Thesis Sci 2020 Lawrence Cloverley Mercia.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Sci 2020 Lawrence Cloverley Mercia.Pdf Ecology and Ecophysiology of Zostera capensis: Responses and Acclimation to Temperature Cloverley Mercia Lawrence Thesis presented for the degree of Doctor of Philosophy in the Department of Biological Sciences Faculty of Science University of Cape Town 2019 University of Cape Town Supervisors Dr Deena Pillay, Professor Astrid Jarre, Emer. Professor John Bolton The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town This thesis is dedicated to my parents. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Declaration I, hereby declare that all the work presented in this thesis is my original work in both concept and execution (except where otherwise indicated), and that this thesis has not been submitted in whole or in part for another degree in this or any other university. Cloverley Mercia Lawrence Table of Contents Acknowledgements………………………………………………………………………………….iii Summary.…………………………………………………………………………………………….…v Chapter One General overview and background ……………… ……... ………………………………. .. 1 1.1. Seagrass Ecosystems…………………………………………………………… …… …... 3 1.1.1. Glo bal importance and distribution of seagrasses…………………… ……... 3 1.1.2. Biodiversity in seagrass ecosystems ……………………………… ….… ….…. 6 1.2. Threats to seagrasses………………………………………………………… ….. .…. …. 8 1.2.1. The influenc e of temperature on seagrasses……………………… ……….. .. 9 1.2.2. Epiphytes and fou ling in seagrass ecosystems……………………… …….. .. 12 1.3. Respo nses of seagrasses to threats………………………………………… ….. ….. …. 12 1.3.1. Acclimations in seagrasses…… .. ………………………………… …… ….. …… 12 1.3.2. Chemi cal defence in seagrasses…………………………………… …… ... .. …. 15 1.4. Trophic interac tions in seagrass ecosystems……………………………… …… ….… 17 1.4.1. Temperature effe cts on trophic interactions………………………… …….. .. 20 1.4.2. Top down contr ol and effects of grazing……………………………… ..... ... ... .. 22 1.5. Seagrasses in South Africa…………………………………………………… ….. ….. .. 25 1.5.1. Zostera capensis in Langebaan L agoon……………………………… …… ….. 28 1.6. Mesocosm expe riments in seagrass research………………………………… ….. …. 30 1.7. Aims and overview of thesis…………………………………………… ………… .. .. … 31 Chapter Two Spatial and temporal variability of Zostera capensis in Langebaan Lagoon ... 35 2.1. Introduction… ……………………………………………………………….…… …... ......... 36 2.2. Methods……… ……………………………………………………………… …… …… ……. 40 2.3. Results… ………………………………………………………………………… …… ……… 46 2.4. Discussion ……………………………………………………………………… …… ……….. 62 2.5. Conclusions… …………………………………………………………………… …... .. ......... 70 Chapter Three Spatial and temporal differences in macro-epifaunal assemblages associated with Zostera capensis in Langebaan Lagoon: influences of environmental variables and seagrass structure ………………………………..………………………... 72 3.1. Introduction ……………………………………………………………………… ……. …… 73 i 3.2. Methods………………………………………………………………………… …….. ……... 78 3.3. Results………………………………………………………………………… …….. ………. 84 3.4. Discussion………………………………………………………………… …….. ……… …... 99 3.5. Conclusions ……………………………………………………………… …….. ……………. 10 6 Chapter Four Effects of temperature on small and la rge -leaved morphotypes of Zostera capensis – a mesocosm approach ……………………………………………………….. 108 4.1. Introduction……………………………………………………………… …….. …… …… 109 4.2. Methods………………………………………………………………… …….. ……… ...… 114 4.3. Results……………………………………………………………………… …….. …… .... 118 4.4. Discussion……… …………………………………………………………… …….. ……... 124 4.5. Conclusions… ………………………………………………………………… …….. ……. 12 9 Chapter Five Top -down effects of grazing on the ecophysiology of two morphotypes of Zostera capensis under warming in a mesocosm experiment …………………. 131 5.1. Introduction…… ……………………………………………………………… ……….. .. 132 5.2. Methods……………………………………………………………………… …..… ……. 13 8 5.3. Results………………………………………………………………………… …….. …… 14 7 5.4. Discussion……………………………………………………………………… ……... .… 15 8 5.5. Conclusions……………………………………………………………………..… …….. 16 5 Chapter Six General Discussion .…………….………..….………………………………….…………… 168 Literature Cited ……………….…………………...…………………………………………. 180 Appendices …………………………………………………………………….……………….. 