Survey of Virtual and Augmented Reality Implementations for Development of Prototype for Practical Technician Training

Total Page:16

File Type:pdf, Size:1020Kb

Survey of Virtual and Augmented Reality Implementations for Development of Prototype for Practical Technician Training Computer Science, Degree Project, Advanced Course, 15 Credits Survey of Virtual and Augmented Reality Implementations for Development of Prototype for Practical Technician Training Tobias Lindvall & Özgun Mirtchev Computer Engineering Programme, 180 Credits Örebro, Sweden, Spring 2017 Examiner: Franziska Klügl Örebro Universitet Örebro University Institutionen för School of Science and Technology Naturvetenskap och Teknik SE-701 82 Örebro, Sweden 701 82 Örebro Abstract Virtual training is a vital way of educating technicians to make them prepared for real maintenance work. Technicians that are educated to perform maintenance work on JAS 39 Gripen, complete parts of their training through the application Virtual Maintenance Trainer (VMT), which can provide a detailed simulation of the aircraft during operation. The technicians are able to complete courses and lessons with specific procedures such as debugging internal computers and parts of the aircraft and performing maintenance work to fix errors. However, the application is desktop-based and to make the education even more effective, there is a desire to explore the possibilities in virtual and augmented reality. This report explores the alternatives of education tools in virtual reality and augmented reality through a survey. In the survey, the advantages and disadvantages of current implementations are examined to provide an optimal system which could work to give technicians a realistic practical training simulation experience. Based on the results of the survey and by using the game engine Unity, a prototype application is built which can simulate technician training procedures on a model of JAS 39 Gripen. HTC Vive and Leap Motion were used to immerse the user into the simulation world and to enable realistic interaction. A technician may be able to learn through completing different training procedures in the simulation by walking around and interacting with a full-scaled Gripen aircraft. Sammanfattning Virtuell träning är ett viktigt sätt att utbilda tekniker för att förbereda dem för underhållsarbete i verkligheten. Tekniker som utbildas för att utföra underhållsarbete på JAS 39 Gripen, genomför delar av utbildningen genom programmet Virtual Maintenance Trainer (VMT), som kan återge en detaljerad simulering av flygplanet under drift. Teknikerna kan delta i lektioner med specifika uppgifter som inkluderar att felsöka interna datorer och delar av flygplanet samt utföra underhållsarbete för att åtgärda fel. Programmet är dock skrivbordsbaserat och för att göra utbildningen mer effektiv, finns det en önskan om att utforska möjligheterna i virtual och augmented reality. Denna rapport undersöker alternativen för utbildningsverktyg i virtual reality och augmented reality genom en teoretisk undersökning. I undersökningen vägs fördelar och nackdelar för nuvarande implementeringar för att tillhandahålla ett optimalt system som kan fungera för att ge tekniker praktisk erfarenhet i en realitisk träningssimulering. Baserat på resultaten från undersökningen och genom att använda spelmotorn Unity, har en prototypsapplikation skapats som kan simulera teknikerutbildning på en modell av JAS 39 Gripen. HTC Vive och Leap Motion användes för att låta användaren kliva in i simuleringsvärlden och för att