Diversity and Distribution of Seagrasses Around Inhaca Island, Southern Mozambique

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Distribution of Seagrasses Around Inhaca Island, Southern Mozambique View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 2002, 68: 191–198 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 Diversity and distribution of seagrasses around Inhaca Island, southern Mozambique SO Bandeira Department of Marine Botany, Göteborg University, PO Box 461, SE 405 30 Göteborg, Sweden Present address: Department of Biological Sciences, Universidade Eduardo Mondlane, PO Box 257, Maputo, Mozambique e-mail: [email protected] Received 21 September 2000, accepted in revised form 15 August 2001 Nine seagrass species were identified around Inhaca as tion key is presented. Seagrasses covered half of the well as a more narrow form of Thalassodendron cilia- whole intertidal area around Inhaca Island and diversity tum (Forsk.) den Hartog occurring in rocky pools at the was also high at community level. Transects at macro north east coast. Seagrasses were mapped and and micro scales showed zonation of species which grouped in seven distinct community types (in order of may be due to tidal gradients or topographic variation. areas covered): Thalassia hemprichii/Halodule wrightii, Cluster analysis indicated ecological dissimilarities Zostera capensis, Thalassodendron ciliatum/Cymodocea between co-dominant species. A decline of Zostera serrulata, Thalassodendron ciliatum/seaweeds, capensis has recently been seen outside the local vil- Cymodocea rotundata/Halodule wrightii, Cymodocea lage. Baseline studies like this are important for coastal serrulata and Halophila ovalis /Halodule wrightii; with zone management in developing countries, where large the ninth species Syringodium isoetifolium occurring in future changes in seagrass cover can be expected. three of these communities. A dichotomous identifica- Introduction Although diversity and occurrence of seagrasses are gener- both distribution and other ecological performances. ally known on a global scale (Den Hartog 1970, Phillips and Recently, De Boer (2000) emphasised the importance of Menez 1988, Kuo and McComb 1989), very few studies seagrasses as a nutrient source in the southern bay at have been published from the east African region and Inhaca. Distribution and factors influencing their zonation Mozambique. In coastal areas of developing countries, one patterns in other areas of the western Indian Ocean were can expect large future changes as tourism, modern fishing mostly carried out in Kenya and Tanzania (Isaac 1968, Uku techniques, aquaculture, shipping and industrialisation et al. 1996, Björk et al. 1997, 1999). Despite all this, and the increase. Thus, baseline studies such as the present one importance those communities have as nursery and foraging are needed to document the original pristine and natural dis- areas for the fauna, including many commercial fishes tribution of dominant species and communities before (Larkum et al. 1989), there is still little research focussed on anthropogenic impact and changes in water quality have the distribution of seagrass communities and their zonation grown too large. Results of such studies should then be in the region. This paper updates and revises earlier taken into consideration for coastal zone management and research, emphasising the distribution and zonation of the the protection of biodiversity. seagrass communities around Inhaca Island. In Mozambique, the first publications of seagrasses were by Moss (1937) and Cohen (1939); they were followed later Methods by a number of studies performed by scientists based in South Africa (Kalk 1959, Macnae and Kalk 1962, Macnae Inhaca island is situated north east of Maputo Bay between 1969, Munday and Forbes 1979) dealing mostly with sea- latitudes 25°58’S and 26°05’S and longitudes 32°55’ and grasses of Inhaca Island but including also other areas of 33°00’E. The intertidal zones around this island have two the country. Later, marine botanical work covering southern contrasting features. The east side is exposed to the open Mozambique and a taxonomical compilation on seagrasses sea, to the dominant south east wind (Kalk 1995), and to an in the western Indian Ocean was published (Bandeira 1995, abrupt depth increase at the beach line. The west side, fac- 1997). Martins (1997) produced a first account on Zostera ing Maputo bay, is relatively protected having a gentle topo- capensis of Inhaca Island and the Maputo area covering graphic slope reaching in some areas a distance of 1km 192 Bandeira between the coast and the low spring tide level. The tidal Results amplitude vary between 0.1m and 3.9m. Inshore water tem- perature around Inhaca island varies within the extremes of Species diversity and taxonomical key 20–39°C, and the salinity