239 ii Acknowledgements I believe one’s character is defined during times of challenge and my PhD journey has indeed provided me with great challenge and enormous opportunity for learning and growth - I am wiser and richer for it. There are many people who have remained unwavering in their support, which has contributed to the completion of this work, and to them, I am forever grateful. Thank you to my supervisors Prof Astrid Jarre, Prof John Bolton and Dr Deena Pillay for input and advice. I am deeply grateful to Astrid for her valuable insights and most especially her patience. A heartfelt thank you to John whose wisdom and encouragement helped me immensely in navigating many complexities. I am grateful for the generosity and financial support provided by Prof Astrid Jarre and the National Research Foundation. Further gratitude for financial assistance is expressed to Dr Clive and Ms Camilla McDowell and the McDowell Trust. For additional advice and guidance on various aspects of my PhD, I am profoundly indebted to Henning Winker, George Branch, Jean Harris, AJ Smit, Maya Pfaff, Sean Marr, Bhavani Krishna and Anusuya Chinsamy-Turan. Henning, thank you for teaching me about statistical modelling, for being a great listener, for the coffee breaks and when needed, tequila shots. To Jean - thank you for being my champion, mentor and friend. My most sincere gratitude is extended to AJ for stimulating discussions, lending me the oxygen chamber and providing student assistants. A huge thank you to all the willing and enthusiastic volunteers who assisted with field and lab work: Alex Rabelo, Chanel Rampartab, Isabel Micklem, Imogen Weideman, Jireh Mannesseh, Lauren Fonto, Martin Emmanuel, Mujahiddin Philander, Pierre Nel, Pumza Mpange, Raquel Flynn, Ropafadzo Moyo, Ross Copin, Saarchi Sadcha, Sam Bolton and Tesrey Linevee. Heartfelt gratitude is expressed to Welly Qwabe, who accompanied me on almost every fieldtrip - even if it meant taking a train at five in the morning in the dead of iii winter. Thank you for the adventures, for building cages with me, and for the many insightful discussions on science and life. Vincent Naudé is acknowledged for his assistance with the design and construction of the mesocosm system. I am especially grateful to George Du Plessis for technical support and going above and beyond - even assisting me on his days off. Thanks also to Andrea Plos and Granville Faulmann for technical assistance. Prof Charles Griffiths is acknowledged for assistance with species identification. The Microbiology Lab at UCT is recognized for their facilitation of my chemistry analyses, with special thanks to Keren Cooper for answering many questions, and running my samples through the HPLC. Thanks also to John Lanham and Ian Newton at the Stable Light Isotope Lab in the Archaeology Department, UCT for measuring nutrients at no cost. Prof Denzil Beukes, University of the Western Cape, is acknowledged for his advice on analysing phenolics in seagrasses, and undertaking preliminary NMR analyses. I am also grateful to Prof Derek du Plessis, Nelson Mandela University, for loan of the PAM fluorometer. Studying part-time has its distinct set of challenges. I am thankful to my employer, South African National Parks for advocating the completion of this PhD. Special thanks to Anè Oosthuizen and Jayshree Govender for support and encouragement. Profound appreciation is expressed to my amazing woman’s circle: Cara, Claire, Emma, Heike, Joanne, Judy (posthumously), Lara, Lindi, Susan and Vicki. I am forever blessed for your wise, loving and empowering support. To my accountability partner and friend, Aline – thank you for helping me stay optimistic and motivated through this PhD journey. I would not have accomplished this feat were it not for the steadfast and relentless love and encouragement from family and friends. To Jireh, Jediael, Craig, Desiree, Melanie, Toufiek, Maya, Henning, Welly, Lorien, Jean, Sean, Charles, Daniel, Yossie, Ayesha and Frank - you are my champions and the faces I look for from the arena of life. iv Summary As environmental norms deviate further from long-established patterns, understanding strategies that allow habitats to persist under sub-optimal conditions is critical for effective mitigation and management. It has therefore become profoundly important to understand the capacity of ecosystems to respond to anthropogenically-driven change, and maintain their function and provision of services to humankind. Species and populations that lack the ability to persist in a changing environment run the risk of declining or going extinct. Two key evolutionary processes available to organisms to cope with shifting environments are adaptation and acclimation. Adaptation is a genetically-based response, while acclimation or phenotypic plasticity is a prompt, non-genetic strategy usually triggered by a change in environmental conditions. Both adaptive and acclimative mechanisms can co-occur producing varied effects at the population level. Seagrasses are ecosystem engineers responsible for providing an important habitat in many estuaries and on coastlines worldwide. They are, however on a global decline due to threats
Recommended publications
  • Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
    Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica.
