................. 5 Coastal development research ..................................................................................................................................... 7 Coastal diversity research ............................................................................................................................................
    [Show full text]
  • Gabriel Akoko Juma.Pdf
    ASSESSMENT OF THE DISTRIBUTION, ABUNDANCE AND CARBON STOCKS IN SEAGRASS MEADOWS WITHIN EASTERN AND WESTERN CREEKS OF GAZI BAY, KENYA GABRIEL AKOKO JUMA A Thesis Submitted to the Graduate School in Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science in Environmental Science of Chuka University CHUKA UNIVERSITY SEPTEMBER 2019 DECLARATION AND RECOMMENDATIONS ii COPYRIGHT ©2019 All rights reserved. No part of this Thesis may be reproduced or transmitted in any form or by any means of photocopying, recording or any information storage or retrieval system, without prior permission in writing from the author or Chuka University. iii DEDICATION I dedicate this work to my parents, Mr. Agustinus Juma and Mrs. Rosemary Atieno who were always very proud of me. iv ACKNOWLEDGEMENT The journey to the development of this thesis has been momentous and challenging but its success is one of the greatest milestones in my academic life. I accord my utmost appreciation to the people who nurtured the dream and passion in me, supported and guided me to see the fulfillment of this academic endeavor. To a greater extent, I am grateful to Prof. Adiel Magana of Chuka University for his mentorship and supervision. The inspiration, in-depth scrutiny of my work and guidance he gave were of great significance. Special appreciation is also accorded to Dr. James Kairo of Kenya Marine and Fisheries Research Institute (KMFRI), Mombasa for his supervision and support during my field work and thesis development. I sincerely thank the panel members of Chuka University at the various developmental stages of this thesis, particularly, the Director of Chuka University Board of Post Graduate Studies, Dr.
    [Show full text]