within 30–39ppt (mean 35ppt) while being constant at 35ppt at the northern end of Inhaca Nine seagrass species distributed in three families were Island (Bandeira unpublished data). identified for Inhaca: Cymodocea rotundata Ehrenb. et Specimens of seagrasses were collected and identified Hempr. ex Aschers., C. serrulata (R. Br.) Aschers. et using literature (Macnae and Kalk 1969, Den Hartog 1970, Magnus, Halodule uninervis (Forsk.) Aschers. in Bossier, H. Larkum et al. 1989, Simpson 1989). Identification was wrightii Aschers., Syringodium isoetifolium (Aschers.) checked with herbarium material at Eduardo Mondlane Dandy, Thalassodendron ciliatum (Forsk.) den Hartog University Herbarium (LMU). A dichotomous identification (Cymodoceaceae), Halophila ovalis (R.Br.) Hook. f., key was made based on characters from both fresh and Thalassia hemprichii (Ehrenb.) Aschers. in Petermann dried material as well as from literature (Isaac 1968, Macnae (Hydrocharitaceae) and Zostera capensis Setchell and Kalk 1969, Den Hartog 1970, Phillips and Menez 1988, (Zosteraceae). An identification key for these species is Larkum et al. 1989). given (Appendix 1). T. ciliatum occurs in two forms: in sandy To map the seagrass communities around Inhaca two substrate with broad/wide leaves and in rock pools with nar- main steps were followed. Firstly, the species composition row, shorter leaves. Different size-forms of leaf width were was determined semi-quantitatively by applying a nominal observed in Halophila ovalis varying from 1.5–14mm in scale of frequency of species occurrence: highly frequent, width. Size forms and leaf tip variants were also observed in frequent and present. The communities were then charac- Halodule wrightii. Such morphological variations also occur terised by the number of highly frequent species. Secondly, in Brazilian H. wrightii. (Creed 1997). ground truthing (walking and snorkelling during spring low tide) all over the island with a map 1:10 000 was made in Mapping order to delineate the contours of the seagrass communi- ties; a reference point on the island, for precision of map- Seven seagrass community types were identified around ping, was used (Kirkman 1996). Black and white aerial Inhaca (listed in order of areas covers): Thalassia photographs were also used to visualise inner and outer hemprichii/Halodule wrightii, Zostera capensis, contours of the seagrass beds. The community types were Thalassodendron ciliatum/Cymodocea serrulata, named after the most dominant species. For this, visual esti- Thalassodendron ciliatum/seaweeds, Cymodocea rotunda- mates of percentage cover based on density classes ta/Halodule wrightii, Cymodocea serrulata and Halophila (Tomasko et al. 1993) were also used. The area of each ovalis /Halodule wrightii (Table 1). The boundaries of each community type was calculated by weighing paper with the community type were drawn and the seagrass map was traced area. then established (Figure 1). Some of the seagrass communities show macro-scale Overall, seagrasses covered around 50% of the entire and micro-scale variation in species composition, which may intertidal area around Inhaca. The three largest community be derived from the tidal gradient and small scale topo- types: T. hemprichii/H. wrightii, Z. capensis and T. cilia- graphic variation. Therefore, macrotransects and microtran- tum/C. serrulata covers 88% of the seagrass beds around sects were performed to study the zonation patterns. Six the island (Table 2). T. hemprichii/H. wrightii is the most macrotransects, 1m wide, running from the coastline to the species-rich community type, where all nine seagrass low water spring tide level were marked and a sample col- lected in a 1m2 quadrat at each 10m of the transect. These macrotransects were outlined in three community types Table 1: Species composition in each seagrass community type (with higher species diversity): Thalassia hemprichii/Halodule wrightii, Thalassodendron ciliatum/ Community type Species Cymodocea serrulata and Zostera capensis. Two microtran- Th Tc Cs Cr Hw Hu Si Zc Ho sects showing species diversity on a small-scale depth gra- Th/Hw *** * * ** *** ** * ** ** dient were analysed during low tide in the T. hemprichii/H. Tc/Cs * *** *** * ** ** ** ** wrightii community type located at the south bay of the Cs *** * * * island. At 1m long microtransects, presence/absence of Cr/Hw *** *** * species were recorded at each cm. The reason for choosing Ho/Hw *** * *** only the T. hemprichii/H. wrightii community for closer analy- Zc * * *** sis was that this community shows a high species diversity Tc/seaweeds *** at a small scale. Also, most of its topography has small Cr–Cymodocea rotundata ***–highly frequent depressions
Recommended publications
  • Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
    Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica.