    [Show full text]
  • Distribution of Zostera Species in Japan. I Zostera Marina L. (Zosteraceae)
    Bull. Natl. Mus. Nat. Sci., Ser. B, 35(1), pp. 23–40, March 22, 2009 Distribution of Zostera species in Japan. I Zostera marina L. (Zosteraceae) Norio Tanaka1,*, Satoshi Aida2, Shoichi Akaike3, Hiroshi Aramaki4, Takashi Chiyokubo5, Seinen Chow6, Akihiko Fujii7, Munehiro Fujiwara8, Hitoshi Ikeuchi9, Mitsuhiro Ishii10, Ryoko Ishikawa11, Hiroshi Ito12, Takahiro Kudo13, Daisuke Muraoka14, Tatsuaki Nagahama15, Tomohide Nambu16, Hiroyuki Okumura17, Akio Oshino18, Miho Saigusa19, Yasuko Shimizu20, Tsuyoshi Suwa21, Kengo Suzuki22, Kazuya Takeda23, Norio Tanada24, Tsuyoshi Tanimoto25, Fujinori Tsuda26, Seiji Urabe27, Kousuke Yatsuya28, Goro Yoshida29, Takashi Yoshimatsu30, Satoshi Yoshimitsu31, Keizo Yoshimura32, Kenji Morita33 and Kenji Saitoh34 1 Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, 305–0005 Japan 2 Hiroshima Prefectural Technology Research Institute, Fisheries & Ocean Technology Center, Hatami 6–21–1, Ondo-cho, Kure, 737–1207 Japan 3 Hokkaido Hakodate Experiment Station, Yunokawa 1–2–66, Hakodate, 042–0932 Japan 4 Saga Prefectural Government, Jonai 1–1–59, Saga, 840–8570 Japan 5 Fukushima Prefectural Fisheries Experimental Station, Matsushita Shimokajiro 13–2, Onahama, Iwaki, 970–0316 Japan 6 National Research Institute of Fisheries Science, Coastal Fisheries and Aquaculture Division, Fisheries Research Agency, Nagai 6–31–1, Yokosuka, 238–0316 Japan 7 Nagasaki Prefectural Institute of Fisheries, Taira, Nagasaki, 851–2213 Japan 8 Kagawa Prefectural Fisheries Experimental Station, Farming and Cultivation
    [Show full text]
  • Whitfield Et Al. 2017.Pdf
    Biological Conservation 212 (2017) 256–264 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Life-histories explain the conservation status of two estuary-associated MARK pipefishes ⁎ Alan K. Whitfielda, , Thomas K. Mkareb,1, Peter R. Teskeb, Nicola C. Jamesa, Paul D. Cowleya a South African Institute for Aquatic Biodiversity (SAIAB), Private Bag 1015, Grahamstown 6140, South Africa b Molecular Zoology Laboratory, Department of Zoology, University of Johannesburg, Aukland Park 2006, South Africa ABSTRACT Two endemic southern African pipefish species (Teleostei: Syngnathidae) co-occur in estuaries on the southeast coast of South Africa. The larger longsnout pipefish, Syngnathus temminckii, is abundant and has a wide range that comprises coastal and estuarine habitats in all three of the region's marine biogeographic provinces. In contrast, the smaller estuarine pipefish S. watermeyeri is critically endangered, and confined to a few warm- temperate estuaries. Here, we explore reasons for these considerable differences in conservation status. Fecundity is related to fish size, with large live-bearing S. temminckii males carrying up to 486 developing eggs/ embryos, compared to a maximum of only 44 recorded for S. watermeyeri. Loss of submerged seagrass habitats due to episodic river flooding appears to be correlated with the temporary absence of both species from such systems. Prolonged cessation in river flow to estuaries can cause a collapse in estuarine zooplankton stocks, a food resource that is important to pipefish species. The greater success of S. temminckii when compared to S. watermeyeri can be attributed to the former species' wider geographic distribution, fecundity, habitat selection and ability to use both estuaries and the marine environment as nursery areas.