möjliggöra realistisk interaktion. En tekniker kan lära sig att utföra underhållsåtgärder genom att genomföra olika träningsförfaranden i simuleringen genom att gå runt och interagera med ett fullskaligt Gripen-flygplan. Preface A big thank you to our supervisor at Saab, Johan Gustafsson, for all the help, encouragement and support during the exam work. A special thanks to Linus Lindberg at Saab, who helped us by providing valuable technical knowledge regarding 3D modelling. Many thanks to our supervisor at the university, Andrey Kiselev, for giving feedback for writing the report and for enabling us to use available hardware for the prototype. Also thank you to our examiner, Franziska Klügl, for help with writing the report. i Table of Contents List of Figures iv Abbreviations v 1 Introduction 1 1.1 Background . 1 1.1.1 Saab . 1 1.1.2 Virtual Maintenance Trainer . 1 1.2 Project . 3 1.3 Objective . 3 1.4 Requirements . 4 1.5 Division of Labour . 4 2 State-of-the-Art Survey 5 2.1 Introduction . 5 2.2 Clarification of Virtual and Augmented Reality . 5 2.3 Guidelines for Training in VR and AR . 6 2.4 Architecture . 6 2.5 Virtual Reality . 7 2.5.1 Introduction . 7 2.5.2 Hardware and Software . 7 2.5.3 Related Studies and Implementations . 12 2.6 Augmented Reality . 17 2.6.1 Introduction . 17 2.6.2 Hardware and Software . 17 2.6.3 Related Studies and Implementations . 20 2.7 Result . 24 2.7.1 Multi-user Capabilities . 24 2.7.2 Graphics and System Performance . 25 2.7.3 User Interactions . 29 2.7.4 Miscellaneous . 30 2.8 Conclusions . 31 2.8.1 Result Evaluation . 31 2.8.2 Summary . 32 3 Methods and Tools 33 3.1 Methods . 33 3.1.1 Development Planning . 33 3.1.2 Event-Driven Implementation . 33 3.2 Tools . 35 3.2.1 Hardware . 35 ii 3.2.2 Software . 36 3.2.3 Development Frameworks . 36 3.3 Other Resources . 37 4 Prototype Development 38 4.1 Refuel Procedure Training . 38 4.1.1 Ground Crew Panel . 38 4.1.2 Refuelling Access Panel . 38 4.1.3 Refuel Equipment . 39 4.1.4 Instructions . 39 4.2 Result . 40 4.2.1 Virtual Model Representations . 40 4.2.2 Interaction Design . 43 4.3 Discussion of Implementation . 48 4.3.1 Expenditure . 48 4.3.2 Evaluation of Used Hardware . 48 4.3.3 Development Potential and Future Developments . 49 5 Discussion 50 5.1 Compliance with the Project Requirements . 50 5.1.1 Summary of the Requirements . 50 5.1.2 Fulfilled Requirements . 50 5.2 Impact on Society . 51 5.3 Project Development . 52 5.4 Reflection on Own Learning . 52 5.4.1 Knowledge and Comprehension . 52 5.4.2 Proficiency and Ability . 52 Bibliography 53 Appendix A Setting up Unity with HTC Vive and Leap Motion 62 Appendix B Prototype System Diagram 64 Appendix C Demonstration of Implementation 65 C.1 Menu Interaction . 65 C.2 Refuel Procedure . 65 iii List of Figures 1.1.1 An overview of the VMT system . 2 2.2.1 The RV Continuum . 5 2.4.1 Basic VR and AR System Overview . 7 2.5.1 Oculus Rift with Touch . 8 2.5.2 HTC Vive with controllers and Lighthouse basestations . 9 2.5.3 Samsung Gear VR . 10 2.5.4 Plugged Leap Motion controller . 10 2.5.5 Microsoft Kinect V1 & V2 . 11 2.6.1 Microsoft HoloLens . 18 2.6.2 Meta Company’s Meta 2 . 18 2.6.3 Google Glass . 19 2.6.4 Google Cardboard . 19 2.7.1 Image illustrating the FoV of HoloLens for displaying virtual objects . 28 3.0.1 A top-down view of the tracked area by using the Room Overview Window in SteamVR . 34 3.2.1 Basic Prototype System Overview . 35 3.2.2 HTC Vive with a front-attached Leap Motion . 35 4.1.1 Panels . 39 4.2.1 JAS 39C Gripen . 41 4.2.2 Refuel equipment . 41 4.2.3 Hand models . ..
