Virtual Reality Sickness During Immersion: an Investigation of Potential Obstacles Towards General Accessibility of VR Technology

Total Page:16

File Type:pdf, Size:1020Kb

Virtual Reality Sickness During Immersion: an Investigation of Potential Obstacles Towards General Accessibility of VR Technology Examensarbete 30hp August 2016 Virtual Reality sickness during immersion: An investigation of potential obstacles towards general accessibility of VR technology. A controlled study for investigating the accessibility of modern VR hardware and the usability of HTC Vive’s motion controllers. Dongsheng Lu Abstract People call the year of 2016 as the year of virtual reality. As the world leading tech giants are releasing their own Virtual Reality (VR) products, the technology of VR has been more available than ever for the mass market now. However, the fact that the technology becomes cheaper and by that reaches a mass-market, does not in itself imply that long-standing usability issues with VR have been addressed. Problems regarding motion sickness (MS) and motion control (MC) has been two of the most important obstacles for VR technology in the past. The main research question of this study is: “Are there persistent universal access issues with VR related to motion control and motion sickness?” In this study a mixed method approach has been utilized for finding more answers related to these two important aspects. A literature review in the area of VR, MS and MC was followed by a quantitative controlled study and a qualitative evaluation. 32 participants were carefully selected for this study, they were divided into different groups and the quantitative data collected from them were processed and analyzed by using statistical test. An interview was also carried out with all of the participants of this study in order to gather more details about the usability of the motion controllers used in this study. The results of this study has validated several existing frameworks for VR. And in conclusion, this study has also shown that both previous motion sickness experiences and gender factors weren’t significant in terms of general accessibility issues on PCVR platforms. There are hints showing that the VR technology on PC platform could be universal accessible, since both of the quantitative and qualitative results has provided some evidences supporting this finding. However, more similar studies need to be carried out in order to identify more possible factors that would give an impact on user experiences in VR. The results of this study has also given implications of that today’s VR technology is developing on the right track and it could slowly become adopted by the mainstream and mass-market in the future. 2 Acknowledgement First of all, I would say a great thank you to Annika, you have taken over my supervision during the time I have encountered a lot of difficulties even though you had a lot of other works to do. It was you who encouraged me and made me believe that this study can actually be done in time. And again thank you for all the help and guidance you have given me. I have learned a lot from you and your courses and you will always remain as my teacher, my professor and my mentor of life. My heartfelt gratitude to the department of Informatics and Media. The department purchased the device for me and made it possible so I could use the best and most recent released VR hardware available on the mass market, this helped me and this study to avoid a lot of uncertainties that might be caused by outdated hardware. Also thank you, Johan Nysjö of the IT Department, who lent me the instruments for pre-study. The pre-study has been an important part of my study as well, and your generosity is greatly appreciated. I would also like to thank all of the people who were involved in this study, the teachers, my friends, my classmates who gave me feedback and took their time to participate in this study, you all have been a very important part of this study. 3 TABLE OF CONTENTS CHAPTER PAGE ABSTRACT .............................................................................................................................................. 2 ACKNOWLEDGEMENT ............................................................................................................................ 3 1. INTRODUCTION .................................................................................................................................. 6 1.1 PUPOSE AND RESEARCH QUESTION .................................................................................... 7 2. BACKGROUND .................................................................................................................................... 9 2.1 VIRTUAL REALITY .................................................................................................................. 9 2.2 INPUT METHODS FOR VR .................................................................................................... 9 2.3 HEAD MOUNTED DISPLAYS ............................................................................................... 11 2.4 CLASSIFICATION OF THE RECENT VR HEADSETS ............................................................... 11 2.5 IMMERSIONS & PRESENCE IN VR ...................................................................................... 12 2.6 ROLE-PLAYING VIDEO GAMES & GAMING EXPERIENCES ................................................. 12 2.7 AVAILABLE VR HARDWARE FOR CONSUMERS .................................................................. 12 3. PREVIOUS RESEARCH ...................................................................................................................... 13 3.1 MOTION SICKNESS ............................................................................................................ 13 3.2 INDIVIDUAL DIFFERENCES AND SUSCEPTIBILITY ............................................................... 14 3.3 IMOTION CONTROLLERS IN VR ......................................................................................... 