    [Show full text]
  • The Botanical Importance Rating of the Estuaries in Former Ciskei / Transkei
    THE BOTANICAL IMPORTANCE RATING OF THE ESTUARIES IN FORMER CISKEI / TRANSKEI B.M. COLLOTY, J.B. ADAMS AND G.C. BATE FINAL REPORT TO THE WATER RESEARCH COMMISSION BY THE DEPARTMENT OF BOTANY UNIVERSITY OF PORT ELIZABETH WRC REPORT NO. TT 160/01 Obtainable from: Water Research Commission PO Box 824 Pretoria 0001 The publication of this report emanates from a project entitled: The Botanical Importance rating of Estuaries in former Ciskei and Transkei (WRC Project No K5/812) DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC, nor does mention of trade names or commercial products constitute ensoresement or recommendation for use. ISBN 1 86845 790 7 Printed in the Republic of South Africa ii The Jujura Estuary, one of several unique estuaries observed in this study. This small estuary had an above average depth of 2.8 m, remained open for extensive periods and was colonized by Zostera capensis. iii EXECUTIVE SUMMARY BACKGROUND AND MOTIVATION FOR THE RESEARCH There are an increasing number of people utilising the South African coastline. This is creating a need to evaluate estuary and coastal resources and to identify sensitive areas where careful planning and management must take place. Management tools such as importance rating systems and state or condition assessments have become necessary to summarise and express scientific information. The botanical importance rating system is one such method and was developed in a previous Water Research Commission Project (Adams et al.
    [Show full text]
  • The Global Distribution and Status of Seagrass Ecosystems
    The global distribution and status of seagrass ecosystems ^^ ^^^H Discussion paper prepared for tlie UNEP-WCWIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards WA.. WORLD CONSERVATION MONITORING CENTRE Digitized by tine Internet Archive in 2010 witii funding from UNEP-WCIVIC, Cambridge Iittp://www.archive.org/details/globaldistributi01spal The global distribution and status of seagrass ecosystems Discussion paper prepared for tlie UNEP-WCIVIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards With assistance from: Mark Taylor and Corinna Ravilious Table of Contents Introduction to the workshop 2 The global distribution and status of seagrass ecosystems 3 Introduction 3 Definitions 3 The diversity of seagrasses 3 Species distribution 4 Associated Species 6 Productivity and biomass 7 The distribution and area of seagrass habitat 8 The value of seagrasses 13 Threats to seagrasses 13 Management Interventions 14 Bibliography; 16 29 Annex 1 : Seagrass Species Lists by Country Annex 2 - Species distribution maps 34 Annex 3 - Seagrass distribution maps 68 74 Annex 4 -Full list of MPAs by country ; /4^ ] UNEP WCMC Introduction to the workshop The Global Seagrass Workshop of 9 November 2001 has been set up with the expressed aim to develop a global synthesis on the distribution and status of seagrasses world-wide. Approximately 20 seagrass experts from 14 counu-ies, representing all of the major seagrass regions of the world have been invited to share their knowledge and expertise.