    [Show full text]
  • Proximal Analysis of Seagrass Species from Laguna De Términos, Mexico
    Hidrobiológica 2015, 25 (2): 249-255 Proximal analysis of seagrass species from Laguna de Términos, Mexico Análisis proximal de los pastos marinos de la Laguna de Términos, México Erik Coria-Monter and Elizabeth Durán-Campos Programa de Doctorado en Ciencias Biológicas y de la Salud. División de Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana. México Calzada del Hueso 1100, Col. Villa Quietud, Delegación Coyoacán, D. F., 04960. México e-mail: [email protected] Coria-Monter E. & E. Durán-Campos. 2015. Proximal analysis of seagrass species from Laguna de Términos, Mexico. Hidrobiológica 25 (2): 249-255. ABSTRACT This paper examines chemical nutritional aspects of three seagrass species (Thalassia testudinum König, Halodule wrightii Ascherson, and Syringodium filiforme Kützing) found at Laguna de Términos, Campeche, Mexico during the rainy season of 2004, following analysis methods described by the Association of Official Analytical Chemists. High protein (8.47- 10.43%), high crude fiber (15.70-19.43%), high ash (23.43-38.77%) high nitrogen-free extract contents (37.27-45.37%), and low lipid levels (0.83-2.13%) were common features of the three species analyzed. Given its chemical contents and the World Health Organization reference standards, particularly the high protein (10.43%), high ash (23.43%), high fiber (19.43%), high nitrogen-free extract (45.37%) and low lipids (2.13%), S. filiforme appears to be a noteworthy potential dietary supplement and a nutrient source for human consumption. Another use of this high-protein seagrass could be in producing food for aquaculture fish. Key words: Halodule wrightii, Laguna de Términos, proximate analysis, Syringodium filiforme, Thalassia testudinum.
    [Show full text]
  • Reassessment of Seagrass Species in the Marshall Islands1
    Micronesica 2016-04: 1–10 Reassessment of Seagrass Species in the Marshall Islands 1 ROY T. TSUDA Department of Natural Sciences, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA [email protected] NADIERA SUKHRAJ U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office, 300 Ala Moana Blvd., Honolulu, HI 96850, USA [email protected] Abstract—Recent collections of specimens of Halophila gaudichaudii J. Kuo, previously identified as Halophila minor (Zollinger) den Hartog, from Kwajalein Atoll in September 2016 and the archiving of the specimens at BISH validate the previous observation of this seagrass genus in the Marshall Islands. Previously, no voucher specimen was available for examination. Molecular analyses of the Kwajalein Halophila specimens may demonstrate conspecificity with Halophila nipponica J. Kuo with H. gaudichaudii relegated as a synonym. Herbarium specimens of Cymodocea rotundata Ehrenberg and Hemprich ex Ascherson from Majuro Atoll were found at BISH and may represent the only specimens from the Marshall Islands archived in a herbarium. Cymodocea rotundata, however, has been documented in past literature and archived via digital photos in its natural habitat in Majuro. The previous validation of Thalassia hemprichii (Ehrenberg) Ascherson with specimens, and the recent validation of Halophila gaudichaudii and Cymodocea rotundata with specimens reaffirm the low coral atolls and islands of the Marshall Islands as the eastern limit for the three species in the Pacific Ocean. Introduction In a review of the seagrasses in Micronesia, Tsuda et al. (1977) reported nine species of seagrasses in Micronesia with new records of Thalassodendron ciliatum (Forsskål) den Hartog from Palau, and Syringodium isoetifolium (Ascherson) Dandy and Cymodocea serrulata (R.
    [Show full text]
  • Relatório Sobre O Estado De Conservação De Tartarugas
    REPÚBLICA DE MOÇAMBIQUE MINISTÉRIO PARA A COORDENAÇÃO DA ACÇÃO AMBIENTAL Centro de Desenvolvimento Sustentável para as Zonas Costeiras REPORT ON THE CONSERVATION STATUS OF MARINE TURTLES IN MOZAMBIQUE Maputo, January 2006 Funded by DANIDA, PGCI-Phase II REPÚBLICA DE MOÇAMBIQUE MINISTÉRIO PARA A COORDENAÇÃO DA ACÇÃO AMBIENTAL Centro de Desenvolvimento Sustentável para as Zonas Costeiras REPORT ON THE CONSERVATION STATUS OF MARINE TURTLES IN MOZAMBIQUE Cristina M. M. Louro1 Marcos A. M. Pereira2 Alice C. D. Costa3 1 Grupo de Trabalho Tartarugas Marinhas de Moçambique and School of Tropical Environment Studies and Geography, James Cook University. E-mail: [email protected] 2 Grupo de Trabalho Tartarugas Marinhas de Moçambique. Email: [email protected] 3 Fundo Mundial para a Natureza. Email: [email protected] Cover: Green turtle and its nest, Bazaruto Archipelago National Park (Photo: Eduardo Videira). Maputo, January 2006 Louro et al. Conservation Status of Marine Turtles in Mozambique TABLE OF CONTENTS ABSTRACT ............................................................................................................ ii LIST OF ACRONYMS …………………………...................................................... iii INTRODUCTION ................................................................................................... 01 BRIEF DESCRIPTION OF THE MOZAMBICAN COASTAL ZONE ....................... 03 BIOLOGICAL ASPECTS .........…........................................................................... 04 THREATS ...........................................................................................................