Recommended publications
  • Oculus Rift CV1 (Model HM-A) Virtual Reality Headset System Report by Wilfried THERON March 2017
    Oculus Rift CV1 (Model HM-A) Virtual Reality Headset System report by Wilfried THERON March 2017 21 rue la Noue Bras de Fer 44200 NANTES - FRANCE +33 2 40 18 09 16 [email protected] www.systemplus.fr ©2017 by System Plus Consulting | Oculus Rift CV1 Head-Mounted Display (SAMPLE) 1 Table of Contents Overview / Introduction 4 Cost Analysis 83 o Executive Summary o Accessing the BOM o Main Chipset o PCB Cost o Block Diagram o Display Cost o Reverse Costing Methodology o BOM Cost – Main Electronic Board o BOM Cost – NIR LED Flex Boards Company Profile 9 o BOM Cost – Proximity Sensor Flex o Oculus VR, LLC o Housing Parts – Estimation o BOM Cost - Housing Physical Analysis 11 o Material Cost Breakdown by Sub-Assembly o Material Cost Breakdown by Component Category o Views and Dimensions of the Headset o Accessing the Added Value (AV) cost o Headset Opening o Main Electronic Board Manufacturing Flow o Fresnel Lens Details o Details of the Main Electronic Board AV Cost o NIR LED Details o Details of the System Assembly AV Cost o Microphone Details o Added-Value Cost Breakdown o Display Details o Manufacturing Cost Breakdown o Main Electronic Board Top Side – Global view Estimated Price Analysis 124 Top Side – High definition photo o Estimation of the Manufacturing Price Top Side – PCB markings Top Side – Main components markings Company services 128 Top Side – Main components identification Top Side – Other components markings Top Side – Other components identification Bottom Side – High definition photo o LED Driver Board o NIR LED Flex Boards o Proximity Sensor Flex ©2017 by System Plus Consulting | Oculus Rift CV1 Head-Mounted Display (SAMPLE) 2 OVERVIEW METHODOLOGY ©2017 by System Plus Consulting | Oculus Rift CV1 Head-Mounted Display (SAMPLE) 3 Executive Summary Overview / Introduction o Executive Summary This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of the Oculus Rift Headset* o Main Chipset supplied by Oculus VR, LLC (website).
    [Show full text]
  • View the Manual
    Base game Manual V0.4 Environment Remove any objects in the playing area that you might touch or hit while playing with your body. Please also make sure that lamps or fans are not in the playing area. If you are at the edge of the playing area, do not make any big movements, otherwise you could touch the walls with your body or hands/controllers. It is best to stand. Step movements are not necessary during the game. You can move and rotate completely with the controllers. Technical requirements To play the game, you need Virtual Reality headset (VR headset). Without VR glasses, the game will not run. A (free) Steam account is also required. Also installed must be the VR software "SteamVR" (when using HTC VIVE or the Valve Index) or the additional software "Windows Mixed Reality for SteamVR" for the use of Windows Mixed Reality glasses on Steam with "SteamVR". Before the first launch, a room measuring should also have been done in SteamVR (when using the HTC VIVE or the Valve Index). When using Windows Mixed Reality glasses, there is an option to change the position of the floor from the height. The controllers of the VR headset should also be connected to the VR system and be charged. The game Container You start the game in the container and go to the selected construction site through the door. Later, you can start different locations here depending on the existing DLC. You can now set options to one of the boards by moving the switch accordingly.