    [Show full text]
  • 1 Phylogenetic Regionalization of Marine Plants Reveals Close Evolutionary Affinities Among Disjunct Temperate Assemblages Barna
    Phylogenetic regionalization of marine plants reveals close evolutionary affinities among disjunct temperate assemblages Barnabas H. Darua,b,*, Ben G. Holtc, Jean-Philippe Lessardd,e, Kowiyou Yessoufouf and T. Jonathan Daviesg,h aDepartment of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA bDepartment of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa cDepartment of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, United Kingdom dQuebec Centre for Biodiversity Science, Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada eDepartment of Biology, Concordia University, Montreal, QC, H4B 1R6, Canada; fDepartment of Environmental Sciences, University of South Africa, Florida campus, Florida 1710, South Africa gDepartment of Biology, McGill University, Montreal, QC H3A 0G4, Canada hAfrican Centre for DNA Barcoding, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa *Corresponding author Email: [email protected] (B.H. Daru) Running head: Phylogenetic regionalization of seagrasses 1 Abstract While our knowledge of species distributions and diversity in the terrestrial biosphere has increased sharply over the last decades, we lack equivalent knowledge of the marine world. Here, we use the phylogenetic tree of seagrasses along with their global distributions and a metric of phylogenetic beta diversity to generate a phylogenetically-based delimitation of marine phytoregions (phyloregions). We then evaluate their evolutionary affinities and explore environmental correlates of phylogenetic turnover between them. We identified 11 phyloregions based on the clustering of phylogenetic beta diversity values. Most phyloregions can be classified as either temperate or tropical, and even geographically disjunct temperate regions can harbor closely related species assemblages.
    [Show full text]
  • The Genus Ruppia L. (Ruppiaceae) in the Mediterranean Region: an Overview
    Aquatic Botany 124 (2015) 1–9 Contents lists available at ScienceDirect Aquatic Botany journal homepage: www.elsevier.com/locate/aquabot The genus Ruppia L. (Ruppiaceae) in the Mediterranean region: An overview Anna M. Mannino a,∗, M. Menéndez b, B. Obrador b, A. Sfriso c, L. Triest d a Department of Sciences and Biological Chemical and Pharmaceutical Technologies, Section of Botany and Plant Ecology, University of Palermo, Via Archirafi 38, 90123 Palermo, Italy b Department of Ecology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain c Department of Environmental Sciences, Informatics & Statistics, University Ca’ Foscari of Venice, Calle Larga S. Marta, 2137 Venice, Italy d Research Group ‘Plant Biology and Nature Management’, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium article info abstract Article history: This paper reviews the current knowledge on the diversity, distribution and ecology of the genus Rup- Received 23 December 2013 pia L. in the Mediterranean region. The genus Ruppia, a cosmopolitan aquatic plant complex, is generally Received in revised form 17 February 2015 restricted to shallow waters such as coastal lagoons and brackish habitats characterized by fine sediments Accepted 19 February 2015 and high salinity fluctuations. In these habitats Ruppia meadows play an important structural and func- Available online 26 February 2015 tional role. Molecular analyses revealed the presence of 16 haplotypes in the Mediterranean region, one corresponding to Ruppia maritima L., and the others to various morphological forms of Ruppia cirrhosa Keywords: (Petagna) Grande, all together referred to as the “R. cirrhosa s.l. complex”, which also includes Ruppia Aquatic angiosperms Ruppia drepanensis Tineo.