    [Show full text]
  • Impact on Local Fishermen on Inhaca Island, Mozambique, Due to Introduction of a New Marine Reserve
    Impact on local fishermen on Inhaca Island, Mozambique, due to introduction of a new marine reserve – with focus on fish catches Caroline Enebrand Uppsats för avläggande av naturvetenskaplig kandidatexamen i Miljövetenskap 15 hp Institutionen för biologi och miljövetenskap Göteborgs universitet Juni 2012 Abstract In July 2009 the government of Mozambique approved a new Marine Protected Area, the Ponta do Ouro Partial Marine Reserve (PPMR). The reserve extends from Ponta do Ouro (in the south of Mozambique) up to the mouth of Maputo River near the capital Maputo. Recently the Ministry of Tourism wrote a management plan for the reserve. Along with the new management come new restrictions, which can affect local communities depending on the marine resources. As an example it will be prohibited to fish demersal fish and use vertical jigs. This report will focus on the area of Inhaca Island, which is located in the Indian Ocean within the area of the new reserve. The main purpose of this study was to analyze how the artisanal fishery on Inhaca could be affected by the new restrictions. This was based on semi-structured interviews with local fishermen from Inhaca to learn about their fish habits such as caught fish species. The result showed that 21 % of the total amount of caught fish species stated by all fishermen from the interviews, was demersal species. Since demersal fishing will not be allowed within the new marine reserve, they have to fish differently to be able to fish legally. This report also contains a brief description of the current management system regarding fishery, which is based on interviews with managers/actors from different public sectors within the fishing industry.
    [Show full text]
  • Whitfield Et Al. 2017.Pdf
    Biological Conservation 212 (2017) 256–264 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Life-histories explain the conservation status of two estuary-associated MARK pipefishes ⁎ Alan K. Whitfielda, , Thomas K. Mkareb,1, Peter R. Teskeb, Nicola C. Jamesa, Paul D. Cowleya a South African Institute for Aquatic Biodiversity (SAIAB), Private Bag 1015, Grahamstown 6140, South Africa b Molecular Zoology Laboratory, Department of Zoology, University of Johannesburg, Aukland Park 2006, South Africa ABSTRACT Two endemic southern African pipefish species (Teleostei: Syngnathidae) co-occur in estuaries on the southeast coast of South Africa. The larger longsnout pipefish, Syngnathus temminckii, is abundant and has a wide range that comprises coastal and estuarine habitats in all three of the region's marine biogeographic provinces. In contrast, the smaller estuarine pipefish S. watermeyeri is critically endangered, and confined to a few warm- temperate estuaries. Here, we explore reasons for these considerable differences in conservation status. Fecundity is related to fish size, with large live-bearing S. temminckii males carrying up to 486 developing eggs/ embryos, compared to a maximum of only 44 recorded for S. watermeyeri. Loss of submerged seagrass habitats due to episodic river flooding appears to be correlated with the temporary absence of both species from such systems. Prolonged cessation in river flow to estuaries can cause a collapse in estuarine zooplankton stocks, a food resource that is important to pipefish species. The greater success of S. temminckii when compared to S. watermeyeri can be attributed to the former species' wider geographic distribution, fecundity, habitat selection and ability to use both estuaries and the marine environment as nursery areas.
    [Show full text]
  • Environmental Changes on Inhaca Island, Mozambique: Development Versus Degradation?