14 4. THEORY ............................................................................................................................................ 15 4.1 SENSORY CONFLICT THEORY ............................................................................................. 15 4.2 POSTURAL INSTABILITY THEORY ....................................................................................... 17 4.3 FLOW THEORY ................................................................................................................... 18 4.4 SENSORIMOTOR ADAPTATION ......................................................................................... 19 5. METHOD .......................................................................................................................................... 20 5.1 MS MEASUREMENTS ......................................................................................................... 20 5.2 SIMULATOR SICKNESS QUESTIONNAIRE (SSQ) .................................................................. 20 5.3 PRE-STUDY ........................................................................................................................ 21 5.4 METHOD APPLICATION ..................................................................................................... 23 5.4.1 TEST PARTICIPANTS ..................................................................................................... 23 5.4.2 MATERIALS AND EXPERIMENT LOCATION .................................................................. 23 4 5.4.3 SELECTING VIRTUAL ENVIRONMENT ........................................................................... 24 5.4.4 VANISHING REALMS: RITE OF STEEL............................................................................ 24 5.4.5 EXPERIMENT PROCEDURE ........................................................................................... 25 6. RESULTS ........................................................................................................................................... 28 6.1 PARTICIPANT PROFILING .................................................................................................... 28 6.2 RAW DATA FOR GROUP WITH PREVIOUS MS ................................................................... 30 6.3 RAW DATA FOR GROUP WITHOUT PREVIOUS MS ............................................................ 31 6.4 COMPARISON BETWEEN TWO GROUPS ........................................................................... 32 6.5 COMPARISON BETWEEN MALE AND FEMALE GROUPS .................................................... 34 6.6 COMPARISON OF AVERAGE VALUES OF OVERALL VR SICKNESS SYMPTOM SCORES........ 35 6.7 QUALITATIVE RESULTS ...................................................................................................... 36 7. DICUSSION ....................................................................................................................................... 38 7.1 SIGNIFICANT DIFFERENCE ................................................................................................. 38 7.2 DETAILED EXPLANATION OF COLLECTED SCORES ............................................................. 38 7.3 SUGGESTIONS FOR CURRENT MS MEASUREMENT STANDARD ....................................... 38 7.4 THE PROCESS OF SENSORIMOTOR ADAPTATION ............................................................. 39 7.5 MOTION CONTROLLERS FOR VR CONTENTS ..................................................................... 39 7.6 LIMITATIONS CONTROLLERS FOR VR CONTENTS .............................................................. 39 7.5 RECOMMENDATIONS FOR FUTURE WORK ....................................................................... 40 8. CONCLUSIONS .................................................................................................................................
Recommended publications
  • Oculus Rift CV1 (Model HM-A) Virtual Reality Headset System Report by Wilfried THERON March 2017
    Oculus Rift CV1 (Model HM-A) Virtual Reality Headset System report by Wilfried THERON March 2017 21 rue la Noue Bras de Fer 44200 NANTES - FRANCE +33 2 40 18 09 16 [email protected] www.systemplus.fr ©2017 by System Plus Consulting | Oculus Rift CV1 Head-Mounted Display (SAMPLE) 1 Table of Contents Overview / Introduction 4 Cost Analysis 83 o Executive Summary o Accessing the BOM o Main Chipset o PCB Cost o Block Diagram o Display Cost o Reverse Costing Methodology o BOM Cost – Main Electronic Board o BOM Cost – NIR LED Flex Boards Company Profile 9 o BOM Cost – Proximity Sensor Flex o Oculus VR, LLC o Housing Parts – Estimation o BOM Cost - Housing Physical Analysis 11 o Material Cost Breakdown by Sub-Assembly o Material Cost Breakdown by Component Category o Views and Dimensions of the Headset o Accessing the Added Value (AV) cost o Headset Opening o Main Electronic Board Manufacturing Flow o Fresnel Lens Details o Details of the Main Electronic Board AV Cost o NIR LED Details o Details of the System Assembly AV Cost o Microphone Details o Added-Value Cost Breakdown o Display Details o Manufacturing Cost Breakdown o Main Electronic Board Top Side – Global view Estimated Price Analysis 124 Top Side – High definition photo o Estimation of the Manufacturing Price Top Side – PCB markings Top Side – Main components markings Company services 128 Top Side – Main components identification Top Side – Other components markings Top Side – Other components identification Bottom Side – High definition photo o LED Driver Board o NIR LED Flex Boards o Proximity Sensor Flex ©2017 by System Plus Consulting | Oculus Rift CV1 Head-Mounted Display (SAMPLE) 2 OVERVIEW METHODOLOGY ©2017 by System Plus Consulting | Oculus Rift CV1 Head-Mounted Display (SAMPLE) 3 Executive Summary Overview / Introduction o Executive Summary This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of the Oculus Rift Headset* o Main Chipset supplied by Oculus VR, LLC (website).