    [Show full text]
  • VR Headset Comparison
    VR Headset Comparison All data correct as of 1st May 2019 Enterprise Resolution per Tethered or Rendering Special Name Cost ($)* Available DOF Refresh Rate FOV Position Tracking Support Eye Wireless Resource Features Announced Works with Google Subject to Mobile phone 5.00 Yes 3 60 90 None Wireless any mobile No Cardboard mobile device required phone HP Reverb 599.00 Yes 6 2160x2160 90 114 Inside-out camera Tethered PC WMR support Yes Tethered Additional (*wireless HTC VIVE 499.00 Yes 6 1080x1200 90 110 Lighthouse V1 PC tracker No adapter support available) HTC VIVE PC or mobile ? No 6 ? ? ? Inside-out camera Wireless - No Cosmos phone HTC VIVE Mobile phone 799.00 Yes 6 1440x1600 75 110 Inside-out camera Wireless - Yes Focus Plus chipset Tethered Additional HTC VIVE (*wireless tracker 1,099.00 Yes 6 1440x1600 90 110 Lighthouse V1 and V2 PC Yes Pro adapter support, dual available) cameras Tethered All features HTC VIVE (*wireless of VIVE Pro ? No 6 1440x1600 90 110 Lighthouse V1 and V2 PC Yes Pro Eye adapter plus eye available) tracking Lenovo Mirage Mobile phone 399.00 Yes 3 1280x1440 75 110 Inside-out camera Wireless - No Solo chipset Mobile phone Oculus Go 199.00 Yes 3 1280x1440 72 110 None Wireless - Yes chipset Mobile phone Oculus Quest 399.00 No 6 1440x1600 72 110 Inside-out camera Wireless - Yes chipset Oculus Rift 399.00 Yes 6 1080x1200 90 110 Outside-in cameras Tethered PC - Yes Oculus Rift S 399.00 No 6 1280x1440 90 110 Inside-out cameras Tethered PC - No Pimax 4K 699.00 Yes 6 1920x2160 60 110 Lighthouse Tethered PC - No Upscaled
    [Show full text]
  • Virtual Reality Headsets
    VIRTUAL REALITY HEADSETS LILY CHIANG VR HISTORY • Many companies (Virtuality, Sega, Atari, Sony) jumped on the VR hype in the 1990s; but commercialization flopped because both hardware and software failed to deliver on the promised VR vision. • Any use of the VR devices in the 2000s was limited to the military, aviation, and medical industry for simulation and training. • VR hype resurged after Oculus successful KickStarter campaign; subsequently acquired by Facebook for $2.4 bn. • Investments rushed into the VR industry as major tech firms such as Google, Samsung, and Microsoft and prominent VC firms bet big on the VR revolution. LIST OF VIRTUAL REALITY HEADSET FIRMS Company Name Entered Exited Disposition Company Name Entered Exited Disposition Company Name Entered Exited Disposition LEEP Optics 1979 1998 Bankrupt Meta Altergaze 2014 Ongoing VPL Research 1984 1990 Bankrupt SpaceGlasses 2012 Ongoing Archos VR 2014 Ongoing Division Group Sulon Cortex 2012 Ongoing AirVr 2014 Ongoing LTD 1989 1999 Acquired Epson Moverio Sega VR 1991 1994 Bankrupt BT-200 2012 Ongoing 360Specs 2014 Ongoing Virtuality 1991 1997 Acquired i2i iPal 2012 Ongoing Microsoft VictorMaxx 1992 1998 Bankrupt Star VR 2013 Ongoing Hololens Systems 2015 Ongoing Durovis Dive 2013 Ongoing Razr OSVR 2015 Ongoing Atari Jaguar VR 1993 1996 Discontinued Vrizzmo 2013 Ongoing Virtual I-O 1993 1997 Bankrupt Cmoar 2015 Ongoing CastAR 2013 Ongoing eMagin 1993 Ongoing Dior Eyes VR 2015 Ongoing VRAse 2013 Ongoing Virtual Boy 1994 1995 Discontinued Yay3d VR 2013 Ongoing Impression Pi
    [Show full text]
  • Phobulus, Tratamiento De Fobias Con Realidad Virtual
    Universidad ORT Uruguay Facultad de Ingeniería Phobulus Tratamiento de fobias con realidad virtual Entregado como requisito para la obtención del título de Ingeniero en Sistemas Juan Martín Corallo – 172169 Christian Eichin – 173551 Santiago Pérez – 170441 Horacio Torrendell - 172844 Tutor: Nicolás Fornaro 2016 Declaración de autoría Nosotros, Juan Martín Corallo, Christian Eichin, Santiago Pérez y Horacio Torrendell, declaramos que el trabajo que se presenta en esa obra es de nuestra propia mano. Podemos asegurar que: La obra fue producida en su totalidad mientras realizábamos el proyecto de grado de fin de curso de la carrera Ingeniería en Sistemas; Cuando hemos consultado el trabajo publicado por otros, lo hemos atribuido con claridad; Cuando hemos citado obras de otros, hemos indicado las fuentes. Con excepción de estas citas, la obra es enteramente nuestra; En la obra, hemos acusado recibo de las ayudas recibidas; Cuando la obra se basa en trabajo realizado conjuntamente con otros, hemos explicado claramente qué fue contribuido por otros, y qué fue contribuido por nosotros; Ninguna parte de este trabajo ha sido publicada previamente a su entrega, excepto donde se han realizado las aclaraciones correspondientes. Fecha: 23 de Agosto, 2016. Juan Martín Corallo Christian Eichin Santiago Pérez Horacio Torrendell 2 Agradecimientos En primer lugar queremos agradecer al tutor del proyecto, MSc. Nicolás Fornaro, por acompañarnos y ayudarnos con entusiasmo desde el principio del mismo. Siempre estuvo disponible con la mejor voluntad para resolver dudas en reuniones o vía medios electrónicos, y guiarnos en todo lo referente al proyecto. Queremos agradecer también a los miembros del laboratorio ORT Software Factory, Dr.