    Environmental Changes on Inhaca Island, Mozambique: Development versus Degradation? Item Type Working Paper Authors Muacanhia, T. Download date 02/10/2021 14:03:19 Link to Item http://hdl.handle.net/1834/410 Environmental Changes on Inhaca Island, Mozambique: Development versus Degradation? BY: TOMÁS MUACANHIA Estação de Biologia Marítima de Inhaca, Faculdade de Ciências, Universidade Eduardo Mondlane, Caixa Postal 257, Maputo, Mozambique; e-mail: [email protected] ABSTRACT Inhaca archipelago is located ca. 32 km east of Maputo City, the capital of Mozambique. Inhaca Island (42.5 km2) and Portuguese Island (3.7 km2) constitute the small archipelago. Shoreline changes and sheet erosion are serious environmental problems affecting the archipelago today. Shorelines are constantly moving and changing. During rain season (October-March), strong winds, violent surf and stormy weather cause large powerful waves that induce changes on shorelines. As these waves pound the beach, sand erodes and is deposited offshore and the beach narrows. In dry season (April-September), waves and winds wash over the beach, bringing back the sand and gradually, the beach becomes wider. The major problems of Inhaca and Portuguese islands fringing shorelines is its dynamic environment that experience a slow or fast rate of erosion, but also, experience slow or rapid accumulation of sediment and accretion. The shoreline changes have taken place more rapidly than our understanding of the dynamic itself due to global environmental changes and human activities such as clearing of vegetation on coastal ridges for agriculture, clearing coastal forest and mangroves for housing. Furthermore, goat rearing on eastern ridge has aggravated environmental changes due to blow-up on Inhaca Island.
    [Show full text]
  • Africa, Coastal Ecology
    4 Africa, Coastal Ecology that travels along the beach and surf zone while the ebb-tide Cross-References bar forms an accretion wave that moves along the shore in deeper water. Their relative on/offshore positions depend on ▶ Beach Features the inlet tidal velocities that are functions of the size of the ▶ Beach Processes inlet and the volume of tidal flow through it (Inman and Dolan ▶ Coasts, Coastlines, Shores, and Shorelines 1989; Jenkins and Inman 1999). ▶ Energy and Sediment Budgets of the Global Coastal Zone Accretion/erosion waves associated with river deltas and ▶ Littoral Cells migrating inlets are common site-specific cases that induce ▶ Longshore Sediment Transport net changes in the littoral budget of sediment. However, it ▶ Scour and Burial of Objects in Shallow Water appears that accretion/erosion waves in some form are com- ▶ Sediment Budget mon along all beaches subject to longshore transport of sed- iment. This is because coastline curvature and bathymetric variability (e.g., shelf geometry and offshore bars) introduce Bibliography local variability in the longshore transport rate. Hicks DM, Inman DL (1987) Sand dispersion from an ephemeral river delta on the Central California coast. Mar Geol 77:305–318 Inman DL (1987) Accretion and erosion waves on beaches. Shore Beach Mechanics of Migration 55:61–66 Inman DL, Bagnold RA (1963) Littoral processes. In: Hill MN (ed) The An accretion/erosion wave is a wave- and current-generated sea, volume 3, The earth beneath the sea. Wiley, New York/London, pp 529–553 movement of the shoreline in response to changing sources – fl Inman DL, Brush BM (1973) The coastal challenge.
    [Show full text]
  • Kimberley Marine Biota. Historical Data: Marine Plants
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 84 045–067 (2014) DOI: 10.18195/issn.0313-122x.84.2014.045-067 SUPPLEMENT Kimberley marine biota. Historical data: marine plants John M. Huisman1,2* and Alison Sampey3 1 Western Australian Herbarium, Science Division, Department of Parks and Wildlife, Locked Bag 104, Bentley DC, Western Australian 6983, Australia. 2 School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australian 6150, Australia. 3 Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australian 6986, Australia. * Email: [email protected] ABSTRACT – Here, we document 308 species of marine flora from the Kimberley region of Western Australia based on collections held in the Western Australian Herbarium and on reports on marine biodiversity surveys to the region. Included are 12 species of seagrasses, 18 species of mangrove and 278 species of marine algae. Seagrasses and mangroves in the region have been comparatively well surveyed and their taxonomy is stable, so it is unlikely that further species will be recorded. However, the marine algae have been collected and documented only more recently and it is estimated that further surveys will increase the number of recorded species to over 400. The bulk of the marine flora comprised widespread Indo-West Pacific species, but there were also many endemic species with more endemics reported from the inshore areas than the offshore atolls. This number also will increase with the description of new species from the region. Collecting across the region has been highly variable due to the remote location, logistical difficulties and resource limitations.