    [Show full text]
  • User Acceptance of Virtual Reality: an Extended Technology Acceptance Model Camille Sagnier, Emilie Loup-Escande, Domitile Lourdeaux, Indira Thouvenin, Gérard Vallery
    User Acceptance of Virtual Reality: An Extended Technology Acceptance Model Camille Sagnier, Emilie Loup-Escande, Domitile Lourdeaux, Indira Thouvenin, Gérard Vallery To cite this version: Camille Sagnier, Emilie Loup-Escande, Domitile Lourdeaux, Indira Thouvenin, Gérard Vallery. User Acceptance of Virtual Reality: An Extended Technology Acceptance Model. International Journal of Human-Computer Interaction, Taylor & Francis, 2020, pp.1-15. 10.1080/10447318.2019.1708612. hal-02446117 HAL Id: hal-02446117 https://hal.archives-ouvertes.fr/hal-02446117 Submitted on 28 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. User acceptance of virtual reality: an extended technology acceptance model Camille Sagniera*, Emilie Loup-Escandea*, Domitile Lourdeauxb, Indira Thouveninb and Gérard Vallérya a Center for Research on Psychology: Cognition, Psyche and Organizations (CRP-CPO EA 7273), University of Picardy Jules Verne, Amiens, France b Sorbonne universités, Université de Technologie de Compiègne, CNRS UMR 7253 Heudiasyc, Compiègne, France *Corresponding authors, e-mails: [email protected] ; [email protected] 1 User acceptance of virtual reality: an extended technology acceptance model Although virtual reality (VR) has many applications, only few studies have investigated user acceptance of this type of immersive technology.
    [Show full text]
  • Virtual Reality Headsets
    VIRTUAL REALITY HEADSETS LILY CHIANG VR HISTORY • Many companies (Virtuality, Sega, Atari, Sony) jumped on the VR hype in the 1990s; but commercialization flopped because both hardware and software failed to deliver on the promised VR vision. • Any use of the VR devices in the 2000s was limited to the military, aviation, and medical industry for simulation and training. • VR hype resurged after Oculus successful KickStarter campaign; subsequently acquired by Facebook for $2.4 bn. • Investments rushed into the VR industry as major tech firms such as Google, Samsung, and Microsoft and prominent VC firms bet big on the VR revolution. LIST OF VIRTUAL REALITY HEADSET FIRMS Company Name Entered Exited Disposition Company Name Entered Exited Disposition Company Name Entered Exited Disposition LEEP Optics 1979 1998 Bankrupt Meta Altergaze 2014 Ongoing VPL Research 1984 1990 Bankrupt SpaceGlasses 2012 Ongoing Archos VR 2014 Ongoing Division Group Sulon Cortex 2012 Ongoing AirVr 2014 Ongoing LTD 1989 1999 Acquired Epson Moverio Sega VR 1991 1994 Bankrupt BT-200 2012 Ongoing 360Specs 2014 Ongoing Virtuality 1991 1997 Acquired i2i iPal 2012 Ongoing Microsoft VictorMaxx 1992 1998 Bankrupt Star VR 2013 Ongoing Hololens Systems 2015 Ongoing Durovis Dive 2013 Ongoing Razr OSVR 2015 Ongoing Atari Jaguar VR 1993 1996 Discontinued Vrizzmo 2013 Ongoing Virtual I-O 1993 1997 Bankrupt Cmoar 2015 Ongoing CastAR 2013 Ongoing eMagin 1993 Ongoing Dior Eyes VR 2015 Ongoing VRAse 2013 Ongoing Virtual Boy 1994 1995 Discontinued Yay3d VR 2013 Ongoing Impression Pi
    [Show full text]
  • Phobulus, Tratamiento De Fobias Con Realidad Virtual
    Universidad ORT Uruguay Facultad de Ingeniería Phobulus Tratamiento de fobias con realidad virtual Entregado como requisito para la obtención del título de Ingeniero en Sistemas Juan Martín Corallo – 172169 Christian Eichin – 173551 Santiago Pérez – 170441 Horacio Torrendell - 172844 Tutor: Nicolás Fornaro 2016 Declaración de autoría Nosotros, Juan Martín Corallo, Christian Eichin, Santiago Pérez y Horacio Torrendell, declaramos que el trabajo que se presenta en esa obra es de nuestra propia mano. Podemos asegurar que: La obra fue producida en su totalidad mientras realizábamos el proyecto de grado de fin de curso de la carrera Ingeniería en Sistemas; Cuando hemos consultado el trabajo publicado por otros, lo hemos atribuido con claridad; Cuando hemos citado obras de otros, hemos indicado las fuentes. Con excepción de estas citas, la obra es enteramente nuestra; En la obra, hemos acusado recibo de las ayudas recibidas; Cuando la obra se basa en trabajo realizado conjuntamente con otros, hemos explicado claramente qué fue contribuido por otros, y qué fue contribuido por nosotros; Ninguna parte de este trabajo ha sido publicada previamente a su entrega, excepto donde se han realizado las aclaraciones correspondientes. Fecha: 23 de Agosto, 2016. Juan Martín Corallo Christian Eichin Santiago Pérez Horacio Torrendell 2 Agradecimientos En primer lugar queremos agradecer al tutor del proyecto, MSc. Nicolás Fornaro, por acompañarnos y ayudarnos con entusiasmo desde el principio del mismo. Siempre estuvo disponible con la mejor voluntad para resolver dudas en reuniones o vía medios electrónicos, y guiarnos en todo lo referente al proyecto. Queremos agradecer también a los miembros del laboratorio ORT Software Factory, Dr.