    [Show full text]
  • Hp Mixed Reality Headset System Requirements
    Hp Mixed Reality Headset System Requirements Pachydermatous Meir ionizes enlargedly. Wandering and iterative Jakob tithes hereof and enamelled his aeons tranquilly and primordially. Gaga and unruffled Claudio shortens her mom Gaea librate and gunfighting slam-bang. Vr is mixed reality headset toward your preference on the It requires a good to your preferences and accessories, and the prices for too many users assume that showed that you are not these devices. Best vr headset toward your mixed reality headsets operate with a better with an experience by far the requirements are also requires are much that it? Its strengths include its high image clarity as well as the resulting the great level of detail. CPU, GPU, and memory are the most critical components. How tart the tech compares? Dive into place the company offers and reality system. Oculus Go and PSVR. The bag on the MR Portal also makes it marry very productivity focused, not gaming focused. Use voice commands to laugh stuff easier in mixed reality. Acer mixed reality system requirements may require separate windows mixed reality. Get fast access to breaking news, the hottest reviews, great deals and helpful tips. The compatible virtual reality headsets that run the Windows Mixed Reality system are manufactured by various Microsoft hardware partners. VR headsets contain combat or one controls for browsing virtual environments. Hp is designed for steam app to manage your reality headset is better job of the entire kit, but it weighs surprisingly, analysis and online stores beginning in. Some AR headsets are available on the market today, with more rumored to be coming in the future.
    [Show full text]
  • HTC VIVE Pro Secure 99HASK000-00 Graphics: NVIDIA® Geforce® GTX 970 Or AMD Radeon™ R9 290 Equivalent Or Better
    Secure Professional-Grade VR Professional-grade VR designed for sensitive environments that require Authority To Operate (ATO). The system also features top-tier graphics, premium audio, and SteamVR™ room-scale tracking. VIVE® Pro Secure™ can go where others cannot. It’s a secure setup for serious results. Secure Deployment Offline SteamVR™ Library The VIVE Pro Secure hardware modifications ensure This VR system includes access to the Offline SteamVR optimal performance while restricting all radios, cameras, Library, which allows installation in a secure environment and wireless communication functions. where the machine is not connected to the internet. Even if a machine is connected to the internet, the installer will not send or receive any data online. Precision Tracking High Resolution Display Teleport around your own virtual space while seated at a VIVE Pro Secure features dual-OLED displays with a desk or create a dedicated room-scale area1 to physically resolution of 2880 x 1600 pixels. This makes graphics, walk around. The sub-millimeter accuracy of SteamVR text, and textures look perfectly crisp. It provides the Tracking provides the best experience possible. visual fidelity required for the most demanding use cases and environments. Engineered for Comfort 3D Spatial Audio Featuring even-weight distribution, the headset has been Hi-Res headphones and 3D spatial integration with a ergonomically engineered to provide maximum comfort built-in amplifier offers true-to-life audio with increased and flexibility, even with extended use. It adjusts easily to volume and resonance. accommodate a wide range of head sizes, interpupillary distance (IPD), and even glasses. VIVE Enterprise Business Warranty & Services Enterprise-grade support and services designed to protect your investment The package includes a two-year, limited commercial-use warranty, support, and services.