    [Show full text]
  • 10 Lockyear.Qxp
    African Journal of Aquatic Science 2006, 31(2): 275–283 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved AFRICAN JOURNAL OF AQUATIC SCIENCE EISSN 1727–9364 The distribution and abundance of the endangered Knysna seahorse Hippocampus capensis (Pisces: Syngnathidae) in South African estuaries Jacqueline F Lockyear1, Thomas Hecht1, Horst Kaiser1* and Peter R Teske2 1 Department of Ichthyology and Fisheries Science, Rhodes University, PO Box 94, Grahamstown 6140, South Africa 2 Molecular Ecology and Systematics Group, Botany Department, Rhodes University, PO Box 94, Grahamstown 6140, South Africa * Corresponding author, e-mail: [email protected] Received 7 July 2005, accepted 23 March 2006 The occurrence, distribution and abundance of the endangered Knysna seahorse Hippocampus capensis in 10 estuaries on South Africa’s warm temperate south coast, were investigated. Seahorses were found only in the Knysna, Swartvlei and Keurbooms estuaries. Sex ratios were even and, in most cases, more adults were found than juveniles. During the first year of study, seahorse densities were higher in the Swartvlei and Keurbooms estuaries than in the comparatively larger Knysna Estuary but, during the second year, seahorses were absent from the Keurbooms estuary, and the population size in the Swartvlei Estuary had decreased by more than 80%. These results suggest that, although the two smaller estuaries are able to support comparatively high densities of seahorses, population sizes may fluctuate considerably. Population size estimates for the Knysna Estuary were similar to those obtained in a previous study, suggesting that this estuary may represent a more stable environment and may thus be particularly important for the survival and conservation of this species.
    [Show full text]
  • Results of the Fifth Eelgrass (Zostera Marina) Mapping Survey: Status and Distribution in Newport Bay, Newport Beach, California 2016 Survey
    RESULTS OF THE FIFTH EELGRASS (ZOSTERA MARINA) MAPPING SURVEY: STATUS AND DISTRIBUTION IN NEWPORT BAY, NEWPORT BEACH, CALIFORNIA 2016 SURVEY Prepared for: City of Newport Beach Public Works, Harbor Resources Division 100 Civic Center Drive, Newport Beach, California 92660 Contact: Chris Miller, Harbor Resources Manager [email protected] (949) 644-3043 Prepared by: Coastal Resources Management, Inc. 144 N. Loreta Walk, Long Beach, CA 90803 Contact: Rick Ware, Senior Marine Biologist [email protected] (949) 412-9446 June 15th, 2017 Revised July 10th, 2017 TABLE OF CONTENTS Section Page 1.0 INTRODUCTION ..................................................................................................................... 1 1.1 Project Purpose ........................................................................................................................... 1 1.2 Background ................................................................................................................................. 1 1.3 Project Setting ............................................................................................................................. 2 1.4 Summary of Eelgrass Biology and Its Importance ................................................................... 4 1.5 Eelgrass Regulatory Setting ....................................................................................................... 6 2.0 METHODS AND MATERIALS .............................................................................................
    [Show full text]
  • (Zostera Marina) Bay-Wide Habitat Mapping Survey: Status and Distribution Between 2006 and 2008 and Oceanographic Conditions in Newport Bay Between 2008 and 2009