    [Show full text]
  • An Augmented Reality Social Communication Aid for Children and Adults with Autism: User and Caregiver Report of Safety and Lack of Negative Effects
    bioRxiv preprint doi: https://doi.org/10.1101/164335; this version posted July 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. An Augmented Reality Social Communication Aid for Children and Adults with Autism: User and caregiver report of safety and lack of negative effects. An Augmented Reality Social Communication Aid for Children and Adults with Autism: User and caregiver report of safety and lack of negative effects. Ned T. Sahin1,2*, Neha U. Keshav1, Joseph P. Salisbury1, Arshya Vahabzadeh1,3 1Brain Power, 1 Broadway 14th Fl, Cambridge MA 02142, United States 2Department of Psychology, Harvard University, United States 3Department of Psychiatry, Massachusetts General Hospital, Boston * Corresponding Author. Ned T. Sahin, PhD, Brain Power, 1 Broadway 14th Fl, Cambridge, MA 02142, USA. Email: [email protected]. Abstract Background: Interest has been growing in the use of augmented reality (AR) based social communication interventions in autism spectrum disorders (ASD), yet little is known about their safety or negative effects, particularly in head-worn digital smartglasses. Research to understand the safety of smartglasses in people with ASD is crucial given that these individuals may have altered sensory sensitivity, impaired verbal and non-verbal communication, and may experience extreme distress in response to changes in routine or environment. Objective: The objective of this report was to assess the safety and negative effects of the Brain Power Autism System (BPAS), a novel AR smartglasses-based social communication aid for children and adults with ASD. BPAS uses emotion-based artificial intelligence and a smartglasses hardware platform that keeps users engaged in the social world by encouraging “heads-up” interaction, unlike tablet- or phone-based apps.
    [Show full text]
  • Is Virtual Reality Sickness Elicited by Illusory Motion Affected by Gender and Prior Video Gaming Experience?
    2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) Is Virtual Reality Sickness Elicited by Illusory Motion Affected by Gender and Prior Video Gaming Experience? Katharina Margareta Theresa Pohlmann¨ * Louise O’Hare Julia Focker¨ University of Lincoln Nottingham Trent University University of Lincoln Adrian Parke Patrick Dickinson University of the West of Scotland University of Lincoln ABSTRACT experience more VR sickness and sway than their male counter- Gaming using VR headsets is becoming increasingly popular; how- parts [11, 12, 14] and that motion sickness can be decreased with ever, these displays can cause VR sickness. To investigate the effects repeated exposure to a sickness-inducing environment [3,5,8]. Ha- of gender and gamer type on VR sickness motion illusions are used bituation to motion sickness has been shown when an individual is as stimuli, being a novel method of inducing the perception of motion repeatedly exposed to the same sickness-inducing virtual (or real) whilst minimising the “accommodation vergence conflict”. Females environment. However, in our case we are interested whether these and those who do not play action games experienced more severe adaptation effects also occur between different virtual environments. VR sickness symptoms compared to males and experienced action More precisely, whether individuals who spend a large amount of gamers. The interaction of the gender and gamer type revealed that time playing action video games (not using VR headsets) build up prior video gaming experience was beneficial for females, however, habituation effects which translate to VR. Thus, our study investi- for males, it did not show the same positive effects.