    [Show full text]
  • 647 Virtual Anatomy: Expanding Veterinary Student Learning
    647 VIRTUAL PROJECTS DOI: dx.doi.org/10.5195/jmla.2020.1057 Virtual Anatomy: expanding veterinary student learning Kyrille DeBose See end of article for author’s affiliation. Traditionally, there are three primary ways to learn anatomy outside the classroom. Books provide foundational knowledge but are limited in terms of object manipulation for deeper exploration. Three- dimensional (3D) software programs produced by companies including Biosphera, Sciencein3D, and Anatomage allow deeper exploration but are often costly, offered through restrictive licenses, or require expensive hardware. A new approach to teaching anatomy is to utilize virtual reality (VR) environments. The Virginia–Maryland College of Veterinary Medicine and University Libraries have partnered to create open education–licensed VR anatomical programs for students to freely download, access, and use. The first and most developed program is the canine model. After beta testing, this program was integrated into the first- year students’ physical examination labs in fall 2019. The VR program enabled students to walk through the VR dog model to build their conceptual knowledge of the location of certain anatomical features and then apply that knowledge to live animals. This article briefly discusses the history, pedagogical goals, system requirements, and future plans of the VR program to further enrich student learning experiences. Virtual Projects are published on an annual basis in the Journal of the Medical Library Association (JMLA) following an annual call for virtual projects in MLAConnect and announcements to encourage submissions from all types of libraries. An advisory committee of recognized technology experts selects project entries based on their currency, innovation, and contribution to health sciences librarianship.
    [Show full text]
  • Novel Approach to Measure Motion-To-Photon and Mouth-To-Ear Latency in Distributed Virtual Reality Systems
    Novel Approach to Measure Motion-To-Photon and Mouth-To-Ear Latency in Distributed Virtual Reality Systems Armin Becher∗, Jens Angerer†, Thomas Grauschopf? ∗ Technische Hochschule Ingolstadt † AUDI AG ? Technische Hochschule Ingolstadt Esplanade 10 Auto-Union-Straße 1 Esplanade 10 85049 Ingolstadt 85045 Ingolstadt 85049 Ingolstadt [email protected] [email protected] [email protected] Abstract: Distributed Virtual Reality systems enable globally dispersed users to interact with each other in a shared virtual environment. In such systems, different types of latencies occur. For a good VR experience, they need to be controlled. The time delay between the user’s head motion and the corresponding display output of the VR system might lead to adverse effects such as a reduced sense of presence or motion sickness. Additionally, high network latency among world- wide locations makes collaboration between users more difficult and leads to misunderstandings. To evaluate the performance and optimize dispersed VR solutions it is therefore important to mea- sure those delays. In this work, a novel, easy to set up, and inexpensive method to measure local and remote system latency will be described. The measuring setup consists of a microcontroller, a microphone, a piezo buzzer, a photosensor, and a potentiometer. With these components, it is possible to measure motion-to-photon and mouth-to-ear latency of various VR systems. By using GPS-receivers for timecode-synchronization it is also possible to obtain the end-to-end delays be- tween different worldwide locations. The described system was used to measure local and remote latencies of two HMD based distributed VR systems.