    [Show full text]
  • MARINE BIOLOGY RESEARCH STATION MOZAMBIQUE UNIVERSITY EDUARDO MONDLANE Faculty of Sciences
    INHACA MARINE BIOLOGY RESEARCH STATION MOZAMBIQUE UNIVERSITY EDUARDO MONDLANE Faculty of Sciences [email protected] www.ebmi.uem.mz Production: www.globalreporting.net, Sweden, 2016 Text: Anette Emanuelsson and David Isaksson Design: Lisa Jansson Cover photo by Jenny Stromvoll: The fishBryaninops yongei and Ciirhipathes coral Photos by David Isaksson except p. 60–61 Anette Emanuelsson, p. 14–15 Marc Montocchio, p. 17, 48 José Paula, p. 16, 34–35 Matz Berggren, p. 52, 54 Linn Bergbrant Printed by Emprint, Sweden 2016 This material/production has been financed by the Swedish International Development Cooperation Agency, Sida. Responsibility for the content rests entirely with the creator. Sida does not necessarily share the expressed views and interpretations. 2 | INHACA MARINE BIOLOGY RESEARCH STATION CONTENT Foreword ..................................................................... 4 Resumo ....................................................................... 6 A different world ........................................................ 8 Research cooperation put into practice ............... 10 A microcosm of southern Africa ............................ 14 70 years of research at Inhaca ............................... 20 Just can’t get enough .............................................. 26 Adriano Macia: Contributing to society .................... 28 Matz Berggren: Finding new species of shrimp ...... 31 Salomão Bandeira: With a passion for seagrasses 36 Perpetua Scarlet: Heavy metals under scrutiny ...... 39 Alberto Mavume: With an
    [Show full text]
  • The Botanical Importance Rating of the Estuaries in Former Ciskei / Transkei
    THE BOTANICAL IMPORTANCE RATING OF THE ESTUARIES IN FORMER CISKEI / TRANSKEI B.M. COLLOTY, J.B. ADAMS AND G.C. BATE FINAL REPORT TO THE WATER RESEARCH COMMISSION BY THE DEPARTMENT OF BOTANY UNIVERSITY OF PORT ELIZABETH WRC REPORT NO. TT 160/01 Obtainable from: Water Research Commission PO Box 824 Pretoria 0001 The publication of this report emanates from a project entitled: The Botanical Importance rating of Estuaries in former Ciskei and Transkei (WRC Project No K5/812) DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC, nor does mention of trade names or commercial products constitute ensoresement or recommendation for use. ISBN 1 86845 790 7 Printed in the Republic of South Africa ii The Jujura Estuary, one of several unique estuaries observed in this study. This small estuary had an above average depth of 2.8 m, remained open for extensive periods and was colonized by Zostera capensis. iii EXECUTIVE SUMMARY BACKGROUND AND MOTIVATION FOR THE RESEARCH There are an increasing number of people utilising the South African coastline. This is creating a need to evaluate estuary and coastal resources and to identify sensitive areas where careful planning and management must take place. Management tools such as importance rating systems and state or condition assessments have become necessary to summarise and express scientific information. The botanical importance rating system is one such method and was developed in a previous Water Research Commission Project (Adams et al.
    [Show full text]
  • The Global Distribution and Status of Seagrass Ecosystems
    The global distribution and status of seagrass ecosystems ^^ ^^^H Discussion paper prepared for tlie UNEP-WCWIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards WA.. WORLD CONSERVATION MONITORING CENTRE Digitized by tine Internet Archive in 2010 witii funding from UNEP-WCIVIC, Cambridge Iittp://www.archive.org/details/globaldistributi01spal The global distribution and status of seagrass ecosystems Discussion paper prepared for tlie UNEP-WCIVIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards With assistance from: Mark Taylor and Corinna Ravilious Table of Contents Introduction to the workshop 2 The global distribution and status of seagrass ecosystems 3 Introduction 3 Definitions 3 The diversity of seagrasses 3 Species distribution 4 Associated Species 6 Productivity and biomass 7 The distribution and area of seagrass habitat 8 The value of seagrasses 13 Threats to seagrasses 13 Management Interventions 14 Bibliography; 16 29 Annex 1 : Seagrass Species Lists by Country Annex 2 - Species distribution maps 34 Annex 3 - Seagrass distribution maps 68 74 Annex 4 -Full list of MPAs by country ; /4^ ] UNEP WCMC Introduction to the workshop The Global Seagrass Workshop of 9 November 2001 has been set up with the expressed aim to develop a global synthesis on the distribution and status of seagrasses world-wide. Approximately 20 seagrass experts from 14 counu-ies, representing all of the major seagrass regions of the world have been invited to share their knowledge and expertise.
    [Show full text]