    [Show full text]
  • A Survey on Simulation Sickness in Virtual Environments
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2021 doi:10.20944/preprints202107.0167.v1 1 A Survey on Simulation Sickness in Virtual Environments Factors, Design and Best Practices Ananth N. Ramaseri Chandra, Fatima El Jamiy, Hassan Reza School of Electrical Engineering and Computer Science University of North Dakota Grand Forks, ND 58202 Email: ananthnag.ramaserich, [email protected] Abstract—Virtual Reality(VR) is an emerging technology with a broad range of application in training, entertainment, and business. To maximize the potentials of virtual reality as a medium, the unwelcome feeling of simulation sickness needs to be minimized. Even with advancements in VR, the usability concerns are barriers for a wide-spread acceptance. Several factors (hardware, software, human) play a part towards a pleasant VR experience. The reviewed scientific articles are mostly part of documents indexed in digital libraries. In this paper, we review the potential factors which cause simulation sickness and minimize the usability of virtual reality systems. We review the best practices from a developer’s perspective and some of the safety measures a user must follow while using the VR systems from existing research. Even after following some of the guidelines and best practices VR environments do not guarantee a pleasant experience for users. Limited research in VR environments towards requirement specification, design and development for maximum usability and adaptability was the main motive for this work. Index Terms—Virtual reality(VR), Virtual environment, Simulation sickness, Head mounted display(HMD), Usability, Design, Guidelines, User F 1 INTRODUCTION its history, and how simulation sickness is a usability issues for virtual reality systems.
    [Show full text]
  • 647 Virtual Anatomy: Expanding Veterinary Student Learning
    647 VIRTUAL PROJECTS DOI: dx.doi.org/10.5195/jmla.2020.1057 Virtual Anatomy: expanding veterinary student learning Kyrille DeBose See end of article for author’s affiliation. Traditionally, there are three primary ways to learn anatomy outside the classroom. Books provide foundational knowledge but are limited in terms of object manipulation for deeper exploration. Three- dimensional (3D) software programs produced by companies including Biosphera, Sciencein3D, and Anatomage allow deeper exploration but are often costly, offered through restrictive licenses, or require expensive hardware. A new approach to teaching anatomy is to utilize virtual reality (VR) environments. The Virginia–Maryland College of Veterinary Medicine and University Libraries have partnered to create open education–licensed VR anatomical programs for students to freely download, access, and use. The first and most developed program is the canine model. After beta testing, this program was integrated into the first- year students’ physical examination labs in fall 2019. The VR program enabled students to walk through the VR dog model to build their conceptual knowledge of the location of certain anatomical features and then apply that knowledge to live animals. This article briefly discusses the history, pedagogical goals, system requirements, and future plans of the VR program to further enrich student learning experiences. Virtual Projects are published on an annual basis in the Journal of the Medical Library Association (JMLA) following an annual call for virtual projects in MLAConnect and announcements to encourage submissions from all types of libraries. An advisory committee of recognized technology experts selects project entries based on their currency, innovation, and contribution to health sciences librarianship.
    [Show full text]
  • Novel Approach to Measure Motion-To-Photon and Mouth-To-Ear Latency in Distributed Virtual Reality Systems
    Novel Approach to Measure Motion-To-Photon and Mouth-To-Ear Latency in Distributed Virtual Reality Systems Armin Becher∗, Jens Angerer†, Thomas Grauschopf? ∗ Technische Hochschule Ingolstadt † AUDI AG ? Technische Hochschule Ingolstadt Esplanade 10 Auto-Union-Straße 1 Esplanade 10 85049 Ingolstadt 85045 Ingolstadt 85049 Ingolstadt [email protected] [email protected] [email protected] Abstract: Distributed Virtual Reality systems enable globally dispersed users to interact with each other in a shared virtual environment. In such systems, different types of latencies occur. For a good VR experience, they need to be controlled. The time delay between the user’s head motion and the corresponding display output of the VR system might lead to adverse effects such as a reduced sense of presence or motion sickness. Additionally, high network latency among world- wide locations makes collaboration between users more difficult and leads to misunderstandings. To evaluate the performance and optimize dispersed VR solutions it is therefore important to mea- sure those delays. In this work, a novel, easy to set up, and inexpensive method to measure local and remote system latency will be described. The measuring setup consists of a microcontroller, a microphone, a piezo buzzer, a photosensor, and a potentiometer. With these components, it is possible to measure motion-to-photon and mouth-to-ear latency of various VR systems. By using GPS-receivers for timecode-synchronization it is also possible to obtain the end-to-end delays be- tween different worldwide locations. The described system was used to measure local and remote latencies of two HMD based distributed VR systems.