    [Show full text]
  • Augmented Reality, Virtual Reality, & Health
    University of Massachusetts Medical School eScholarship@UMMS National Network of Libraries of Medicine New National Network of Libraries of Medicine New England Region (NNLM NER) Repository England Region 2017-3 Augmented Reality, Virtual Reality, & Health Allison K. Herrera University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/ner Part of the Health Information Technology Commons, Library and Information Science Commons, and the Public Health Commons Repository Citation Herrera AK, Mathews FZ, Gugliucci MR, Bustillos C. (2017). Augmented Reality, Virtual Reality, & Health. National Network of Libraries of Medicine New England Region (NNLM NER) Repository. https://doi.org/ 10.13028/1pwx-hc92. Retrieved from https://escholarship.umassmed.edu/ner/42 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in National Network of Libraries of Medicine New England Region (NNLM NER) Repository by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Augmented Reality, Virtual Reality, & Health Zeb Mathews University of Tennessee Corina Bustillos Texas Tech University Allison Herrera University of Massachusetts Medical School Marilyn Gugliucci University of New England Outline Learning Objectives Introduction & Overview Objectives: • Explore AR & VR technologies and Augmented Reality & Health their impact on health sciences, Virtual Reality & Health with examples of projects & research Technology Funding Opportunities • Know how to apply for funding for your own AR/VR health project University of New England • Learn about one VR project funded VR Project by the NNLM Augmented Reality and Virtual Reality (AR/VR) & Health What is AR and VR? F.
    [Show full text]
  • Effects of Controller-Based Locomotion on Player
    Effects of Controller-based Locomotion on Player Experience in a Virtual Reality Exploration Game Julian Frommel, Sven Sonntag, Michael Weber Institute of Media Informatics, Ulm University James-Franck Ring Ulm, Germany {firstname.lastname}@uni-ulm.de ABSTRACT 1 INTRODUCTION Entertainment and in particular gaming is currently consid- With the recent release of several consumer grade VR HMDs, ered one of the main application scenarios for virtual reality there has been growing interest in the design and development (VR). The majority of current games rely on any form of loco- of VR games. As a result, player experience research has been motion through the virtual environment while some techniques increasingly concerned with interaction in VR gaming. Games can lead to simulator sickness. Game developers are currently in general as well as VR games frequently require that the implementing a wide variety of locomotion techniques to cope player can move from one position to another. While providing with simulator sickness (e.g. teleportation). In this work we such an interaction is easy in non-VR games it can be quite implemented and evaluated four different controller-based challenging for VR games. Although locomotion is possible locomotion methods that are popular in current VR games for roomscale VR systems like the HTC Vive [12] the available (free teleport, fixpoint teleport, touchpad-based, automatic). space is too limited for the requirements of a lot of games. We conducted a user study (n = 24) in which participants Therefore, game developers employ many different approaches explored a virtual zoo with these four different controller-based to provide locomotion for players.
    [Show full text]
  • (VR): a Case Study of the HTC Vive Pro Eye's Usability
    healthcare Article Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye’s Usability Alexandra Sipatchin 1,*, Siegfried Wahl 1,2 and Katharina Rifai 1,2 1 Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; [email protected] (S.W.); [email protected] (K.R.) 2 Carl Zeiss Vision International GmbH, 73430 Aalen, Germany * Correspondence: [email protected] Abstract: Background: A case study is proposed to empirically test and discuss the eye-tracking status-quo hardware capabilities and limitations of an off-the-shelf virtual reality (VR) headset with embedded eye-tracking for at-home ready-to-go online usability in ophthalmology applications. Methods: The eye-tracking status-quo data quality of the HTC Vive Pro Eye is investigated with novel testing specific to objective online VR perimetry. Testing was done across a wide visual field of the head-mounted-display’s (HMD) screen and in two different moving conditions. A new automatic and low-cost Raspberry Pi system is introduced for VR temporal precision testing for assessing the usability of the HTC Vive Pro Eye as an online assistance tool for visual loss. Results: The target position on the screen and head movement evidenced limitations of the eye-tracker capabilities as a perimetry assessment tool. Temporal precision testing showed the system’s latency of 58.1 milliseconds (ms), evidencing its good potential usage as a ready-to-go online assistance tool for visual loss. Conclusions: The test of the eye-tracking data quality provides novel analysis useful for testing upcoming VR headsets with embedded eye-tracking and opens discussion regarding expanding future introduction of these HMDs into patients’ homes for low-vision clinical usability.
    [Show full text]