    RESULTS OF THE SECOND NEWPORT BAY EELGRASS (ZOSTERA MARINA) BAY-WIDE HABITAT MAPPING SURVEY: STATUS AND DISTRIBUTION BETWEEN 2006 AND 2008 AND OCEANOGRAPHIC CONDITIONS IN NEWPORT BAY BETWEEN 2008 AND 2009 Prepared for: City of Newport Beach Harbor Resources Division PO Box 1768 Newport Beach, CA 92658-8915 Contact: Chris Miller, HRD Manager (949) 644-3041 Prepared by: Coastal Resources Management, Inc. PMB 327, 3334 East Coast Highway, Corona del Mar, CA 92625 Contact: Rick Ware, Senior Marine Biologist [email protected] (949) 412-9446 August 18th, 2010 TABLE OF CONTENTS Section Page 1.0 INTRODUCTION...................................................................................................................... 1 1.1 Background................................................................................................................................... 1 1.2 Project Purpose ............................................................................................................................. 2 1.3 Project Setting............................................................................................................................... 3 1.4 Eelgrass Regulatory Setting ......................................................................................................... 5 1.5 Physical and Chemical Factors Affecting Eelgrass Abundance and Distribution..................... 6 1.6 Eelgrass Biology and Ecology ..................................................................................................... 11
    [Show full text]
  • Morphology and Genetic Studies of Cymodocea Seagrass Genus in Tunisian Coasts Ramzi Bchir, Aslam Sami Djellouli, Nadia Zitouna, D
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Morphology and Genetic Studies of Cymodocea Seagrass Genus in Tunisian Coasts Ramzi Bchir, Aslam Sami Djellouli, Nadia Zitouna, D. Aurelle, Gerard Pergent, Christine Pergent-Martini, Habib Langar To cite this version: Ramzi Bchir, Aslam Sami Djellouli, Nadia Zitouna, D. Aurelle, Gerard Pergent, et al.. Morphology and Genetic Studies of Cymodocea Seagrass Genus in Tunisian Coasts. Phyton, International Journal of Experimental Botany, Tech Science Press, 2019, 88 (2), pp.171-184. 10.32604/phyton.2019.05261. hal-02164658 HAL Id: hal-02164658 https://hal.archives-ouvertes.fr/hal-02164658 Submitted on 25 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Morphology and Genetic Studies of Cymodocea Seagrass Genus in Tunisian Coasts Ramzi BCHIR1,2,a, Aslam Sami DJELLOULI1,b, Nadia ZITOUNA3, Didier AURELLE4, Gerard PERGENT2,d, Christine PERGENT-MARTINI2,e and Habib LANGAR1,C 1 UR17ES10 « Physiology of regulatory systems and adaptations». Sciences Faculty of Tunisia, University El Manar, Tunis, Tunisia. a E-mail :[email protected] ; b E-mail :[email protected] ;c E-mail :[email protected] 2 EqEL, FRES 3041 – UMR CNRS SPE 6134, University of Corsica, BP 52, 20250 Corte, France.
    [Show full text]
  • Extinction Risk Assessment of the World's Seagrass Species
    Author version: Biol. Conserv.: 144(7); 2011; 1961-1971. Extinction risk assessment of the world’s seagrass species Frederick T. Short a,*, Beth Polidoro b, Suzanne R. Livingstone b, Kent E. Carpenter b, Salomao Bandeira c, Japar Sidik Bujang d, Hilconida P. Calumpong e, Tim J.B. Carruthers f, Robert G. Coles g, William C. Dennison f, Paul L.A. Erftemeijer h, Miguel D. Fortes i, Aaren S. Freeman a, T.G. Jagtap j, Abu Hena M. Kamal k, Gary A. Kendrick l, W. Judson Kenworthy m, Yayu A. La Nafie n, Ichwan M. Nasution o, Robert J. Orth p, Anchana Prathep q, Jonnell C. Sanciangco b, Brigitta van Tussenbroek r, Sheila G. Vergara s, Michelle Waycott t, Joseph C. Zieman u *Corresponding author. Tel.: +1 603 862 5134; fax: +1 603 862 1101. [email protected] (F.T. Short), a University of New Hampshire, Department of Natural Resources and the Environment, Jackson Estuarine Laboratory, 85 Adams Point Road, Durham, NH 03824, USA b IUCN Species Programme/SSC/Conservation International, Global Marine Species Assessment, Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA c Universidade Eduardo Mondlane, Department of Biological Sciences, 1100 Maputo, Mozambique d Universiti Putra Malaysia Bintulu Sarawak Campus, Faculty of Agriculture and Food Sciences, Sarawak, Malaysia e Silliman University, Institute of Environmental and Marine Sciences, Dumaguete City 6200, Philippines f University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA g Northern Fisheries Centre, Fisheries Queensland, Cairns, Queensland 4870, Australia h Deltares (Formerly Delft Hydraulics), 2600 MH Delft, The Netherlands i University of the Philippines, Marine Science Institute CS, Diliman, QC 1101, Philippines j National Institute of Oceanography, Donapaula, Goa-403 004, India k University of Chittagong, Institute of Marine Sciences and Fisheries, Chittagong 4331, Bangladesh l The University of Western Australia, Oceans Institute and School of Plant Biology Crawley, 6009, W.
    [Show full text]