    [Show full text]
  • Pedagogical Aspects of VR Learning KU LEUVEN
    VRinSight IO2 – Pedagogical aspects of VR learning KU LEUVEN KU LEUVEN 2 Table of Contents Introduction ............................................................................................................................................ 3 1. VR/AR/MR ....................................................................................................................................... 3 2. Virtual reality (VR) ........................................................................................................................... 5 3. Typical VR characteristics ................................................................................................................ 7 4. Benefits of using VR in education ................................................................................................... 8 5. Benefits of VR for policy makers ................................................................................................... 15 6. Pitfalls of using VR in education .................................................................................................... 16 7. Barriers to VR adoption ................................................................................................................. 17 8. Social VR ........................................................................................................................................ 21 9. Using VR in education ................................................................................................................... 25 Assignments
    [Show full text]
  • Evaluation of Simulator Sickness for 360° Videos on an HMD Subject To
    2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) Evaluation of Simulator Sickness for 360◦ Videos on an HMD Subject to Participants’ Experience with Virtual Reality Majed Elwardy* Hans-Jurgen¨ Zepernick† Yan Hu‡ Thi My Chinh Chu§ Veronica Sundstedt¶ Blekinge Institute of Technology SE-37179 Karlskrona, Sweden ABSTRACT In contrast to the large technological advancements supporting novel immersive visual and interactive applications, the understand- Virtual reality (VR) has seen tremendous advances in head-mounted ing about the level of simulator sickness and cybersickness is less displays (HMDs), optics, media quality, and other improvements developed but similar important to assure customer satisfaction. that facilitate immersive experiences. With the occurrence of new Given that viewing VEs on HMDs is a rather new option for many technologies like Cloud VR and networked VR video services, ap- consumer verticals, studies on simulator sickness that engage partic- plications such as 360◦ video streaming are becoming more popular ipants with different levels of experience with VR are also needed. within the broader consumer markets. As a result, VR content is accessible to customers with rather different levels of experiences with immersive media, i.e., never, sometimes, or often use of VR. 1.1 Related Work The question, therefore, arises to which degree simulator sickness Related recent work is typically based on the simulator sickness is induced to viewers depending on their experiences with VR on ◦ questionnaire (SSQ) proposed in [17]. In [4], a VR simulator of a HMDs. In this paper, simulator sickness is evaluated for 360 videos forestry crane for loading logs onto a truck was evaluated in terms that were shown on an HTC Vive Pro HMD to participants having of quality of experience (QoE) aspects and SSQ to reveal the effects different levels of experience with VR on HMDs.
    [Show full text]
  • (VR): a Case Study of the HTC Vive Pro Eye's Usability
    healthcare Article Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye’s Usability Alexandra Sipatchin 1,*, Siegfried Wahl 1,2 and Katharina Rifai 1,2 1 Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; [email protected] (S.W.); [email protected] (K.R.) 2 Carl Zeiss Vision International GmbH, 73430 Aalen, Germany * Correspondence: [email protected] Abstract: Background: A case study is proposed to empirically test and discuss the eye-tracking status-quo hardware capabilities and limitations of an off-the-shelf virtual reality (VR) headset with embedded eye-tracking for at-home ready-to-go online usability in ophthalmology applications. Methods: The eye-tracking status-quo data quality of the HTC Vive Pro Eye is investigated with novel testing specific to objective online VR perimetry. Testing was done across a wide visual field of the head-mounted-display’s (HMD) screen and in two different moving conditions. A new automatic and low-cost Raspberry Pi system is introduced for VR temporal precision testing for assessing the usability of the HTC Vive Pro Eye as an online assistance tool for visual loss. Results: The target position on the screen and head movement evidenced limitations of the eye-tracker capabilities as a perimetry assessment tool. Temporal precision testing showed the system’s latency of 58.1 milliseconds (ms), evidencing its good potential usage as a ready-to-go online assistance tool for visual loss. Conclusions: The test of the eye-tracking data quality provides novel analysis useful for testing upcoming VR headsets with embedded eye-tracking and opens discussion regarding expanding future introduction of these HMDs into patients’ homes for low-vision clinical usability.
    [Show full text]